Review



saos 2 cell line  (ATCC)


Bioz Verified Symbol ATCC is a verified supplier
Bioz Manufacturer Symbol ATCC manufactures this product  
  • Logo
  • About
  • News
  • Press Release
  • Team
  • Advisors
  • Partners
  • Contact
  • Bioz Stars
  • Bioz vStars
  • 99

    Structured Review

    ATCC saos 2 cell line
    (a) Cell proliferation <t>of</t> <t>SaOS-2</t> cells onto the different CaP discs for 4 h, 7, 14 and 21 days. (b) ALP activity of SaOS-2 cells cultured onto the CaP substrates for 4 h, 7, 14 and 21 days. The same letter indicates no statistically significant differences for the same group at different time points while the same number denotes no statistically significant differences for each time point among all samples. (p < 0.05).
    Saos 2 Cell Line, supplied by ATCC, used in various techniques. Bioz Stars score: 99/100, based on 3870 PubMed citations. ZERO BIAS - scores, article reviews, protocol conditions and more
    https://www.bioz.com/result/saos 2 cell line/product/ATCC
    Average 99 stars, based on 3870 article reviews
    saos 2 cell line - by Bioz Stars, 2026-02
    99/100 stars

    Images

    1) Product Images from "Tailoring nanotopography and antibacterial properties of calcium phosphate bone grafts via fluoride incorporation"

    Article Title: Tailoring nanotopography and antibacterial properties of calcium phosphate bone grafts via fluoride incorporation

    Journal: Bioactive Materials

    doi: 10.1016/j.bioactmat.2025.12.026

    (a) Cell proliferation of SaOS-2 cells onto the different CaP discs for 4 h, 7, 14 and 21 days. (b) ALP activity of SaOS-2 cells cultured onto the CaP substrates for 4 h, 7, 14 and 21 days. The same letter indicates no statistically significant differences for the same group at different time points while the same number denotes no statistically significant differences for each time point among all samples. (p < 0.05).
    Figure Legend Snippet: (a) Cell proliferation of SaOS-2 cells onto the different CaP discs for 4 h, 7, 14 and 21 days. (b) ALP activity of SaOS-2 cells cultured onto the CaP substrates for 4 h, 7, 14 and 21 days. The same letter indicates no statistically significant differences for the same group at different time points while the same number denotes no statistically significant differences for each time point among all samples. (p < 0.05).

    Techniques Used: Activity Assay, Cell Culture

    Merged CLSM images of SaOS-2 cells cultured for 4 h and 7 days on the nanostructured CaP substrates, as well as the Flat and Ti controls. Actin filaments were stained with Alexa Fluor™ 546 phalloidin (orange fluorescence signal) and nuclei with DAPI (blue fluorescence signal).
    Figure Legend Snippet: Merged CLSM images of SaOS-2 cells cultured for 4 h and 7 days on the nanostructured CaP substrates, as well as the Flat and Ti controls. Actin filaments were stained with Alexa Fluor™ 546 phalloidin (orange fluorescence signal) and nuclei with DAPI (blue fluorescence signal).

    Techniques Used: Cell Culture, Staining, Fluorescence

    (a) mRNA expression of osteogenic genes ALPL, RUNX2 and SPP1 of SaOS-2 cells cultured directly onto the CaP substrates for 1, 3, 7 and 14 days, determined by real-time PCR (n = 3). (b) Interaction of RAW 246.7 cells with treated discs up to 7 days in cell culture. i) mRNA expression of pro-inflammatory genes TNF, IL1B and IL6 of cells in the direct cell culture, determined by real-time PCR for 1, 3 and 7 days (n = 3). All values are relativized to values of cells at day 1. ii) Protein expression level after 7 days of direct cell culture on the treated discs, measured by inflammation antibody array. Values of protein signal are quantified by image analysis and relativized to control. In Fig. a) and bi), the same letter indicates no statistically significant differences for the same group at different time points while the same number denotes no statistically significant differences for each time point among all samples. (p < 0.05).
    Figure Legend Snippet: (a) mRNA expression of osteogenic genes ALPL, RUNX2 and SPP1 of SaOS-2 cells cultured directly onto the CaP substrates for 1, 3, 7 and 14 days, determined by real-time PCR (n = 3). (b) Interaction of RAW 246.7 cells with treated discs up to 7 days in cell culture. i) mRNA expression of pro-inflammatory genes TNF, IL1B and IL6 of cells in the direct cell culture, determined by real-time PCR for 1, 3 and 7 days (n = 3). All values are relativized to values of cells at day 1. ii) Protein expression level after 7 days of direct cell culture on the treated discs, measured by inflammation antibody array. Values of protein signal are quantified by image analysis and relativized to control. In Fig. a) and bi), the same letter indicates no statistically significant differences for the same group at different time points while the same number denotes no statistically significant differences for each time point among all samples. (p < 0.05).

    Techniques Used: Expressing, Cell Culture, Real-time Polymerase Chain Reaction, Ab Array, Control

    Co-culture of P. aeruginosa and SaOS-2 cells on the nanostructured CaP discs, as well as Flat and Ti controls. a) Merged CLSM images of: i) a pre-implantation infection model, where the samples were first incubated for 6 h with P. aeruginosa and subsequently SaOS-2 cells were cultured for 24 h; or ii) post-implantation infection model, where SaOS-2 cells were first cultured for 24 h on the substrates, which were subsequently incubated for 6 h with P. aeruginosa . Actin filaments were stained with Alexa Fluor™ 546 phalloidin (orange fluorescence signal) and the nuclei with DAPI (blue fluorescence signal). (b) Orthogonal CLSM images showing simultaneous co-visualization of cells and bacteria stained with Alexa Fluor™ 546 phalloidin (orange fluorescence signal), the nuclei with DAPI (blue fluorescence signal) and SYTO-9 (green fluorescence signal). (c) Dead percentage of P. aeruginosa onto the different CaP substrates and the controls, for both the pre-implantation infection i) and the post-implantation ii) infection models. n = 3; ns and ∗ indicate significance at p > 0.05 and p ≤ 0.05, respectively.
    Figure Legend Snippet: Co-culture of P. aeruginosa and SaOS-2 cells on the nanostructured CaP discs, as well as Flat and Ti controls. a) Merged CLSM images of: i) a pre-implantation infection model, where the samples were first incubated for 6 h with P. aeruginosa and subsequently SaOS-2 cells were cultured for 24 h; or ii) post-implantation infection model, where SaOS-2 cells were first cultured for 24 h on the substrates, which were subsequently incubated for 6 h with P. aeruginosa . Actin filaments were stained with Alexa Fluor™ 546 phalloidin (orange fluorescence signal) and the nuclei with DAPI (blue fluorescence signal). (b) Orthogonal CLSM images showing simultaneous co-visualization of cells and bacteria stained with Alexa Fluor™ 546 phalloidin (orange fluorescence signal), the nuclei with DAPI (blue fluorescence signal) and SYTO-9 (green fluorescence signal). (c) Dead percentage of P. aeruginosa onto the different CaP substrates and the controls, for both the pre-implantation infection i) and the post-implantation ii) infection models. n = 3; ns and ∗ indicate significance at p > 0.05 and p ≤ 0.05, respectively.

    Techniques Used: Co-Culture Assay, Infection, Incubation, Cell Culture, Staining, Fluorescence, Bacteria



    Similar Products

    99
    ATCC saos 2 cell line
    (a) Cell proliferation <t>of</t> <t>SaOS-2</t> cells onto the different CaP discs for 4 h, 7, 14 and 21 days. (b) ALP activity of SaOS-2 cells cultured onto the CaP substrates for 4 h, 7, 14 and 21 days. The same letter indicates no statistically significant differences for the same group at different time points while the same number denotes no statistically significant differences for each time point among all samples. (p < 0.05).
    Saos 2 Cell Line, supplied by ATCC, used in various techniques. Bioz Stars score: 99/100, based on 1 PubMed citations. ZERO BIAS - scores, article reviews, protocol conditions and more
    https://www.bioz.com/result/saos 2 cell line/product/ATCC
    Average 99 stars, based on 1 article reviews
    saos 2 cell line - by Bioz Stars, 2026-02
    99/100 stars
      Buy from Supplier

    99
    ATCC breast cancer cell lines mda mb 231
    μRB bioinks support multicellular patterning to model breast cancer-bone invasion at tissue interface. (A) Schematic of experimental design: bioprinting of MSCs and osteogenic differentiation to derive bone grid, followed by injection of breast cancer bioink, and monitoring invasion over time using confocal microscopy. (B) Confocal images of MSCs (red) after printing (Scale bar = 1 mm). (C) Confocal images of scaffold sections containing CellTracker-labeled MSCs (red) after 28 days of osteogenic differentiation and <t>GFP</t> <t>+</t> <t>MDA-MB-231</t> cells extruded into the open pores of the grids (green) (Scale bar = 200 μm). (D) Confocal images of patterned MSC-derived bone (red) with MDA-MB-231 and MCF-7 breast cancer cells (green) after 14 days of co-culture (Scale bar = 1 mm). (E) Quantification of breast cancer cell invasion: percentage that remain in open pores vs. invading into the MSC-bone compartment (n = 5 per group). Values are reported as mean ± S.D. and p-values were determined by two-way analysis of variance (ANOVA) with Tukey's multiple comparisons test; ∗∗p ≤ 0.01, ∗∗∗p ≤ 0.005, ∗∗∗∗p ≤ 0.001.
    Breast Cancer Cell Lines Mda Mb 231, supplied by ATCC, used in various techniques. Bioz Stars score: 99/100, based on 1 PubMed citations. ZERO BIAS - scores, article reviews, protocol conditions and more
    https://www.bioz.com/result/breast cancer cell lines mda mb 231/product/ATCC
    Average 99 stars, based on 1 article reviews
    breast cancer cell lines mda mb 231 - by Bioz Stars, 2026-02
    99/100 stars
      Buy from Supplier

    mcf 7  (ATCC)
    99
    ATCC mcf 7
    μRB bioinks support multicellular patterning to model breast cancer-bone invasion at tissue interface. (A) Schematic of experimental design: bioprinting of MSCs and osteogenic differentiation to derive bone grid, followed by injection of breast cancer bioink, and monitoring invasion over time using confocal microscopy. (B) Confocal images of MSCs (red) after printing (Scale bar = 1 mm). (C) Confocal images of scaffold sections containing CellTracker-labeled MSCs (red) after 28 days of osteogenic differentiation and GFP + MDA-MB-231 cells extruded into the open pores of the grids (green) (Scale bar = 200 μm). (D) Confocal images of patterned MSC-derived bone (red) with MDA-MB-231 <t>and</t> <t>MCF-7</t> breast cancer cells (green) after 14 days of co-culture (Scale bar = 1 mm). (E) Quantification of breast cancer cell invasion: percentage that remain in open pores vs. invading into the MSC-bone compartment (n = 5 per group). Values are reported as mean ± S.D. and p-values were determined by two-way analysis of variance (ANOVA) with Tukey's multiple comparisons test; ∗∗p ≤ 0.01, ∗∗∗p ≤ 0.005, ∗∗∗∗p ≤ 0.001.
    Mcf 7, supplied by ATCC, used in various techniques. Bioz Stars score: 99/100, based on 1 PubMed citations. ZERO BIAS - scores, article reviews, protocol conditions and more
    https://www.bioz.com/result/mcf 7/product/ATCC
    Average 99 stars, based on 1 article reviews
    mcf 7 - by Bioz Stars, 2026-02
    99/100 stars
      Buy from Supplier

    99
    ATCC uppsala 87 u87 malignant glioma cell line
    Generation of CAR T cell workflow, assessment of CAR transduction, and quantification of on-target antigens on <t>U87.</t> A) Pictographic representation of timeline for CAR T cell culturing and functional assessment. B) Flow cytometric gating strategy of representative donor to quantify CAR transduction applicable to both IL-13 and TV-13 CAR transduced cells. C) Comparative CAR expression distinguished between CD4 and CD8 from a representative donor of Control T Cells (UTD), TV-13, and IL-13 CARs. D) Flow cytometric verification of IL13Rα1 and IL13Rα2 expression on U87 cells.
    Uppsala 87 U87 Malignant Glioma Cell Line, supplied by ATCC, used in various techniques. Bioz Stars score: 99/100, based on 1 PubMed citations. ZERO BIAS - scores, article reviews, protocol conditions and more
    https://www.bioz.com/result/uppsala 87 u87 malignant glioma cell line/product/ATCC
    Average 99 stars, based on 1 article reviews
    uppsala 87 u87 malignant glioma cell line - by Bioz Stars, 2026-02
    99/100 stars
      Buy from Supplier

