t4 rna ligase Search Results


  • Logo
  • About
  • News
  • Press Release
  • Team
  • Advisors
  • Partners
  • Contact
  • Bioz Stars
  • Bioz vStars
  • 99
    New England Biolabs t4rna ligase ii
    The RNA-ligase-mediated 5′-RACE procedure to clone the 5′ terminus of a viral RNA genome. Viral RNA is converted to cDNA with random primers by reverse transcription. A phosphorylated synthetic oligodeoxynucleotide adapter is ligated to the 3′ end of cDNA by using <t>T4</t> RNA ligase, and then two rounds of PCR amplification are performed. The first-round PCR is done with the adapter primer (AP-1), complementary to the 3′ end of the adapter, and the viral-specific primer 1 (VS-1). The second-round nested PCR is done with the other adapter primer (AP-2), complementary to the 5′ portion of the adapter, and the viral-specific primer 2 (VS-2). The PCR products are subjected to cloning and then sequencing. The RNA molecule is represented as a wavy line, cDNA molecules are straight lines, adapters are thick lines, and primers are short arrows.
    T4rna Ligase Ii, supplied by New England Biolabs, used in various techniques. Bioz Stars score: 99/100, based on 16 PubMed citations. ZERO BIAS - scores, article reviews, protocol conditions and more
    https://www.bioz.com/result/t4rna ligase ii/product/New England Biolabs
    Average 99 stars, based on 16 article reviews
    Price from $9.99 to $1999.99
    t4rna ligase ii - by Bioz Stars, 2020-07
    99/100 stars
      Buy from Supplier

    99
    Thermo Fisher t4rna ligase
    Identifying EBER2-interacting RNAs by combining psoralen crosslinking, ASO-mediated selection, and RNase V1 treatment. (A) The psoralen derivative AMT is used to crosslink RNA duplexes in intact cells to preserve in vivo RNA-RNA interactions. An EBER2-targeting ASO is then used to select EBER2 together with crosslinked interacting RNAs. These duplexes are eluted from the ASO beads using TEACl-containing buffer and are subjected to RNase V1 digestion. Following cleavage of double-stranded regions, a linker is ligated to the newly-generated 5′ phosphate group at the cut site using <t>T4</t> RNA ligase (inset). Only one possible cleavage event is depicted for simplicity. After deep sequencing, not only can the interacting RNAs be identified, but also the site of RNA-RNA interactions can be deduced, which are specified by the junction of the linker and interacting RNA. (B) Cobra venom fractions were examined for activity towards doubled-stranded and single-stranded substrates. The double-stranded substrate consists of a shRNA with a pyrimidine-rich loop, which can be digested by single-strand specific RNases, such as RNase A. The trimmed RNA duplex with no loop region migrates faster in a native polyacrylamide gel. Digestion within the stem region by a double-strand specific RNase results in the disappearance of radioactive signal, as observed after digestion with all input material as well as hydroxyapatite (HAP) fraction 15; note that the weak activity of the MonoS input sample is due to the great dilution of protein concentration following size exclusion chromatography. Indicated fractions were also used in a ligation assay (outlined in D) to verify the compatibility of RNase V1 digest with T4 RNA ligase reaction. A silver-stained gel of the purified fractions is shown in the bottom panel, revealing the partial purification only of RNase V1; many other proteins are present in our sample preparation, which, importantly, do not interfere with RNase V1 activity. (C) Purification scheme of RNase V1 from Naja oxiana venom. (D) Outline of ligation reaction after RNase V1 digest. An oligonucleotide blocked at the 3′ end with puromycin was 5′ end-labeled (arrow in B, third panel from top) and annealed to a partially complementary oligonucleotide with a 3′ amino modifier. A free 3′ OH group is created only after RNase V1 digest, to which a 5′ phosphorylated linker blocked at the 3′ end with puromycin can be ligated using T4 RNA ligase. This ligation product is the only one that can be visualized by autoradiography as shown in B (arrowhead, third panel from top).
    T4rna Ligase, supplied by Thermo Fisher, used in various techniques. Bioz Stars score: 99/100, based on 4 PubMed citations. ZERO BIAS - scores, article reviews, protocol conditions and more
    https://www.bioz.com/result/t4rna ligase/product/Thermo Fisher
    Average 99 stars, based on 4 article reviews
    Price from $9.99 to $1999.99
    t4rna ligase - by Bioz Stars, 2020-07
    99/100 stars
      Buy from Supplier