    99
    ATCC u-87 mg
    Generation of CAR T cell workflow, assessment of CAR transduction, and quantification of on-target antigens on <t>U87.</t> A) Pictographic representation of timeline for CAR T cell culturing and functional assessment. B) Flow cytometric gating strategy of representative donor to quantify CAR transduction applicable to both IL-13 and TV-13 CAR transduced cells. C) Comparative CAR expression distinguished between CD4 and CD8 from a representative donor of Control T Cells (UTD), TV-13, and IL-13 CARs. D) Flow cytometric verification of IL13Rα1 and IL13Rα2 expression on U87 cells.
    U 87 Mg, supplied by ATCC, used in various techniques. Bioz Stars score: 99/100, based on 1 PubMed citations. ZERO BIAS - scores, article reviews, protocol conditions and more
    https://www.bioz.com/result/u-87 mg/product/ATCC
    Average 99 stars, based on 1 article reviews
    u-87 mg - by Bioz Stars, 2026-02
    99/100 stars
      Buy from Supplier

    saos-2  (ATCC)
    99
    ATCC saos-2
    Generation of CAR T cell workflow, assessment of CAR transduction, and quantification of on-target antigens on <t>U87.</t> A) Pictographic representation of timeline for CAR T cell culturing and functional assessment. B) Flow cytometric gating strategy of representative donor to quantify CAR transduction applicable to both IL-13 and TV-13 CAR transduced cells. C) Comparative CAR expression distinguished between CD4 and CD8 from a representative donor of Control T Cells (UTD), TV-13, and IL-13 CARs. D) Flow cytometric verification of IL13Rα1 and IL13Rα2 expression on U87 cells.
    Saos 2, supplied by ATCC, used in various techniques. Bioz Stars score: 99/100, based on 1 PubMed citations. ZERO BIAS - scores, article reviews, protocol conditions and more
    https://www.bioz.com/result/saos-2/product/ATCC
    Average 99 stars, based on 1 article reviews
    saos-2 - by Bioz Stars, 2026-02
    99/100 stars
      Buy from Supplier

    99
    ATCC u2os cells
    land-ExM visualizes the protein and lipid context of cells. (A) Workflow of land-ExM. (B) Schematic of NHS-biotin-MA linker. (C) Schematic of mCLING. (D) land-ExM image of <t>U2OS</t> cells incubated with NHS-biotin-MA linker. Scale bar: 10 µm in pre-expansion unit. Linear expansion factor: 4. (E) ExM image of U2OS cells incubated with NHS-MA linker and stained with Alexa Fluor 488 NHS ester dye. Scale bar: 10 µm in pre-expansion unit. Linear expansion factor: 4.2. (F) ExM image of U2OS cells incubated with GMA linker and stained with SYPRO Orange. Scale bar: 10 µm in pre-expansion unit. Linear expansion factor: 4.2. (G) Bar chart comparing signal-to-noise ratios of protein context images obtained with different ExM methods shown in D–F. The signal-to-noise ratio is calculated as the average pixel value of the area with cells divided by the average pixel value of the area without cells in each image. Each bar represents the mean ± standard error of more than 10 cells. (H–J) Different views of land-ExM images of a breast cancer cell, UCI082014, stained with mCLING for lipid content. The orange dashed lines in H show where the orthogonal views (I and J) align. Scale bar: 5 µm (H), 2 µm (I and J) in pre-expansion unit. Linear expansion factor: 3.8. (K) Magnified images of H. (L) Magnified images of I. The orange dashed line in K shows where the orthogonal view (L) aligns. Scale bar: 0.5 µm in pre-expansion unit. Linear expansion factor: 3.8. All images were taken with an Airyscan microscope. Images D–F were adjusted to the same contrast. Image in D is also shown in .
    U2os Cells, supplied by ATCC, used in various techniques. Bioz Stars score: 99/100, based on 1 PubMed citations. ZERO BIAS - scores, article reviews, protocol conditions and more
    https://www.bioz.com/result/u2os cells/product/ATCC
    Average 99 stars, based on 1 article reviews
    u2os cells - by Bioz Stars, 2026-02
    99/100 stars
      Buy from Supplier

    99
    ATCC mda-mb-231
    land-ExM visualizes the protein and lipid context of cells. (A) Workflow of land-ExM. (B) Schematic of NHS-biotin-MA linker. (C) Schematic of mCLING. (D) land-ExM image of <t>U2OS</t> cells incubated with NHS-biotin-MA linker. Scale bar: 10 µm in pre-expansion unit. Linear expansion factor: 4. (E) ExM image of U2OS cells incubated with NHS-MA linker and stained with Alexa Fluor 488 NHS ester dye. Scale bar: 10 µm in pre-expansion unit. Linear expansion factor: 4.2. (F) ExM image of U2OS cells incubated with GMA linker and stained with SYPRO Orange. Scale bar: 10 µm in pre-expansion unit. Linear expansion factor: 4.2. (G) Bar chart comparing signal-to-noise ratios of protein context images obtained with different ExM methods shown in D–F. The signal-to-noise ratio is calculated as the average pixel value of the area with cells divided by the average pixel value of the area without cells in each image. Each bar represents the mean ± standard error of more than 10 cells. (H–J) Different views of land-ExM images of a breast cancer cell, UCI082014, stained with mCLING for lipid content. The orange dashed lines in H show where the orthogonal views (I and J) align. Scale bar: 5 µm (H), 2 µm (I and J) in pre-expansion unit. Linear expansion factor: 3.8. (K) Magnified images of H. (L) Magnified images of I. The orange dashed line in K shows where the orthogonal view (L) aligns. Scale bar: 0.5 µm in pre-expansion unit. Linear expansion factor: 3.8. All images were taken with an Airyscan microscope. Images D–F were adjusted to the same contrast. Image in D is also shown in .
    Mda Mb 231, supplied by ATCC, used in various techniques. Bioz Stars score: 99/100, based on 1 PubMed citations. ZERO BIAS - scores, article reviews, protocol conditions and more
    https://www.bioz.com/result/mda-mb-231/product/ATCC
    Average 99 stars, based on 1 article reviews
    mda-mb-231 - by Bioz Stars, 2026-02
    99/100 stars
      Buy from Supplier

    94
    ATCC human breast cancer cell lines skbr3
    EBA impairs cancer stem cell-like properties. (A) BT474 and <t>SKBR3</t> cells were treated with EBA for 48 h, and ALDH1 activity was assessed by flow cytometry using the Aldefluor assay. DEAB was used to define the baseline of Aldefluor-positive fluorescence. (B) BT474 cells (5x10 4 cells/ml) were plated in ultra-low attachment dishes and cultured in the presence or absence of EBA for 5 days. The number and volume of mammospheres were measured by microscopy. (C) Overall survival of patients with breast cancer stratified by the co-expression of ALDH1A1 and CD44. (D) Spearman correlation analysis of ALDH1A1 and CD44 mRNA levels in patients with HER2-positive breast cancer from The Cancer Genome Atlas cohort (n=76). Kaplan-Meier survival analyses of patients with HER2-overexpressing breast cancer stratified by (E) ALDH1A1 and (F) CD44 expression. Patients were divided into high- and low-expression groups based on the median gene expression. Statistical significance was determined using the log-rank test. (G) JIMT-1 cells were treated with EBA (3 μ M) for 48 h and the CD44 high /CD24 low cell populations were identified by flow cytometry. (H) JIMT-1 cells (1.5x10 4 cells/ml) were cultured under serum-free suspension conditions in the presence of EBA (3 μ M) for 8 days. Mammosphere number and volumes were quantified. ** P<0.01 and **** P<0.0001 vs. vehicle-treated control (0 μ M EBA). EBA, ebastine; ALDH, aldehyde dehydrogenase; DEAB, diethylaminobenzaldehyde; CTL, control; ISO, isotype.
    Human Breast Cancer Cell Lines Skbr3, supplied by ATCC, used in various techniques. Bioz Stars score: 94/100, based on 1 PubMed citations. ZERO BIAS - scores, article reviews, protocol conditions and more
    https://www.bioz.com/result/human breast cancer cell lines skbr3/product/ATCC
    Average 94 stars, based on 1 article reviews
    human breast cancer cell lines skbr3 - by Bioz Stars, 2026-02
    94/100 stars
      Buy from Supplier

    99
    ATCC 4t1 murine mammary carcinoma cells
    (a) Fluorescence confocal images of HeLa, <t>4T1,</t> MCF-7, and NIH 3T3 cells after incubation with Pro-BDP-3 (5.0 μM) for 2 h with or without further incubation with RuL2 or RuL3 (2.5 μM) for a further 4 h (red fluorescence; λ ex = 633 nm, λ em = 650–900 nm). The cells being incubated with BDP-COOH (5.0 μM) for 2 h were used as the positive control. The cell nuclei were stained with Hoechst (1.0 μM) for 15 min (blue fluorescence; λ ex = 405 nm, λ em = 420–500 nm). Scale bar = 20 μm. (b) Corresponding mean red fluorescence intensities quantified by ImageJ. Data are reported as the mean ± standard error of the mean (SEM) for three independent experiments (∗∗∗∗p < 0.0001). (c) Fluorescence confocal images of HeLa, 4T1, MCF-7, and NIH 3T3 cells after the aforementioned treatments and further incubation with H 2 DCFDA (10 μM) for 30 min, followed by light irradiation (λ > 610 nm, 25.8 mW/cm 2 ) for 8 min to give a total fluence of 12 J/cm 2 (green fluorescence; λ ex = 488 nm, λ em = 493–550 nm). Scale bar = 20 μm. (d) Corresponding mean green fluorescence intensities of DCF quantified by ImageJ. Data are reported as the mean ± SEM for three independent experiments (∗∗∗∗p < 0.0001). (e) Dark and photo (λ > 610 nm, 25.8 mW/cm 2 , 12 J/cm 2 ) cytotoxicity of BDP-COOH , Pro-BDP-3 , RuL2 , Pro-BDP-3 + RuL2 , RuL3 , and Pro-BDP-3 + RuL3 against HeLa, 4T1, MCF-7, and NIH 3T3 cells. The cells were incubated with BDP-COOH , Pro-BDP-3 , RuL2 , or RuL3 for 2 h. For Pro-BDP-3 + RuL2 and Pro-BDP-3 + RuL3 , the cells were first incubated with Pro-BDP-3 for 2 h and then with RuL2 or RuL3 (0.5 equiv.) for a further 4 h. Data are expressed as the mean ± SEM of three independent experiments, each performed in quadruplicate. (f) Photocytotoxicity of these agents at 5.0 μM and the combination treatments at 5.0 μM of Pro-BDP-3 against the four cell lines. The rightmost figure compiles the results for Pro-BDP-3 + RuL3 (∗∗∗∗p < 0.0001). Data are expressed as the mean ± SEM of three independent experiments, each performed in quadruplicate. (g) Live/dead cell viability assay using calcein-AM and PI. The cells were treated as described above, followed by incubation with calcein-AM (1 μM) and PI (2 μM) in binding buffer (2 mL) at 37 °C for 30 min. The live cells were indicated by the green fluorescence of calcein-AM (λ ex = 488 nm, λ em = 493–550 nm), while the dead cells were indicated by the red fluorescence of PI (λ ex = 561 nm, λ em = 600–800 nm). Scale bar = 50 μm. (For interpretation of the references to color in this figure legend, the reader is referred to the Web version of this article.)
    4t1 Murine Mammary Carcinoma Cells, supplied by ATCC, used in various techniques. Bioz Stars score: 99/100, based on 1 PubMed citations. ZERO BIAS - scores, article reviews, protocol conditions and more
    https://www.bioz.com/result/4t1 murine mammary carcinoma cells/product/ATCC
    Average 99 stars, based on 1 article reviews
    4t1 murine mammary carcinoma cells - by Bioz Stars, 2026-02
    99/100 stars
      Buy from Supplier

    Image Search Results


    (a) Cell proliferation of SaOS-2 cells onto the different CaP discs for 4 h, 7, 14 and 21 days. (b) ALP activity of SaOS-2 cells cultured onto the CaP substrates for 4 h, 7, 14 and 21 days. The same letter indicates no statistically significant differences for the same group at different time points while the same number denotes no statistically significant differences for each time point among all samples. (p < 0.05).

    Journal: Bioactive Materials

    Article Title: Tailoring nanotopography and antibacterial properties of calcium phosphate bone grafts via fluoride incorporation

    doi: 10.1016/j.bioactmat.2025.12.026

    Figure Lengend Snippet: (a) Cell proliferation of SaOS-2 cells onto the different CaP discs for 4 h, 7, 14 and 21 days. (b) ALP activity of SaOS-2 cells cultured onto the CaP substrates for 4 h, 7, 14 and 21 days. The same letter indicates no statistically significant differences for the same group at different time points while the same number denotes no statistically significant differences for each time point among all samples. (p < 0.05).

    Article Snippet: SaOS-2 cell line (HTB-85), RAW 264.7 cell line (TIB-71), Pseudomonas aeruginosa (ATCC-27853) and Staphylococcus aureus (ATCC-25923) were purchased from American Type Culture Collection (VA, USA).

    Techniques: Activity Assay, Cell Culture

    Merged CLSM images of SaOS-2 cells cultured for 4 h and 7 days on the nanostructured CaP substrates, as well as the Flat and Ti controls. Actin filaments were stained with Alexa Fluor™ 546 phalloidin (orange fluorescence signal) and nuclei with DAPI (blue fluorescence signal).

    Journal: Bioactive Materials

    Article Title: Tailoring nanotopography and antibacterial properties of calcium phosphate bone grafts via fluoride incorporation

    doi: 10.1016/j.bioactmat.2025.12.026

    Figure Lengend Snippet: Merged CLSM images of SaOS-2 cells cultured for 4 h and 7 days on the nanostructured CaP substrates, as well as the Flat and Ti controls. Actin filaments were stained with Alexa Fluor™ 546 phalloidin (orange fluorescence signal) and nuclei with DAPI (blue fluorescence signal).

    Article Snippet: SaOS-2 cell line (HTB-85), RAW 264.7 cell line (TIB-71), Pseudomonas aeruginosa (ATCC-27853) and Staphylococcus aureus (ATCC-25923) were purchased from American Type Culture Collection (VA, USA).

    Techniques: Cell Culture, Staining, Fluorescence

    (a) mRNA expression of osteogenic genes ALPL, RUNX2 and SPP1 of SaOS-2 cells cultured directly onto the CaP substrates for 1, 3, 7 and 14 days, determined by real-time PCR (n = 3). (b) Interaction of RAW 246.7 cells with treated discs up to 7 days in cell culture. i) mRNA expression of pro-inflammatory genes TNF, IL1B and IL6 of cells in the direct cell culture, determined by real-time PCR for 1, 3 and 7 days (n = 3). All values are relativized to values of cells at day 1. ii) Protein expression level after 7 days of direct cell culture on the treated discs, measured by inflammation antibody array. Values of protein signal are quantified by image analysis and relativized to control. In Fig. a) and bi), the same letter indicates no statistically significant differences for the same group at different time points while the same number denotes no statistically significant differences for each time point among all samples. (p < 0.05).

    Journal: Bioactive Materials

    Article Title: Tailoring nanotopography and antibacterial properties of calcium phosphate bone grafts via fluoride incorporation

    doi: 10.1016/j.bioactmat.2025.12.026

    Figure Lengend Snippet: (a) mRNA expression of osteogenic genes ALPL, RUNX2 and SPP1 of SaOS-2 cells cultured directly onto the CaP substrates for 1, 3, 7 and 14 days, determined by real-time PCR (n = 3). (b) Interaction of RAW 246.7 cells with treated discs up to 7 days in cell culture. i) mRNA expression of pro-inflammatory genes TNF, IL1B and IL6 of cells in the direct cell culture, determined by real-time PCR for 1, 3 and 7 days (n = 3). All values are relativized to values of cells at day 1. ii) Protein expression level after 7 days of direct cell culture on the treated discs, measured by inflammation antibody array. Values of protein signal are quantified by image analysis and relativized to control. In Fig. a) and bi), the same letter indicates no statistically significant differences for the same group at different time points while the same number denotes no statistically significant differences for each time point among all samples. (p < 0.05).

    Article Snippet: SaOS-2 cell line (HTB-85), RAW 264.7 cell line (TIB-71), Pseudomonas aeruginosa (ATCC-27853) and Staphylococcus aureus (ATCC-25923) were purchased from American Type Culture Collection (VA, USA).

    Techniques: Expressing, Cell Culture, Real-time Polymerase Chain Reaction, Ab Array, Control

    Co-culture of P. aeruginosa and SaOS-2 cells on the nanostructured CaP discs, as well as Flat and Ti controls. a) Merged CLSM images of: i) a pre-implantation infection model, where the samples were first incubated for 6 h with P. aeruginosa and subsequently SaOS-2 cells were cultured for 24 h; or ii) post-implantation infection model, where SaOS-2 cells were first cultured for 24 h on the substrates, which were subsequently incubated for 6 h with P. aeruginosa . Actin filaments were stained with Alexa Fluor™ 546 phalloidin (orange fluorescence signal) and the nuclei with DAPI (blue fluorescence signal). (b) Orthogonal CLSM images showing simultaneous co-visualization of cells and bacteria stained with Alexa Fluor™ 546 phalloidin (orange fluorescence signal), the nuclei with DAPI (blue fluorescence signal) and SYTO-9 (green fluorescence signal). (c) Dead percentage of P. aeruginosa onto the different CaP substrates and the controls, for both the pre-implantation infection i) and the post-implantation ii) infection models. n = 3; ns and ∗ indicate significance at p > 0.05 and p ≤ 0.05, respectively.

    Journal: Bioactive Materials

    Article Title: Tailoring nanotopography and antibacterial properties of calcium phosphate bone grafts via fluoride incorporation

    doi: 10.1016/j.bioactmat.2025.12.026

    Figure Lengend Snippet: Co-culture of P. aeruginosa and SaOS-2 cells on the nanostructured CaP discs, as well as Flat and Ti controls. a) Merged CLSM images of: i) a pre-implantation infection model, where the samples were first incubated for 6 h with P. aeruginosa and subsequently SaOS-2 cells were cultured for 24 h; or ii) post-implantation infection model, where SaOS-2 cells were first cultured for 24 h on the substrates, which were subsequently incubated for 6 h with P. aeruginosa . Actin filaments were stained with Alexa Fluor™ 546 phalloidin (orange fluorescence signal) and the nuclei with DAPI (blue fluorescence signal). (b) Orthogonal CLSM images showing simultaneous co-visualization of cells and bacteria stained with Alexa Fluor™ 546 phalloidin (orange fluorescence signal), the nuclei with DAPI (blue fluorescence signal) and SYTO-9 (green fluorescence signal). (c) Dead percentage of P. aeruginosa onto the different CaP substrates and the controls, for both the pre-implantation infection i) and the post-implantation ii) infection models. n = 3; ns and ∗ indicate significance at p > 0.05 and p ≤ 0.05, respectively.

    Article Snippet: SaOS-2 cell line (HTB-85), RAW 264.7 cell line (TIB-71), Pseudomonas aeruginosa (ATCC-27853) and Staphylococcus aureus (ATCC-25923) were purchased from American Type Culture Collection (VA, USA).

    Techniques: Co-Culture Assay, Infection, Incubation, Cell Culture, Staining, Fluorescence, Bacteria

    μRB bioinks support multicellular patterning to model breast cancer-bone invasion at tissue interface. (A) Schematic of experimental design: bioprinting of MSCs and osteogenic differentiation to derive bone grid, followed by injection of breast cancer bioink, and monitoring invasion over time using confocal microscopy. (B) Confocal images of MSCs (red) after printing (Scale bar = 1 mm). (C) Confocal images of scaffold sections containing CellTracker-labeled MSCs (red) after 28 days of osteogenic differentiation and GFP + MDA-MB-231 cells extruded into the open pores of the grids (green) (Scale bar = 200 μm). (D) Confocal images of patterned MSC-derived bone (red) with MDA-MB-231 and MCF-7 breast cancer cells (green) after 14 days of co-culture (Scale bar = 1 mm). (E) Quantification of breast cancer cell invasion: percentage that remain in open pores vs. invading into the MSC-bone compartment (n = 5 per group). Values are reported as mean ± S.D. and p-values were determined by two-way analysis of variance (ANOVA) with Tukey's multiple comparisons test; ∗∗p ≤ 0.01, ∗∗∗p ≤ 0.005, ∗∗∗∗p ≤ 0.001.

    Journal: Bioactive Materials

    Article Title: Ribbon-shaped microgels as bioinks for 3D bioprinting of anisotropic tissue structures

    doi: 10.1016/j.bioactmat.2025.12.040

    Figure Lengend Snippet: μRB bioinks support multicellular patterning to model breast cancer-bone invasion at tissue interface. (A) Schematic of experimental design: bioprinting of MSCs and osteogenic differentiation to derive bone grid, followed by injection of breast cancer bioink, and monitoring invasion over time using confocal microscopy. (B) Confocal images of MSCs (red) after printing (Scale bar = 1 mm). (C) Confocal images of scaffold sections containing CellTracker-labeled MSCs (red) after 28 days of osteogenic differentiation and GFP + MDA-MB-231 cells extruded into the open pores of the grids (green) (Scale bar = 200 μm). (D) Confocal images of patterned MSC-derived bone (red) with MDA-MB-231 and MCF-7 breast cancer cells (green) after 14 days of co-culture (Scale bar = 1 mm). (E) Quantification of breast cancer cell invasion: percentage that remain in open pores vs. invading into the MSC-bone compartment (n = 5 per group). Values are reported as mean ± S.D. and p-values were determined by two-way analysis of variance (ANOVA) with Tukey's multiple comparisons test; ∗∗p ≤ 0.01, ∗∗∗p ≤ 0.005, ∗∗∗∗p ≤ 0.001.

    Article Snippet: Breast cancer cell lines MDA-MB-231 (ATCC) and MCF-7 (ATCC) were lentivirus transduced to express GFP and cultured in DMEM media (4.5 g L −1 glucose) supplemented with 10 % (v/v) fetal bovine serum and 1 % (v/v) penicillin-streptomycin.

    Techniques: Injection, Confocal Microscopy, Labeling, Derivative Assay, Co-Culture Assay

    μRB bioinks support multicellular patterning to model breast cancer-bone invasion at tissue interface. (A) Schematic of experimental design: bioprinting of MSCs and osteogenic differentiation to derive bone grid, followed by injection of breast cancer bioink, and monitoring invasion over time using confocal microscopy. (B) Confocal images of MSCs (red) after printing (Scale bar = 1 mm). (C) Confocal images of scaffold sections containing CellTracker-labeled MSCs (red) after 28 days of osteogenic differentiation and GFP + MDA-MB-231 cells extruded into the open pores of the grids (green) (Scale bar = 200 μm). (D) Confocal images of patterned MSC-derived bone (red) with MDA-MB-231 and MCF-7 breast cancer cells (green) after 14 days of co-culture (Scale bar = 1 mm). (E) Quantification of breast cancer cell invasion: percentage that remain in open pores vs. invading into the MSC-bone compartment (n = 5 per group). Values are reported as mean ± S.D. and p-values were determined by two-way analysis of variance (ANOVA) with Tukey's multiple comparisons test; ∗∗p ≤ 0.01, ∗∗∗p ≤ 0.005, ∗∗∗∗p ≤ 0.001.

    Journal: Bioactive Materials

    Article Title: Ribbon-shaped microgels as bioinks for 3D bioprinting of anisotropic tissue structures

    doi: 10.1016/j.bioactmat.2025.12.040

    Figure Lengend Snippet: μRB bioinks support multicellular patterning to model breast cancer-bone invasion at tissue interface. (A) Schematic of experimental design: bioprinting of MSCs and osteogenic differentiation to derive bone grid, followed by injection of breast cancer bioink, and monitoring invasion over time using confocal microscopy. (B) Confocal images of MSCs (red) after printing (Scale bar = 1 mm). (C) Confocal images of scaffold sections containing CellTracker-labeled MSCs (red) after 28 days of osteogenic differentiation and GFP + MDA-MB-231 cells extruded into the open pores of the grids (green) (Scale bar = 200 μm). (D) Confocal images of patterned MSC-derived bone (red) with MDA-MB-231 and MCF-7 breast cancer cells (green) after 14 days of co-culture (Scale bar = 1 mm). (E) Quantification of breast cancer cell invasion: percentage that remain in open pores vs. invading into the MSC-bone compartment (n = 5 per group). Values are reported as mean ± S.D. and p-values were determined by two-way analysis of variance (ANOVA) with Tukey's multiple comparisons test; ∗∗p ≤ 0.01, ∗∗∗p ≤ 0.005, ∗∗∗∗p ≤ 0.001.

    Article Snippet: Breast cancer cell lines MDA-MB-231 (ATCC) and MCF-7 (ATCC) were lentivirus transduced to express GFP and cultured in DMEM media (4.5 g L −1 glucose) supplemented with 10 % (v/v) fetal bovine serum and 1 % (v/v) penicillin-streptomycin.

    Techniques: Injection, Confocal Microscopy, Labeling, Derivative Assay, Co-Culture Assay

    Generation of CAR T cell workflow, assessment of CAR transduction, and quantification of on-target antigens on U87. A) Pictographic representation of timeline for CAR T cell culturing and functional assessment. B) Flow cytometric gating strategy of representative donor to quantify CAR transduction applicable to both IL-13 and TV-13 CAR transduced cells. C) Comparative CAR expression distinguished between CD4 and CD8 from a representative donor of Control T Cells (UTD), TV-13, and IL-13 CARs. D) Flow cytometric verification of IL13Rα1 and IL13Rα2 expression on U87 cells.

    Journal: Bioactive Materials

    Article Title: Multimodal profiling of CAR T cells against glioblastoma using a microengineered 3D tumor-on-a-chip model

    doi: 10.1016/j.bioactmat.2026.01.003

    Figure Lengend Snippet: Generation of CAR T cell workflow, assessment of CAR transduction, and quantification of on-target antigens on U87. A) Pictographic representation of timeline for CAR T cell culturing and functional assessment. B) Flow cytometric gating strategy of representative donor to quantify CAR transduction applicable to both IL-13 and TV-13 CAR transduced cells. C) Comparative CAR expression distinguished between CD4 and CD8 from a representative donor of Control T Cells (UTD), TV-13, and IL-13 CARs. D) Flow cytometric verification of IL13Rα1 and IL13Rα2 expression on U87 cells.

    Article Snippet: U87 Culture : The Uppsala 87 (U87) Malignant Glioma cell line (HTB-14, ATCC) performed as the target tumor for this study was cultured in complete media composed of Eagle's minimum essential medium (EMEM) with L-Glutamine, and supplemented with 10 % FBS, 1 % HEPES, and 1 % penicillin-streptomycin.

    Techniques: Transduction, Cell Culture, Functional Assay, Expressing, Control

    2D in vitro cytotoxic assessment of CARs polyfunctionality. A) Workflow for intracellular cytokine assay. Created with BioRender.com . B) Flow cytometric gating strategy of the representative donor to identify CAR + T cells from viable singlets. C) Comparative release of IL-2 and TNF-α by CAR + T cells from the representative donor between UTD, TV-13, and IL-13 CAR transduced cells. D ) Comparative release of IFN-γ from the representative between UTD, TV-13, and IL-13 CAR T cells. E ) Graphical display of perforin and granzyme B release ( n = 3 ). ∗ p < 0.05. F) Quantification of the amount of INF-γ released into bulk media across UTD, TV-13, and IL-13 ( n = 3 ). One-way ANOVA with Tukey's multiple comparisons test was utilized for statistical analysis. G) Lactate Dehydrogenase (LDH) based quantification rate of tumor lysis across different T cell treatment conditions ( n = 3 ). One-way ANOVA with Tukey's multiple comparisons test was utilized for statistical analysis. H) Simplified Presentation of Incredibly Complex Evaluations (SPICE) analysis showing the number of intracellular cytokines (TNF-α, IFN-γ, and IL-2) produced per T cell by TV-13 and IL-13 CAR T cells, in response to U87 target stimulation indicating their polyfunctionality. The purple quadrant denotes the percentage of T cells producing all three cytokines, green represents cells producing two cytokines, blue denotes cells producing one, and grey represents cells producing none. Comparable levels of polyfunctionality were observed between the TV-13 and IL-13 groups. Data collected from three biological replicates ( n = 3 ).

    Journal: Bioactive Materials

    Article Title: Multimodal profiling of CAR T cells against glioblastoma using a microengineered 3D tumor-on-a-chip model

    doi: 10.1016/j.bioactmat.2026.01.003

    Figure Lengend Snippet: 2D in vitro cytotoxic assessment of CARs polyfunctionality. A) Workflow for intracellular cytokine assay. Created with BioRender.com . B) Flow cytometric gating strategy of the representative donor to identify CAR + T cells from viable singlets. C) Comparative release of IL-2 and TNF-α by CAR + T cells from the representative donor between UTD, TV-13, and IL-13 CAR transduced cells. D ) Comparative release of IFN-γ from the representative between UTD, TV-13, and IL-13 CAR T cells. E ) Graphical display of perforin and granzyme B release ( n = 3 ). ∗ p < 0.05. F) Quantification of the amount of INF-γ released into bulk media across UTD, TV-13, and IL-13 ( n = 3 ). One-way ANOVA with Tukey's multiple comparisons test was utilized for statistical analysis. G) Lactate Dehydrogenase (LDH) based quantification rate of tumor lysis across different T cell treatment conditions ( n = 3 ). One-way ANOVA with Tukey's multiple comparisons test was utilized for statistical analysis. H) Simplified Presentation of Incredibly Complex Evaluations (SPICE) analysis showing the number of intracellular cytokines (TNF-α, IFN-γ, and IL-2) produced per T cell by TV-13 and IL-13 CAR T cells, in response to U87 target stimulation indicating their polyfunctionality. The purple quadrant denotes the percentage of T cells producing all three cytokines, green represents cells producing two cytokines, blue denotes cells producing one, and grey represents cells producing none. Comparable levels of polyfunctionality were observed between the TV-13 and IL-13 groups. Data collected from three biological replicates ( n = 3 ).

    Article Snippet: U87 Culture : The Uppsala 87 (U87) Malignant Glioma cell line (HTB-14, ATCC) performed as the target tumor for this study was cultured in complete media composed of Eagle's minimum essential medium (EMEM) with L-Glutamine, and supplemented with 10 % FBS, 1 % HEPES, and 1 % penicillin-streptomycin.

    Techniques: In Vitro, Cytokine Assay, Lysis, Produced

    Formation of 3D self-assembled microvascular network (μVN) and its influence on U87 cells. A) Establishment of the μVN. (i) Schematic representation detailing the formation of the self-assembled μVN, and (ii) Representative phase contrast tile image of the device showing the progression of μVN formation on day 0 (left) and day 7 (right). B) Characterization of the μVN. (i) 10X tile image of vascular region stained for endothelial marker CD31 (green), junctional protein CD144 (red), and counterstained for nuclei with DAPI (blue) (scale bar: 200 μm), (ii) Phase contrast region of interest (ROI) image highlighting the vascular bundle formed within the vascular region (left), alongside 20X immunofluorescent image showing the expression of CD31(middle), and wrapping of pericytes (α-SMA) around the vascular bundle (right). Scale bars: 100 μm. C) orthogonal sectioning of established μVN confirming the open lumen formation (white arrowhead indicates the open lumen in the orthogonal view). Scale bar: 50 μm. D) Representative immunofluorescent and phase contrast overlap image after injection of 70 kDa fluorescent dextran dye captured at 30s, 1,2, and 4min. Scale bars: 100 μm. E) Line graph image of co-localization of pericytes with endothelial cells based on the scan line (white line) from figure Bii (right). F) Representative immunofluorescent image captured after perfusion of 2 μm fluorescent bead (red) through the CD31 (green) stained vascular bundle. Scale bar: 100 μm. G) Characterization of the μVN in the presence of tumor cells. (i) 10X tile image showing the intact μVN in the vascular (V) region and the migration of the tumor cells (U87-green) from the tumor (T) to the stroma (S) region. Yellow dashed trapezoids and hexagons mark the microposts of the 3D GOC. Scale bar: 200 μm, and (ii) Orthogonal sectioning of the vascular region confirming the maintenance of lumens post U87 injection (white arrowhead indicates the open lumen with white dashed box showing a zoomed-in lumen). Scale bar: 50 μm. Actin acquired with Alexa 647 and CD31 stained with Alexa 555 were pseudo colored in gray and magenta, respectively, for visualization. T, S, V represent the tumor, stroma, and vascular regions of the GOC system.

    Journal: Bioactive Materials

    Article Title: Multimodal profiling of CAR T cells against glioblastoma using a microengineered 3D tumor-on-a-chip model

    doi: 10.1016/j.bioactmat.2026.01.003

    Figure Lengend Snippet: Formation of 3D self-assembled microvascular network (μVN) and its influence on U87 cells. A) Establishment of the μVN. (i) Schematic representation detailing the formation of the self-assembled μVN, and (ii) Representative phase contrast tile image of the device showing the progression of μVN formation on day 0 (left) and day 7 (right). B) Characterization of the μVN. (i) 10X tile image of vascular region stained for endothelial marker CD31 (green), junctional protein CD144 (red), and counterstained for nuclei with DAPI (blue) (scale bar: 200 μm), (ii) Phase contrast region of interest (ROI) image highlighting the vascular bundle formed within the vascular region (left), alongside 20X immunofluorescent image showing the expression of CD31(middle), and wrapping of pericytes (α-SMA) around the vascular bundle (right). Scale bars: 100 μm. C) orthogonal sectioning of established μVN confirming the open lumen formation (white arrowhead indicates the open lumen in the orthogonal view). Scale bar: 50 μm. D) Representative immunofluorescent and phase contrast overlap image after injection of 70 kDa fluorescent dextran dye captured at 30s, 1,2, and 4min. Scale bars: 100 μm. E) Line graph image of co-localization of pericytes with endothelial cells based on the scan line (white line) from figure Bii (right). F) Representative immunofluorescent image captured after perfusion of 2 μm fluorescent bead (red) through the CD31 (green) stained vascular bundle. Scale bar: 100 μm. G) Characterization of the μVN in the presence of tumor cells. (i) 10X tile image showing the intact μVN in the vascular (V) region and the migration of the tumor cells (U87-green) from the tumor (T) to the stroma (S) region. Yellow dashed trapezoids and hexagons mark the microposts of the 3D GOC. Scale bar: 200 μm, and (ii) Orthogonal sectioning of the vascular region confirming the maintenance of lumens post U87 injection (white arrowhead indicates the open lumen with white dashed box showing a zoomed-in lumen). Scale bar: 50 μm. Actin acquired with Alexa 647 and CD31 stained with Alexa 555 were pseudo colored in gray and magenta, respectively, for visualization. T, S, V represent the tumor, stroma, and vascular regions of the GOC system.

    Article Snippet: U87 Culture : The Uppsala 87 (U87) Malignant Glioma cell line (HTB-14, ATCC) performed as the target tumor for this study was cultured in complete media composed of Eagle's minimum essential medium (EMEM) with L-Glutamine, and supplemented with 10 % FBS, 1 % HEPES, and 1 % penicillin-streptomycin.

    Techniques: Staining, Marker, Expressing, Injection, Migration

    Evaluation of cytotoxic abilities of T cells against GBM cells within the GOC model. A) Microfluidic 3D invasion assay. (i) Schematic representation depicting the culture of tumor cells with T cells on day 0 (top) and day 3 (bottom), (ii) Representative phase contrast tile image overlapped with GFP (tumor cells) channel captured on day 0 to show the distribution of tumor and T cells across the experimental conditions (Scale bars: 200 μm), and (iii) Representative phase contrast tile image overlapped with GFP channel showing the migration of the U87 cells (green) from the tumor region to the stroma region across three different T cell populations. The densities of U87 are kept consistent across all conditions, and the density of T cells varies from 4 × 10 6 to 15 × 10 6 cells/mL. Images were captured 72 h after the interaction of cells within the GOC model (Scale bars: 200 μm). T-tumor, S-stroma, and V-vascular regions of GOC. B) Assessment of tumor cell migration in the presence of different T cells. (i) Quantification of migration distance from the 3D microfluidic model showing dose-dependent inhibition of U87 migration by the CAR T cells. Data were measured on Day 3 from three biological replicates ( n = 3 ) and represented as mean ± SD, T cell donors: DN26, DN28, and DN31, ∗ p < 0.05, ∗∗∗ ∗p < 0.0001. Two-way ANOVA with Tukey's multiple comparisons test was utilized for statistical analysis, and (ii) Comparison of migration distance of the U87 cells in the presence of different concentrations of the T cell population. Analysis performed on samples captured on Day 3 of migration ( n = 3 ) and represented as mean ± SD, T cell donors: DN26, DN28, and DN31, ∗ p < 0.05, ∗∗p < 0.01, ∗∗∗p < 0.001, ∗∗∗ ∗p < 0.0001. Two-way ANOVA with Tukey's multiple comparisons test was utilized for statistical analysis. C) xCELLigence-based real-time evaluation of T cell cytolytic capacity. (i) Time-course of the average cell index ( n = 3 donors ) for UTD, TV-13, and IL-13 CAR T cell groups under a 10:1 E: T condition over a 7-day co-culture, measured using the xCELLigence platform, (ii) Bar plot of xCELLigence data comparing averaged cell index values of tumor cells at Day 0 and Day 7 across UTD, TV-13, and IL-13 CAR T cell groups. Data represent mean ± SEM ( n = 3 donors ), ∗ p < 0.05, ∗∗p < 0.01, ∗∗∗p < 0.001, ∗∗∗ ∗p < 0.0001, Two-way ANOVA with Tukey's multiple comparisons test was utilized for statistical analysis, (iii) xCELLigence data from a representative donor (Donor 31) showing dose-dependent killing of U87 cells achieved by five doses of TV-13 CAR T cells, and (iv) IL-13 CAR T cells during a 7-day co-culture period.

    Journal: Bioactive Materials

    Article Title: Multimodal profiling of CAR T cells against glioblastoma using a microengineered 3D tumor-on-a-chip model

    doi: 10.1016/j.bioactmat.2026.01.003

    Figure Lengend Snippet: Evaluation of cytotoxic abilities of T cells against GBM cells within the GOC model. A) Microfluidic 3D invasion assay. (i) Schematic representation depicting the culture of tumor cells with T cells on day 0 (top) and day 3 (bottom), (ii) Representative phase contrast tile image overlapped with GFP (tumor cells) channel captured on day 0 to show the distribution of tumor and T cells across the experimental conditions (Scale bars: 200 μm), and (iii) Representative phase contrast tile image overlapped with GFP channel showing the migration of the U87 cells (green) from the tumor region to the stroma region across three different T cell populations. The densities of U87 are kept consistent across all conditions, and the density of T cells varies from 4 × 10 6 to 15 × 10 6 cells/mL. Images were captured 72 h after the interaction of cells within the GOC model (Scale bars: 200 μm). T-tumor, S-stroma, and V-vascular regions of GOC. B) Assessment of tumor cell migration in the presence of different T cells. (i) Quantification of migration distance from the 3D microfluidic model showing dose-dependent inhibition of U87 migration by the CAR T cells. Data were measured on Day 3 from three biological replicates ( n = 3 ) and represented as mean ± SD, T cell donors: DN26, DN28, and DN31, ∗ p < 0.05, ∗∗∗ ∗p < 0.0001. Two-way ANOVA with Tukey's multiple comparisons test was utilized for statistical analysis, and (ii) Comparison of migration distance of the U87 cells in the presence of different concentrations of the T cell population. Analysis performed on samples captured on Day 3 of migration ( n = 3 ) and represented as mean ± SD, T cell donors: DN26, DN28, and DN31, ∗ p < 0.05, ∗∗p < 0.01, ∗∗∗p < 0.001, ∗∗∗ ∗p < 0.0001. Two-way ANOVA with Tukey's multiple comparisons test was utilized for statistical analysis. C) xCELLigence-based real-time evaluation of T cell cytolytic capacity. (i) Time-course of the average cell index ( n = 3 donors ) for UTD, TV-13, and IL-13 CAR T cell groups under a 10:1 E: T condition over a 7-day co-culture, measured using the xCELLigence platform, (ii) Bar plot of xCELLigence data comparing averaged cell index values of tumor cells at Day 0 and Day 7 across UTD, TV-13, and IL-13 CAR T cell groups. Data represent mean ± SEM ( n = 3 donors ), ∗ p < 0.05, ∗∗p < 0.01, ∗∗∗p < 0.001, ∗∗∗ ∗p < 0.0001, Two-way ANOVA with Tukey's multiple comparisons test was utilized for statistical analysis, (iii) xCELLigence data from a representative donor (Donor 31) showing dose-dependent killing of U87 cells achieved by five doses of TV-13 CAR T cells, and (iv) IL-13 CAR T cells during a 7-day co-culture period.

    Article Snippet: U87 Culture : The Uppsala 87 (U87) Malignant Glioma cell line (HTB-14, ATCC) performed as the target tumor for this study was cultured in complete media composed of Eagle's minimum essential medium (EMEM) with L-Glutamine, and supplemented with 10 % FBS, 1 % HEPES, and 1 % penicillin-streptomycin.

    Techniques: Invasion Assay, Migration, Inhibition, Comparison, Co-Culture Assay

    Assessment of migratory behavior and proliferative potential of GBM tumor cells in the presence of engineered T cells. A) Evaluation of changes in migratory behavior of tumor cells across UTD, TV-13, and IL-13 T cells based on cytoskeletal organization. (i) Representative tile image of the 3D GOC model stained for actin cytoskeleton (red) showing the tumor-stroma-vascular interface (left), zoomed-in view highlighting the chain migration of the tumor cells from the tumor to the stroma region (middle), 20X region of interest (ROI) showing the disruption in the migratory pattern of the tumor cells and the formation of immune synapse (IS) (right). The white dashed box represents the ROIs alongside an inset image (ROI1) that highlights the formation of multiple IS between the tumor (green) and T cell within the stroma interface. The white arrow shows the IS formation, and the white dashed arrow represents the line scan utilized for intensity profiling to confirm the reorganization of actin cytoskeleton at the tumor-T cell interface . Red- Actin, Green- U87 cells, and DAPI – Blue . Scale bars: 200 μm (left and middle), 50 μm (right). (ii) Quantification of the number of cells migrating in a chain from near and far regions across three different T cell conditions . Data are represented as mean ± SD measured from three biological replicates ( n = 3 ), T cell donors: DN26, DN28, and DN31, ∗∗∗ p < 0.001 , ∗∗∗ ∗p < 0.0001. Two-way ANOVA with Tukey's multiple comparisons test was utilized for statistical analysis, (iii) Quantification of the number of cells within a field of view (FOV) from two distinct areas, namely near and far regions, Data are represented as mean ± SD measured from three biological replicated ( n = 3 ), T cell donors: DN26, DN28, and DN31, ∗∗∗ ∗p < 0.0001. Two-way ANOVA with Tukey's multiple comparisons test was utilized for statistical analysis. B) Immunofluorescent images of the devices stained for proliferation marker Ki-67. (i) Representative 20X ROI image showing the Ki-67 (red) expression on U87 cells (green) and (ii) Quantification of the number of Ki-67 positive cells across each condition through the proliferative index (Ki-67/Nuclei Ratio), Data are represented as mean ± SD measured from three biological replicates ( n = 3 ), T cell donors: DN26, DN28, and DN31, ∗∗ p < 0.01. One-way ANOVA with Tukey's multiple comparisons test was utilized for statistical analysis.

    Journal: Bioactive Materials

    Article Title: Multimodal profiling of CAR T cells against glioblastoma using a microengineered 3D tumor-on-a-chip model

    doi: 10.1016/j.bioactmat.2026.01.003

    Figure Lengend Snippet: Assessment of migratory behavior and proliferative potential of GBM tumor cells in the presence of engineered T cells. A) Evaluation of changes in migratory behavior of tumor cells across UTD, TV-13, and IL-13 T cells based on cytoskeletal organization. (i) Representative tile image of the 3D GOC model stained for actin cytoskeleton (red) showing the tumor-stroma-vascular interface (left), zoomed-in view highlighting the chain migration of the tumor cells from the tumor to the stroma region (middle), 20X region of interest (ROI) showing the disruption in the migratory pattern of the tumor cells and the formation of immune synapse (IS) (right). The white dashed box represents the ROIs alongside an inset image (ROI1) that highlights the formation of multiple IS between the tumor (green) and T cell within the stroma interface. The white arrow shows the IS formation, and the white dashed arrow represents the line scan utilized for intensity profiling to confirm the reorganization of actin cytoskeleton at the tumor-T cell interface . Red- Actin, Green- U87 cells, and DAPI – Blue . Scale bars: 200 μm (left and middle), 50 μm (right). (ii) Quantification of the number of cells migrating in a chain from near and far regions across three different T cell conditions . Data are represented as mean ± SD measured from three biological replicates ( n = 3 ), T cell donors: DN26, DN28, and DN31, ∗∗∗ p < 0.001 , ∗∗∗ ∗p < 0.0001. Two-way ANOVA with Tukey's multiple comparisons test was utilized for statistical analysis, (iii) Quantification of the number of cells within a field of view (FOV) from two distinct areas, namely near and far regions, Data are represented as mean ± SD measured from three biological replicated ( n = 3 ), T cell donors: DN26, DN28, and DN31, ∗∗∗ ∗p < 0.0001. Two-way ANOVA with Tukey's multiple comparisons test was utilized for statistical analysis. B) Immunofluorescent images of the devices stained for proliferation marker Ki-67. (i) Representative 20X ROI image showing the Ki-67 (red) expression on U87 cells (green) and (ii) Quantification of the number of Ki-67 positive cells across each condition through the proliferative index (Ki-67/Nuclei Ratio), Data are represented as mean ± SD measured from three biological replicates ( n = 3 ), T cell donors: DN26, DN28, and DN31, ∗∗ p < 0.01. One-way ANOVA with Tukey's multiple comparisons test was utilized for statistical analysis.

    Article Snippet: U87 Culture : The Uppsala 87 (U87) Malignant Glioma cell line (HTB-14, ATCC) performed as the target tumor for this study was cultured in complete media composed of Eagle's minimum essential medium (EMEM) with L-Glutamine, and supplemented with 10 % FBS, 1 % HEPES, and 1 % penicillin-streptomycin.

    Techniques: Staining, Migration, Disruption, Marker, Expressing

    land-ExM visualizes the protein and lipid context of cells. (A) Workflow of land-ExM. (B) Schematic of NHS-biotin-MA linker. (C) Schematic of mCLING. (D) land-ExM image of U2OS cells incubated with NHS-biotin-MA linker. Scale bar: 10 µm in pre-expansion unit. Linear expansion factor: 4. (E) ExM image of U2OS cells incubated with NHS-MA linker and stained with Alexa Fluor 488 NHS ester dye. Scale bar: 10 µm in pre-expansion unit. Linear expansion factor: 4.2. (F) ExM image of U2OS cells incubated with GMA linker and stained with SYPRO Orange. Scale bar: 10 µm in pre-expansion unit. Linear expansion factor: 4.2. (G) Bar chart comparing signal-to-noise ratios of protein context images obtained with different ExM methods shown in D–F. The signal-to-noise ratio is calculated as the average pixel value of the area with cells divided by the average pixel value of the area without cells in each image. Each bar represents the mean ± standard error of more than 10 cells. (H–J) Different views of land-ExM images of a breast cancer cell, UCI082014, stained with mCLING for lipid content. The orange dashed lines in H show where the orthogonal views (I and J) align. Scale bar: 5 µm (H), 2 µm (I and J) in pre-expansion unit. Linear expansion factor: 3.8. (K) Magnified images of H. (L) Magnified images of I. The orange dashed line in K shows where the orthogonal view (L) aligns. Scale bar: 0.5 µm in pre-expansion unit. Linear expansion factor: 3.8. All images were taken with an Airyscan microscope. Images D–F were adjusted to the same contrast. Image in D is also shown in .

    Journal: The Journal of Cell Biology

    Article Title: Landscape expansion microscopy reveals interactions between membrane and phase-separated organelles

    doi: 10.1083/jcb.202502035

    Figure Lengend Snippet: land-ExM visualizes the protein and lipid context of cells. (A) Workflow of land-ExM. (B) Schematic of NHS-biotin-MA linker. (C) Schematic of mCLING. (D) land-ExM image of U2OS cells incubated with NHS-biotin-MA linker. Scale bar: 10 µm in pre-expansion unit. Linear expansion factor: 4. (E) ExM image of U2OS cells incubated with NHS-MA linker and stained with Alexa Fluor 488 NHS ester dye. Scale bar: 10 µm in pre-expansion unit. Linear expansion factor: 4.2. (F) ExM image of U2OS cells incubated with GMA linker and stained with SYPRO Orange. Scale bar: 10 µm in pre-expansion unit. Linear expansion factor: 4.2. (G) Bar chart comparing signal-to-noise ratios of protein context images obtained with different ExM methods shown in D–F. The signal-to-noise ratio is calculated as the average pixel value of the area with cells divided by the average pixel value of the area without cells in each image. Each bar represents the mean ± standard error of more than 10 cells. (H–J) Different views of land-ExM images of a breast cancer cell, UCI082014, stained with mCLING for lipid content. The orange dashed lines in H show where the orthogonal views (I and J) align. Scale bar: 5 µm (H), 2 µm (I and J) in pre-expansion unit. Linear expansion factor: 3.8. (K) Magnified images of H. (L) Magnified images of I. The orange dashed line in K shows where the orthogonal view (L) aligns. Scale bar: 0.5 µm in pre-expansion unit. Linear expansion factor: 3.8. All images were taken with an Airyscan microscope. Images D–F were adjusted to the same contrast. Image in D is also shown in .

    Article Snippet: U2OS cells (cat#HTB-96; ATCC) were cultured in Mccoy’s 5A medium (Cat#16600082; Gibco) supplemented with 10% Fetal Bovine Serum (cat#10082147; Gibco) and 1% penicillin-streptomycin-amphotericin B (cat#A5955; Sigma-Aldrich).

    Techniques: Incubation, Staining, Microscopy

    mCLING optimization for lipid staining of cells. (A–D) Airyscan images of U2OS cells stained with different batches of mCLING at different dilution factors. Scale bars: 20 µm. Red arrowheads indicate lipid structures in the cytoplasm. All images were taken with an Airyscan microscope.

    Journal: The Journal of Cell Biology

    Article Title: Landscape expansion microscopy reveals interactions between membrane and phase-separated organelles

    doi: 10.1083/jcb.202502035

    Figure Lengend Snippet: mCLING optimization for lipid staining of cells. (A–D) Airyscan images of U2OS cells stained with different batches of mCLING at different dilution factors. Scale bars: 20 µm. Red arrowheads indicate lipid structures in the cytoplasm. All images were taken with an Airyscan microscope.

    Article Snippet: U2OS cells (cat#HTB-96; ATCC) were cultured in Mccoy’s 5A medium (Cat#16600082; Gibco) supplemented with 10% Fetal Bovine Serum (cat#10082147; Gibco) and 1% penicillin-streptomycin-amphotericin B (cat#A5955; Sigma-Aldrich).

    Techniques: Staining, Microscopy

    Alternative land-ExM workflow to avoid cross talk between NHS-biotin-MA and mCLING. (A) Alternative workflow of land-ExM. (B) i and ii: land-ExM images of U2OS cells stained first with NHS-biotin-MA and then mCLING. iii to v: Magnified images of boxes in i and ii. vi: Normalized intensity profile along the orange line in v. Scale bar: 5 µm in pre-expansion unit. Linear expansion factor: 4.0 (i and ii). 0.5 µm in pre-expansion unit. Linear expansion factor: 4.0 (iii to v). (C) i and ii: land-ExM images of U2OS cells stained first with mCLING and then NHS-biotin-MA. iii to v: Magnified images of orange boxes in i and ii. vi: Normalized intensity profile along the orange line in v. Scale bar: 5 µm in pre-expansion unit. Linear expansion factor: 4 (i and ii). 0.5 µm in pre-expansion unit. Linear expansion factor: 4.0 (iii to v). All images were taken with an Airyscan microscope.

    Journal: The Journal of Cell Biology

    Article Title: Landscape expansion microscopy reveals interactions between membrane and phase-separated organelles

    doi: 10.1083/jcb.202502035

    Figure Lengend Snippet: Alternative land-ExM workflow to avoid cross talk between NHS-biotin-MA and mCLING. (A) Alternative workflow of land-ExM. (B) i and ii: land-ExM images of U2OS cells stained first with NHS-biotin-MA and then mCLING. iii to v: Magnified images of boxes in i and ii. vi: Normalized intensity profile along the orange line in v. Scale bar: 5 µm in pre-expansion unit. Linear expansion factor: 4.0 (i and ii). 0.5 µm in pre-expansion unit. Linear expansion factor: 4.0 (iii to v). (C) i and ii: land-ExM images of U2OS cells stained first with mCLING and then NHS-biotin-MA. iii to v: Magnified images of orange boxes in i and ii. vi: Normalized intensity profile along the orange line in v. Scale bar: 5 µm in pre-expansion unit. Linear expansion factor: 4 (i and ii). 0.5 µm in pre-expansion unit. Linear expansion factor: 4.0 (iii to v). All images were taken with an Airyscan microscope.

    Article Snippet: U2OS cells (cat#HTB-96; ATCC) were cultured in Mccoy’s 5A medium (Cat#16600082; Gibco) supplemented with 10% Fetal Bovine Serum (cat#10082147; Gibco) and 1% penicillin-streptomycin-amphotericin B (cat#A5955; Sigma-Aldrich).

    Techniques: Staining, Microscopy

    land-ExM using proteinase K digestion. (A) Workflow of land-ExM using proteinase K digestion to homogenize cells instead of heat denaturation. (B) land-ExM protein image of U2OS cells with proteinase K digestion (proK). Scale bar: 10 µm in pre-expansion unit. Linear expansion factor: 4.0. (C) land-ExM protein image of U2OS cells with heat denaturation (heat). Scale bar: 10 µm in pre-expansion unit. Linear expansion factor: 4.0. (D) land-ExM lipid image of U2OS cell with proteinase K digestion (proK). Scale bar: 10 µm in pre-expansion unit. Linear expansion factor: 4.0. (E) land-ExM lipid image of U2OS cells with heat denaturation (heat). Scale bar: 10 µm in pre-expansion unit. Linear expansion factor: 4.0. All images were taken with an Airyscan microscope. Image in C is also shown in .

    Journal: The Journal of Cell Biology

    Article Title: Landscape expansion microscopy reveals interactions between membrane and phase-separated organelles

    doi: 10.1083/jcb.202502035

    Figure Lengend Snippet: land-ExM using proteinase K digestion. (A) Workflow of land-ExM using proteinase K digestion to homogenize cells instead of heat denaturation. (B) land-ExM protein image of U2OS cells with proteinase K digestion (proK). Scale bar: 10 µm in pre-expansion unit. Linear expansion factor: 4.0. (C) land-ExM protein image of U2OS cells with heat denaturation (heat). Scale bar: 10 µm in pre-expansion unit. Linear expansion factor: 4.0. (D) land-ExM lipid image of U2OS cell with proteinase K digestion (proK). Scale bar: 10 µm in pre-expansion unit. Linear expansion factor: 4.0. (E) land-ExM lipid image of U2OS cells with heat denaturation (heat). Scale bar: 10 µm in pre-expansion unit. Linear expansion factor: 4.0. All images were taken with an Airyscan microscope. Image in C is also shown in .

    Article Snippet: U2OS cells (cat#HTB-96; ATCC) were cultured in Mccoy’s 5A medium (Cat#16600082; Gibco) supplemented with 10% Fetal Bovine Serum (cat#10082147; Gibco) and 1% penicillin-streptomycin-amphotericin B (cat#A5955; Sigma-Aldrich).

    Techniques: Microscopy

    land-ExM labeling and anchoring strategies improve the signal of TREx and pan-ExM. (A) Workflow of land-pan-ExM, which only replaces the labeling strategy of pan-ExM with the labeling strategy of land-ExM. (B) land-TREx protein channel of U2OS cells, where proteins were labeled and anchored with NHS-biotin-MA. Scale bar: 5 µm in pre-expansion unit. Linear expansion factor: 7. (C) TREx protein channel of U2OS cells, where proteins were anchored with acryloyl-X SE and stained with Alexa Fluor 488 NHS ester. Scale bar: 5 µm in pre-expansion unit. Linear expansion factor: 7. (D) Bar chart comparing the signal-to-noise ratio of the protein channel in land-TREx and TREx. The signal-to-noise ratio is calculated as the average pixel value of the area with cells divided by the average pixel value of the area without cells in each image. Each bar represents the mean ± standard error of more than 20 cells. (E) land-TREx lipid channel of U2OS cells, where lipids were labeled by mCLING and anchored with NHS-biotin-MA. Scale bar: 5 µm in pre-expansion unit. Linear expansion factor: 7.0. (F) TREx lipid channel of U2OS cells, where lipids were anchored with acryloyl-X SE and stained with mCLING. Scale bar: 5 µm in pre-expansion unit. Linear expansion factor: 7.0. (G) Bar chart comparing the signal-to-noise ratio of the lipid channel of land-TREx and TREx. The signal-to-noise ratio is calculated as the average pixel value of the area with cells divided by the average pixel value of the area without cells in each image. Each bar represents the mean ± standard error of more than 20 cells. (H) land-pan-ExM protein channel of U2OS cells, where proteins were labeled and anchored with NHS-biotin-MA. Scale bar: 5 µm in pre-expansion unit. Linear expansion factor: 12.0. (I) Pan-ExM protein channel of U2OS cells labeled with Alexa Fluor 488 NHS ester. Scale bar: 5 µm in pre-expansion unit. Linear expansion factor: 12.0. (J) Bar chart comparing the signal-to-noise ratio of the protein channel in land-pan-ExM and pan-ExM. The signal-to-noise ratio is calculated as the average pixel value of the area with cells divided by the average pixel value of the area without cells in each image. Each bar represents the mean ± standard error of more than 20 cells. (K) land-pan-ExM lipid channel of U2OS cells, where lipids were stained following the workflow (A). Scale bar: 5 µm in pre-expansion unit. Linear expansion factor: 12.0. (L) Pan-ExM lipid channel of U2OS cells labeled with mCLING. Scale bar: 5 µm in pre-expansion unit. Linear expansion factor: 12.0. (M) Bar chart comparing the signal-to-noise ratio of the lipid (mCLING) channel in land-pan-ExM and pan-ExM. The signal-to-noise ratio is calculated as the average pixel value of the area with cells divided by the average pixel value of the area without cells in each image. Each bar represents the mean ± standard error of more than 20 cells. All images were taken with an Airyscan microscope.

    Journal: The Journal of Cell Biology

    Article Title: Landscape expansion microscopy reveals interactions between membrane and phase-separated organelles

    doi: 10.1083/jcb.202502035

    Figure Lengend Snippet: land-ExM labeling and anchoring strategies improve the signal of TREx and pan-ExM. (A) Workflow of land-pan-ExM, which only replaces the labeling strategy of pan-ExM with the labeling strategy of land-ExM. (B) land-TREx protein channel of U2OS cells, where proteins were labeled and anchored with NHS-biotin-MA. Scale bar: 5 µm in pre-expansion unit. Linear expansion factor: 7. (C) TREx protein channel of U2OS cells, where proteins were anchored with acryloyl-X SE and stained with Alexa Fluor 488 NHS ester. Scale bar: 5 µm in pre-expansion unit. Linear expansion factor: 7. (D) Bar chart comparing the signal-to-noise ratio of the protein channel in land-TREx and TREx. The signal-to-noise ratio is calculated as the average pixel value of the area with cells divided by the average pixel value of the area without cells in each image. Each bar represents the mean ± standard error of more than 20 cells. (E) land-TREx lipid channel of U2OS cells, where lipids were labeled by mCLING and anchored with NHS-biotin-MA. Scale bar: 5 µm in pre-expansion unit. Linear expansion factor: 7.0. (F) TREx lipid channel of U2OS cells, where lipids were anchored with acryloyl-X SE and stained with mCLING. Scale bar: 5 µm in pre-expansion unit. Linear expansion factor: 7.0. (G) Bar chart comparing the signal-to-noise ratio of the lipid channel of land-TREx and TREx. The signal-to-noise ratio is calculated as the average pixel value of the area with cells divided by the average pixel value of the area without cells in each image. Each bar represents the mean ± standard error of more than 20 cells. (H) land-pan-ExM protein channel of U2OS cells, where proteins were labeled and anchored with NHS-biotin-MA. Scale bar: 5 µm in pre-expansion unit. Linear expansion factor: 12.0. (I) Pan-ExM protein channel of U2OS cells labeled with Alexa Fluor 488 NHS ester. Scale bar: 5 µm in pre-expansion unit. Linear expansion factor: 12.0. (J) Bar chart comparing the signal-to-noise ratio of the protein channel in land-pan-ExM and pan-ExM. The signal-to-noise ratio is calculated as the average pixel value of the area with cells divided by the average pixel value of the area without cells in each image. Each bar represents the mean ± standard error of more than 20 cells. (K) land-pan-ExM lipid channel of U2OS cells, where lipids were stained following the workflow (A). Scale bar: 5 µm in pre-expansion unit. Linear expansion factor: 12.0. (L) Pan-ExM lipid channel of U2OS cells labeled with mCLING. Scale bar: 5 µm in pre-expansion unit. Linear expansion factor: 12.0. (M) Bar chart comparing the signal-to-noise ratio of the lipid (mCLING) channel in land-pan-ExM and pan-ExM. The signal-to-noise ratio is calculated as the average pixel value of the area with cells divided by the average pixel value of the area without cells in each image. Each bar represents the mean ± standard error of more than 20 cells. All images were taken with an Airyscan microscope.

    Article Snippet: U2OS cells (cat#HTB-96; ATCC) were cultured in Mccoy’s 5A medium (Cat#16600082; Gibco) supplemented with 10% Fetal Bovine Serum (cat#10082147; Gibco) and 1% penicillin-streptomycin-amphotericin B (cat#A5955; Sigma-Aldrich).

    Techniques: Labeling, Staining, Microscopy

    land-ExM visualizes phase-separated and membrane organelles. (A–G) land-ExM protein images of membraneless phase separation structures. The proteins were labeled with NHS-biotin-MS and after gelation stained with streptavidin-Alexa Fluor 488. (A) land-ExM protein image of nucleoli in a U2OS cell. Red arrowheads indicate the fibrillar center (FC) or dense fibrillar component (DFC) of the nucleolus. Scale bar: 1 µm in pre-expansion unit. Linear expansion factor: 4.0. (B) land-ExM protein image of nuclear bodies of breast cancer cell, UCI082014. Red arrowheads indicate the nuclear bodies. Scale bar: 1 µm in pre-expansion unit. Linear expansion factor: 4.2. (C) land-ExM protein image of SGs of a U2OS cell treated with NaAsO 2 for 20 min. The red arrowhead indicates a SG. Scale bar: 1 µm in pre-expansion unit. Linear expansion factor: 4.0. (D) land-ExM protein image of chromatin of a breast cancer cell. Scale bar: 500 nm in pre-expansion unit. Linear expansion factor: 4.2. (E) land-ExM protein image of NPCs of a breast cancer cell. Scale bar: 1 µm in pre-expansion unit. Linear expansion factor: 4.2. (F and G) land-ExM protein images of mitochondria and cytoskeleton of a U2OS cell. Scale bar: 1 µm in pre-expansion unit. Linear expansion factor: 4.0. (H–P) land-ExM lipid images of membrane structures. The lipids were labeled with mCLING-Atto647N. (H) land-ExM lipid image of breast cancer cell. Scale bar: 5 µm in pre-expansion unit. Linear expansion factor: 4.0. (I–M) magnified images of H showing different membrane structures: lipid vesicles (I), mitochondria (J), filopodia (K), nuclear invagination (L), and Golgi apparatus (M). Scale bar: 1 µm (I–M) in pre-expansion unit. (N) 3D land-ExM lipid image of a breast cancer cell after maximum intensity projection, showing the cell membrane. Color-coded by the z-dimension slices from bottom to top. Color bar: purple to white: 0–6 µm in pre-expansion unit. Scale bar: 5 µm in pre-expansion unit. Linear expansion factor: 4.0. (O and P) magnified images of N showing detailed structures of the cell membrane. Scale bar: 1 µm in pre-expansion unit. All images were taken with an Airyscan microscope.

    Journal: The Journal of Cell Biology

    Article Title: Landscape expansion microscopy reveals interactions between membrane and phase-separated organelles

    doi: 10.1083/jcb.202502035

    Figure Lengend Snippet: land-ExM visualizes phase-separated and membrane organelles. (A–G) land-ExM protein images of membraneless phase separation structures. The proteins were labeled with NHS-biotin-MS and after gelation stained with streptavidin-Alexa Fluor 488. (A) land-ExM protein image of nucleoli in a U2OS cell. Red arrowheads indicate the fibrillar center (FC) or dense fibrillar component (DFC) of the nucleolus. Scale bar: 1 µm in pre-expansion unit. Linear expansion factor: 4.0. (B) land-ExM protein image of nuclear bodies of breast cancer cell, UCI082014. Red arrowheads indicate the nuclear bodies. Scale bar: 1 µm in pre-expansion unit. Linear expansion factor: 4.2. (C) land-ExM protein image of SGs of a U2OS cell treated with NaAsO 2 for 20 min. The red arrowhead indicates a SG. Scale bar: 1 µm in pre-expansion unit. Linear expansion factor: 4.0. (D) land-ExM protein image of chromatin of a breast cancer cell. Scale bar: 500 nm in pre-expansion unit. Linear expansion factor: 4.2. (E) land-ExM protein image of NPCs of a breast cancer cell. Scale bar: 1 µm in pre-expansion unit. Linear expansion factor: 4.2. (F and G) land-ExM protein images of mitochondria and cytoskeleton of a U2OS cell. Scale bar: 1 µm in pre-expansion unit. Linear expansion factor: 4.0. (H–P) land-ExM lipid images of membrane structures. The lipids were labeled with mCLING-Atto647N. (H) land-ExM lipid image of breast cancer cell. Scale bar: 5 µm in pre-expansion unit. Linear expansion factor: 4.0. (I–M) magnified images of H showing different membrane structures: lipid vesicles (I), mitochondria (J), filopodia (K), nuclear invagination (L), and Golgi apparatus (M). Scale bar: 1 µm (I–M) in pre-expansion unit. (N) 3D land-ExM lipid image of a breast cancer cell after maximum intensity projection, showing the cell membrane. Color-coded by the z-dimension slices from bottom to top. Color bar: purple to white: 0–6 µm in pre-expansion unit. Scale bar: 5 µm in pre-expansion unit. Linear expansion factor: 4.0. (O and P) magnified images of N showing detailed structures of the cell membrane. Scale bar: 1 µm in pre-expansion unit. All images were taken with an Airyscan microscope.

    Article Snippet: U2OS cells (cat#HTB-96; ATCC) were cultured in Mccoy’s 5A medium (Cat#16600082; Gibco) supplemented with 10% Fetal Bovine Serum (cat#10082147; Gibco) and 1% penicillin-streptomycin-amphotericin B (cat#A5955; Sigma-Aldrich).

    Techniques: Membrane, Labeling, Staining, Microscopy

    land-ExM coupled with immunostaining LR-ExM for lipid vesicle identification. (A–C) land-ExM lipid (magenta) and protein (green) images of U2OS cells immunostained with anti-Lamp2 antibodies (yellow). The anti-Lamp2 antibodies are labeled LR-ExM second antibodies, which are second antibodies conjugated with NHS-digoxigenin-MA. Scale bar: 5 µm in pre-expansion unit. Linear expansion factor: 4. (D–G) Magnified images of A–C showing details of lysosomes. Scale bar: 500 nm in pre-expansion unit. (H) Intensity profile along the gray line across the lysosome in image (D). (I–K) land-ExM lipid (magenta) and protein (green) images of U2OS cells immunostained with anti-clathrin antibodies (yellow). The anti-clathrin antibodies are labeled LR-ExM second antibodies, which are second antibodies conjugated with NHS-digoxigenin-MA. Scale bar: 5 µm in pre-expansion unit. Linear expansion factor: 4. (L–O) Magnified images of I–K showing details of clathrin-coated pits. Scale bar: 500 nm in pre-expansion unit. (P) Intensity profile along the gray line across the clathrin-coated pit in image (L). All images were taken with an Airyscan microscope.

    Journal: The Journal of Cell Biology

    Article Title: Landscape expansion microscopy reveals interactions between membrane and phase-separated organelles

    doi: 10.1083/jcb.202502035

    Figure Lengend Snippet: land-ExM coupled with immunostaining LR-ExM for lipid vesicle identification. (A–C) land-ExM lipid (magenta) and protein (green) images of U2OS cells immunostained with anti-Lamp2 antibodies (yellow). The anti-Lamp2 antibodies are labeled LR-ExM second antibodies, which are second antibodies conjugated with NHS-digoxigenin-MA. Scale bar: 5 µm in pre-expansion unit. Linear expansion factor: 4. (D–G) Magnified images of A–C showing details of lysosomes. Scale bar: 500 nm in pre-expansion unit. (H) Intensity profile along the gray line across the lysosome in image (D). (I–K) land-ExM lipid (magenta) and protein (green) images of U2OS cells immunostained with anti-clathrin antibodies (yellow). The anti-clathrin antibodies are labeled LR-ExM second antibodies, which are second antibodies conjugated with NHS-digoxigenin-MA. Scale bar: 5 µm in pre-expansion unit. Linear expansion factor: 4. (L–O) Magnified images of I–K showing details of clathrin-coated pits. Scale bar: 500 nm in pre-expansion unit. (P) Intensity profile along the gray line across the clathrin-coated pit in image (L). All images were taken with an Airyscan microscope.

    Article Snippet: U2OS cells (cat#HTB-96; ATCC) were cultured in Mccoy’s 5A medium (Cat#16600082; Gibco) supplemented with 10% Fetal Bovine Serum (cat#10082147; Gibco) and 1% penicillin-streptomycin-amphotericin B (cat#A5955; Sigma-Aldrich).

    Techniques: Immunostaining, Labeling, Microscopy

    land-ExM coupled with immunostaining LR-ExM for membrane-bound organelle visualization. (A–C) land-ExM total lipid (magenta) and protein (green) images of U2OS cells immunostained with anti-Tom20 antibodies (yellow). The anti-Tom20 antibodies are labeled LR-ExM second antibodies, which are second antibodies conjugated with NHS-digoxigenin-MA. Scale bar: 5 µm in pre-expansion unit. Linear expansion factor: 4. (D–G) Magnified images of A–C showing details of mitochondria. Scale bar: 1 µm in pre-expansion unit. (H) Intensity profile along the cyan line across the mitochondria in image (D). (I–K) land-ExM lipid (magenta) and protein (green) images of U2OS cells immunostained with anti-Sec61b antibodies (yellow). The anti-Sec61b antibodies are labeled LR-ExM second antibodies, which are second antibodies conjugated with NHS-digoxigenin-MA. Scale bar: 5 µm in pre-expansion unit. Linear expansion factor: 4. (L–O) Magnified in images of I–K showing details of ER. Scale bar: 1 µm in pre-expansion unit. (P) Intensity profile along the cyan line across the ER in image (L). All images were taken with an Airyscan microscope.

    Journal: The Journal of Cell Biology

    Article Title: Landscape expansion microscopy reveals interactions between membrane and phase-separated organelles

    doi: 10.1083/jcb.202502035

    Figure Lengend Snippet: land-ExM coupled with immunostaining LR-ExM for membrane-bound organelle visualization. (A–C) land-ExM total lipid (magenta) and protein (green) images of U2OS cells immunostained with anti-Tom20 antibodies (yellow). The anti-Tom20 antibodies are labeled LR-ExM second antibodies, which are second antibodies conjugated with NHS-digoxigenin-MA. Scale bar: 5 µm in pre-expansion unit. Linear expansion factor: 4. (D–G) Magnified images of A–C showing details of mitochondria. Scale bar: 1 µm in pre-expansion unit. (H) Intensity profile along the cyan line across the mitochondria in image (D). (I–K) land-ExM lipid (magenta) and protein (green) images of U2OS cells immunostained with anti-Sec61b antibodies (yellow). The anti-Sec61b antibodies are labeled LR-ExM second antibodies, which are second antibodies conjugated with NHS-digoxigenin-MA. Scale bar: 5 µm in pre-expansion unit. Linear expansion factor: 4. (L–O) Magnified in images of I–K showing details of ER. Scale bar: 1 µm in pre-expansion unit. (P) Intensity profile along the cyan line across the ER in image (L). All images were taken with an Airyscan microscope.

    Article Snippet: U2OS cells (cat#HTB-96; ATCC) were cultured in Mccoy’s 5A medium (Cat#16600082; Gibco) supplemented with 10% Fetal Bovine Serum (cat#10082147; Gibco) and 1% penicillin-streptomycin-amphotericin B (cat#A5955; Sigma-Aldrich).

    Techniques: Immunostaining, Membrane, Labeling, Microscopy

    land-ExM reveals SGs at different locations of cells. (A–C) land-ExM images of U2OS cells untreated or treated with NaAsO2 for 20 or 60 min, then immunostained with anti-G3BP1 antibody. Scale bar: 5 µm in pre-expansion unit. Linear expansion factor: 4. (D–F) land-ExM images of U2OS cells stained with mCLING (magenta) and NHS ester dye (cyan) and immunostained with anti-G3BP1 (yellow) and anti-Sec61b (white) antibodies. Cells were untreated or treated with NaAsO2 for 20 min or 60 min. Scale bar: 5 µm in pre-expansion unit. Linear expansion factor: 4. (G) Magnified images of E showing SGs formed adjacent to ER (orange arrowheads). Scale bar: 1 µm in pre-expansion unit. (H) Analysis of the number of nuclear tunnels per cell with or without 60 min NaAsO2 treatment. Each bar represents the mean ± standard error of more than 18 cells. The ns indicates P > 0.05 by Welch’s t test. (I) Analysis of the diameter of nuclear tunnels in cells with or without 60 min NaAsO2 treatment. Each bar represents the mean ± standard error of more than 20 cells. ns indicates P > 0.05 by Welch’s t test. All images were taken with an Airyscan microscope. The cell shown in F is also shown in .

    Journal: The Journal of Cell Biology

    Article Title: Landscape expansion microscopy reveals interactions between membrane and phase-separated organelles

    doi: 10.1083/jcb.202502035

    Figure Lengend Snippet: land-ExM reveals SGs at different locations of cells. (A–C) land-ExM images of U2OS cells untreated or treated with NaAsO2 for 20 or 60 min, then immunostained with anti-G3BP1 antibody. Scale bar: 5 µm in pre-expansion unit. Linear expansion factor: 4. (D–F) land-ExM images of U2OS cells stained with mCLING (magenta) and NHS ester dye (cyan) and immunostained with anti-G3BP1 (yellow) and anti-Sec61b (white) antibodies. Cells were untreated or treated with NaAsO2 for 20 min or 60 min. Scale bar: 5 µm in pre-expansion unit. Linear expansion factor: 4. (G) Magnified images of E showing SGs formed adjacent to ER (orange arrowheads). Scale bar: 1 µm in pre-expansion unit. (H) Analysis of the number of nuclear tunnels per cell with or without 60 min NaAsO2 treatment. Each bar represents the mean ± standard error of more than 18 cells. The ns indicates P > 0.05 by Welch’s t test. (I) Analysis of the diameter of nuclear tunnels in cells with or without 60 min NaAsO2 treatment. Each bar represents the mean ± standard error of more than 20 cells. ns indicates P > 0.05 by Welch’s t test. All images were taken with an Airyscan microscope. The cell shown in F is also shown in .

    Article Snippet: U2OS cells (cat#HTB-96; ATCC) were cultured in Mccoy’s 5A medium (Cat#16600082; Gibco) supplemented with 10% Fetal Bovine Serum (cat#10082147; Gibco) and 1% penicillin-streptomycin-amphotericin B (cat#A5955; Sigma-Aldrich).

    Techniques: Staining, Microscopy

    The nuclear tunnel forms a triple-organellar contact site that includes the SG, the nucleolus, and itself. (A) land-ExM protein (gray) image of U2OS cells immunostained with anti-G3BP1 (red) antibody. Cells were treated with NaAsO 2 for 1 h. Scale bar: 5 µm in pre-expansion unit. Linear expansion factor: 4. (B–D) Different views of SG in the white dashed box of A. Scale bar: 1 µm in pre-expansion unit. (E) 3D rendering of SG in the white dashed box of A. In the reference grid, the spacing of major and minor tick marks is 0.5 and 0.1 µm in pre-expansion unit. (F) land-ExM protein (gray) and lipid (blue) image of U2OS cells immunostained with anti-G3BP1 (red) antibody. Cells were treated with NaAsO 2 for 1 h. Scale bar: 5 µm in pre-expansion unit. Linear expansion factor: 4. (G–I) Different views of SG in the white dashed box 1 of F. Scale bar: 1 µm in pre-expansion unit. (J) 3D rendering of SG in the white dashed box 1 of F. In the reference grid, the spacing of major and minor tick marks is 0.5 and 0.1 µm in the pre-expansion unit. (K) 3D rendering of SGs in the white dashed box 1–4 of F. In the reference grid, the spacing of major and minor tick marks is 0.5 and 0.1 µm in the pre-expansion unit. (L) land-ExM protein (gray) image of U2OS cells immunostained with anti-G3BP1 (red) and anti-Sec61b (yellow) antibodies. Cells were treated with NaAsO 2 for 1 h. Scale bar: 5 µm in pre-expansion unit. Linear expansion factor: 4. (M–O) Different views of SG in the white dashed box 1 of L. Scale bar: 1 µm in pre-expansion unit. (P) 3D rendering of SG in the white dashed box 1 of L. In the reference grid, the spacing of major and minor tick marks is 0.5 and 0.1 µm in pre-expansion unit. (Q) 3D rendering of SGs in the white dashed box 1–4 of L. In the reference grid, the spacing of major and minor tick marks is 0.5 and 0.1 µm in pre-expansion unit. (R) Pie chart of nuclear tunnels with or without SGs. Total tunnels analyzed: 114. (S) Pie chart of SG-filled nuclear tunnels that contact nucleoli versus those that do not. Total tunnel analyzed: 83. All images were taken with an Airyscan microscope. The cell shown in A, F, and L is also shown in .

    Journal: The Journal of Cell Biology

    Article Title: Landscape expansion microscopy reveals interactions between membrane and phase-separated organelles

    doi: 10.1083/jcb.202502035

    Figure Lengend Snippet: The nuclear tunnel forms a triple-organellar contact site that includes the SG, the nucleolus, and itself. (A) land-ExM protein (gray) image of U2OS cells immunostained with anti-G3BP1 (red) antibody. Cells were treated with NaAsO 2 for 1 h. Scale bar: 5 µm in pre-expansion unit. Linear expansion factor: 4. (B–D) Different views of SG in the white dashed box of A. Scale bar: 1 µm in pre-expansion unit. (E) 3D rendering of SG in the white dashed box of A. In the reference grid, the spacing of major and minor tick marks is 0.5 and 0.1 µm in pre-expansion unit. (F) land-ExM protein (gray) and lipid (blue) image of U2OS cells immunostained with anti-G3BP1 (red) antibody. Cells were treated with NaAsO 2 for 1 h. Scale bar: 5 µm in pre-expansion unit. Linear expansion factor: 4. (G–I) Different views of SG in the white dashed box 1 of F. Scale bar: 1 µm in pre-expansion unit. (J) 3D rendering of SG in the white dashed box 1 of F. In the reference grid, the spacing of major and minor tick marks is 0.5 and 0.1 µm in the pre-expansion unit. (K) 3D rendering of SGs in the white dashed box 1–4 of F. In the reference grid, the spacing of major and minor tick marks is 0.5 and 0.1 µm in the pre-expansion unit. (L) land-ExM protein (gray) image of U2OS cells immunostained with anti-G3BP1 (red) and anti-Sec61b (yellow) antibodies. Cells were treated with NaAsO 2 for 1 h. Scale bar: 5 µm in pre-expansion unit. Linear expansion factor: 4. (M–O) Different views of SG in the white dashed box 1 of L. Scale bar: 1 µm in pre-expansion unit. (P) 3D rendering of SG in the white dashed box 1 of L. In the reference grid, the spacing of major and minor tick marks is 0.5 and 0.1 µm in pre-expansion unit. (Q) 3D rendering of SGs in the white dashed box 1–4 of L. In the reference grid, the spacing of major and minor tick marks is 0.5 and 0.1 µm in pre-expansion unit. (R) Pie chart of nuclear tunnels with or without SGs. Total tunnels analyzed: 114. (S) Pie chart of SG-filled nuclear tunnels that contact nucleoli versus those that do not. Total tunnel analyzed: 83. All images were taken with an Airyscan microscope. The cell shown in A, F, and L is also shown in .

    Article Snippet: U2OS cells (cat#HTB-96; ATCC) were cultured in Mccoy’s 5A medium (Cat#16600082; Gibco) supplemented with 10% Fetal Bovine Serum (cat#10082147; Gibco) and 1% penicillin-streptomycin-amphotericin B (cat#A5955; Sigma-Aldrich).

    Techniques: Microscopy

    EBA impairs cancer stem cell-like properties. (A) BT474 and SKBR3 cells were treated with EBA for 48 h, and ALDH1 activity was assessed by flow cytometry using the Aldefluor assay. DEAB was used to define the baseline of Aldefluor-positive fluorescence. (B) BT474 cells (5x10 4 cells/ml) were plated in ultra-low attachment dishes and cultured in the presence or absence of EBA for 5 days. The number and volume of mammospheres were measured by microscopy. (C) Overall survival of patients with breast cancer stratified by the co-expression of ALDH1A1 and CD44. (D) Spearman correlation analysis of ALDH1A1 and CD44 mRNA levels in patients with HER2-positive breast cancer from The Cancer Genome Atlas cohort (n=76). Kaplan-Meier survival analyses of patients with HER2-overexpressing breast cancer stratified by (E) ALDH1A1 and (F) CD44 expression. Patients were divided into high- and low-expression groups based on the median gene expression. Statistical significance was determined using the log-rank test. (G) JIMT-1 cells were treated with EBA (3 μ M) for 48 h and the CD44 high /CD24 low cell populations were identified by flow cytometry. (H) JIMT-1 cells (1.5x10 4 cells/ml) were cultured under serum-free suspension conditions in the presence of EBA (3 μ M) for 8 days. Mammosphere number and volumes were quantified. ** P<0.01 and **** P<0.0001 vs. vehicle-treated control (0 μ M EBA). EBA, ebastine; ALDH, aldehyde dehydrogenase; DEAB, diethylaminobenzaldehyde; CTL, control; ISO, isotype.

    Journal: International Journal of Molecular Medicine

    Article Title: Ebastine targets HER2/HER3 signaling and cancer stem cell traits to overcome trastuzumab resistance in HER2-positive breast cancer

    doi: 10.3892/ijmm.2026.5751

    Figure Lengend Snippet: EBA impairs cancer stem cell-like properties. (A) BT474 and SKBR3 cells were treated with EBA for 48 h, and ALDH1 activity was assessed by flow cytometry using the Aldefluor assay. DEAB was used to define the baseline of Aldefluor-positive fluorescence. (B) BT474 cells (5x10 4 cells/ml) were plated in ultra-low attachment dishes and cultured in the presence or absence of EBA for 5 days. The number and volume of mammospheres were measured by microscopy. (C) Overall survival of patients with breast cancer stratified by the co-expression of ALDH1A1 and CD44. (D) Spearman correlation analysis of ALDH1A1 and CD44 mRNA levels in patients with HER2-positive breast cancer from The Cancer Genome Atlas cohort (n=76). Kaplan-Meier survival analyses of patients with HER2-overexpressing breast cancer stratified by (E) ALDH1A1 and (F) CD44 expression. Patients were divided into high- and low-expression groups based on the median gene expression. Statistical significance was determined using the log-rank test. (G) JIMT-1 cells were treated with EBA (3 μ M) for 48 h and the CD44 high /CD24 low cell populations were identified by flow cytometry. (H) JIMT-1 cells (1.5x10 4 cells/ml) were cultured under serum-free suspension conditions in the presence of EBA (3 μ M) for 8 days. Mammosphere number and volumes were quantified. ** P<0.01 and **** P<0.0001 vs. vehicle-treated control (0 μ M EBA). EBA, ebastine; ALDH, aldehyde dehydrogenase; DEAB, diethylaminobenzaldehyde; CTL, control; ISO, isotype.

    Article Snippet: The human breast cancer cell lines SKBR3, BT474, MDA-MB-453 (American Type Culture Collection) and JIMT-1 (Leibnitz Institute DSMZ-German Collection of Microorganisms and Cell Cultures GmbH) were cultured in DMEM, MEM or RPMI-1640 (all Sigma-Aldrich; Merck KGaA) supplemented with 10% FBS (Gibco; Thermo Fisher Scientific, Inc.) and 100 U/ml penicillin-streptomycin at 37°C in a humidified atmosphere of 5% CO 2 .

    Techniques: Activity Assay, Flow Cytometry, Fluorescence, Cell Culture, Microscopy, Expressing, Gene Expression, Suspension, Control

    (a) Fluorescence confocal images of HeLa, 4T1, MCF-7, and NIH 3T3 cells after incubation with Pro-BDP-3 (5.0 μM) for 2 h with or without further incubation with RuL2 or RuL3 (2.5 μM) for a further 4 h (red fluorescence; λ ex = 633 nm, λ em = 650–900 nm). The cells being incubated with BDP-COOH (5.0 μM) for 2 h were used as the positive control. The cell nuclei were stained with Hoechst (1.0 μM) for 15 min (blue fluorescence; λ ex = 405 nm, λ em = 420–500 nm). Scale bar = 20 μm. (b) Corresponding mean red fluorescence intensities quantified by ImageJ. Data are reported as the mean ± standard error of the mean (SEM) for three independent experiments (∗∗∗∗p < 0.0001). (c) Fluorescence confocal images of HeLa, 4T1, MCF-7, and NIH 3T3 cells after the aforementioned treatments and further incubation with H 2 DCFDA (10 μM) for 30 min, followed by light irradiation (λ > 610 nm, 25.8 mW/cm 2 ) for 8 min to give a total fluence of 12 J/cm 2 (green fluorescence; λ ex = 488 nm, λ em = 493–550 nm). Scale bar = 20 μm. (d) Corresponding mean green fluorescence intensities of DCF quantified by ImageJ. Data are reported as the mean ± SEM for three independent experiments (∗∗∗∗p < 0.0001). (e) Dark and photo (λ > 610 nm, 25.8 mW/cm 2 , 12 J/cm 2 ) cytotoxicity of BDP-COOH , Pro-BDP-3 , RuL2 , Pro-BDP-3 + RuL2 , RuL3 , and Pro-BDP-3 + RuL3 against HeLa, 4T1, MCF-7, and NIH 3T3 cells. The cells were incubated with BDP-COOH , Pro-BDP-3 , RuL2 , or RuL3 for 2 h. For Pro-BDP-3 + RuL2 and Pro-BDP-3 + RuL3 , the cells were first incubated with Pro-BDP-3 for 2 h and then with RuL2 or RuL3 (0.5 equiv.) for a further 4 h. Data are expressed as the mean ± SEM of three independent experiments, each performed in quadruplicate. (f) Photocytotoxicity of these agents at 5.0 μM and the combination treatments at 5.0 μM of Pro-BDP-3 against the four cell lines. The rightmost figure compiles the results for Pro-BDP-3 + RuL3 (∗∗∗∗p < 0.0001). Data are expressed as the mean ± SEM of three independent experiments, each performed in quadruplicate. (g) Live/dead cell viability assay using calcein-AM and PI. The cells were treated as described above, followed by incubation with calcein-AM (1 μM) and PI (2 μM) in binding buffer (2 mL) at 37 °C for 30 min. The live cells were indicated by the green fluorescence of calcein-AM (λ ex = 488 nm, λ em = 493–550 nm), while the dead cells were indicated by the red fluorescence of PI (λ ex = 561 nm, λ em = 600–800 nm). Scale bar = 50 μm. (For interpretation of the references to color in this figure legend, the reader is referred to the Web version of this article.)

    Journal: Materials Today Bio

    Article Title: Expanding the toolbox of bioorthogonal activation of photosensitizers for precise photodynamic therapy through transition metal-mediated deallylation

    doi: 10.1016/j.mtbio.2026.102797

    Figure Lengend Snippet: (a) Fluorescence confocal images of HeLa, 4T1, MCF-7, and NIH 3T3 cells after incubation with Pro-BDP-3 (5.0 μM) for 2 h with or without further incubation with RuL2 or RuL3 (2.5 μM) for a further 4 h (red fluorescence; λ ex = 633 nm, λ em = 650–900 nm). The cells being incubated with BDP-COOH (5.0 μM) for 2 h were used as the positive control. The cell nuclei were stained with Hoechst (1.0 μM) for 15 min (blue fluorescence; λ ex = 405 nm, λ em = 420–500 nm). Scale bar = 20 μm. (b) Corresponding mean red fluorescence intensities quantified by ImageJ. Data are reported as the mean ± standard error of the mean (SEM) for three independent experiments (∗∗∗∗p < 0.0001). (c) Fluorescence confocal images of HeLa, 4T1, MCF-7, and NIH 3T3 cells after the aforementioned treatments and further incubation with H 2 DCFDA (10 μM) for 30 min, followed by light irradiation (λ > 610 nm, 25.8 mW/cm 2 ) for 8 min to give a total fluence of 12 J/cm 2 (green fluorescence; λ ex = 488 nm, λ em = 493–550 nm). Scale bar = 20 μm. (d) Corresponding mean green fluorescence intensities of DCF quantified by ImageJ. Data are reported as the mean ± SEM for three independent experiments (∗∗∗∗p < 0.0001). (e) Dark and photo (λ > 610 nm, 25.8 mW/cm 2 , 12 J/cm 2 ) cytotoxicity of BDP-COOH , Pro-BDP-3 , RuL2 , Pro-BDP-3 + RuL2 , RuL3 , and Pro-BDP-3 + RuL3 against HeLa, 4T1, MCF-7, and NIH 3T3 cells. The cells were incubated with BDP-COOH , Pro-BDP-3 , RuL2 , or RuL3 for 2 h. For Pro-BDP-3 + RuL2 and Pro-BDP-3 + RuL3 , the cells were first incubated with Pro-BDP-3 for 2 h and then with RuL2 or RuL3 (0.5 equiv.) for a further 4 h. Data are expressed as the mean ± SEM of three independent experiments, each performed in quadruplicate. (f) Photocytotoxicity of these agents at 5.0 μM and the combination treatments at 5.0 μM of Pro-BDP-3 against the four cell lines. The rightmost figure compiles the results for Pro-BDP-3 + RuL3 (∗∗∗∗p < 0.0001). Data are expressed as the mean ± SEM of three independent experiments, each performed in quadruplicate. (g) Live/dead cell viability assay using calcein-AM and PI. The cells were treated as described above, followed by incubation with calcein-AM (1 μM) and PI (2 μM) in binding buffer (2 mL) at 37 °C for 30 min. The live cells were indicated by the green fluorescence of calcein-AM (λ ex = 488 nm, λ em = 493–550 nm), while the dead cells were indicated by the red fluorescence of PI (λ ex = 561 nm, λ em = 600–800 nm). Scale bar = 50 μm. (For interpretation of the references to color in this figure legend, the reader is referred to the Web version of this article.)

    Article Snippet: The HeLa human cervical cancer cells (ATCC, CCL-2), 4T1 murine mammary carcinoma cells (ATCC, CRL-2539), MCF-7 human breast cancer cells (ATCC, HTB-22), and NIH 3T3 murine embryonic fibroblast cells were maintained in Dulbecco's modified Eagle's medium (DMEM, ThermoFisher, cat. no. 11965092) supplemented with fetal calf serum (10 %) and penicillin-streptomycin (100 unit/mL and 100 μg/mL, respectively).

    Techniques: Fluorescence, Incubation, Positive Control, Staining, Irradiation, Viability Assay, Binding Assay