    99
    New England Biolabs t4rna ligase 2 k227q
    MicroRNA capture was performed with 4 different ligases using the vendor recommended protocols to compare capture efficiency across 20 different microRNA. The ligation products were analyzed by 15% denaturing urea-PAGE. Capture efficiency was determined by performing a Cy3 scan and comparing the intensities of the ∼40 nt captured microRNA band versus the ∼20 nt free microRNA band. <t>T4</t> RNA <t>Ligase</t> 2 truncated (T4 Rnl2 T) had high average capture efficiency and low bias but many randomly sized background products. The point mutant enzymes T4 RNA Ligase 2 truncated <t>K227Q</t> (T4 Rnl2 TK) and T4 RNA Ligase 2 truncated KQ (T4 Rnl2 TKQ) had decreased side product formation but also lower average capture efficiency and higher bias. Thermostable 5′ App DNA/RNA Ligase (Mth Rnl), which was performed at 65°C instead of 25°C, had similar average capture efficiency and bias but with distinct ligation efficiency pattern.
    T4rna Ligase 2 K227q, supplied by New England Biolabs, used in various techniques. Bioz Stars score: 99/100, based on 28 PubMed citations. ZERO BIAS - scores, article reviews, protocol conditions and more
    https://www.bioz.com/result/t4rna ligase 2 k227q/product/New England Biolabs
    Average 99 stars, based on 28 article reviews
    Price from $9.99 to $1999.99
    t4rna ligase 2 k227q - by Bioz Stars, 2020-07
    99/100 stars
      Buy from Supplier

    99
    New England Biolabs t4 rna ligase reaction buffer
    DSSS protocol workflow. ( A ) Fragmentation. RNA is fragmented to sizes in the range of 60–200 nt. ( B ) Dephosphorylation. 5′ phosphates are removed from RNA by treatment with alkaline phosphatase. ( C ) 3′ adapter ligation. Dephosphorylated 200-nt-long RNA fragments are selected by urea-PAGE. The 3′ adapter is ligated to the 3′ ends using <t>T4</t> RNA ligase I. ( D ) Rephosphorylation. Fragments are rephosphorylated by treatment with T4 polynucleotide kinase as preparation for the next ligation step. ( E ) 5′ adapter ligation, preceded by removal of the nonligated 3′adapter by urea-PAGE size selection. ( F ) Reverse transcription (RT) and amplification of library. Molecules with 5′ and 3′ adapters were selected by urea-PAGE. First strand cDNA synthesis and PCR amplification were carried out with the indicated primers. ( G ) Sequencing.
    T4 Rna Ligase Reaction Buffer, supplied by New England Biolabs, used in various techniques. Bioz Stars score: 99/100, based on 64 PubMed citations. ZERO BIAS - scores, article reviews, protocol conditions and more
    https://www.bioz.com/result/t4 rna ligase reaction buffer/product/New England Biolabs
    Average 99 stars, based on 64 article reviews
    Price from $9.99 to $1999.99
    t4 rna ligase reaction buffer - by Bioz Stars, 2020-07
    99/100 stars
      Buy from Supplier

    99
    New England Biolabs rna t4 ligase
    Schematic overview of the modified protocol. a , wet experiment. Irradiated with 365 nm UV, RNAs were cross-linked by AMT at the paired region, and survive DNase I, RNase T1 and RNase H treatments which digest DNA and single strand RNA. Cross-linked RNAs were ligated by <t>T4</t> RNA ligase 1. After photoreversal of cross-linkages by 254 nm UV, the ligated RNAs could be sequenced and identified. b , bioinformatics analysis
    Rna T4 Ligase, supplied by New England Biolabs, used in various techniques. Bioz Stars score: 99/100, based on 33 PubMed citations. ZERO BIAS - scores, article reviews, protocol conditions and more
    https://www.bioz.com/result/rna t4 ligase/product/New England Biolabs
    Average 99 stars, based on 33 article reviews
    Price from $9.99 to $1999.99
    rna t4 ligase - by Bioz Stars, 2020-07
    99/100 stars
      Buy from Supplier

    99
    New England Biolabs t4 ligase
    Schematic overview of the modified protocol. a , wet experiment. Irradiated with 365 nm UV, RNAs were cross-linked by AMT at the paired region, and survive DNase I, RNase T1 and RNase H treatments which digest DNA and single strand RNA. Cross-linked RNAs were ligated by <t>T4</t> RNA ligase 1. After photoreversal of cross-linkages by 254 nm UV, the ligated RNAs could be sequenced and identified. b , bioinformatics analysis
    T4 Ligase, supplied by New England Biolabs, used in various techniques. Bioz Stars score: 99/100, based on 9635 PubMed citations. ZERO BIAS - scores, article reviews, protocol conditions and more
    https://www.bioz.com/result/t4 ligase/product/New England Biolabs
    Average 99 stars, based on 9635 article reviews
    Price from $9.99 to $1999.99
    t4 ligase - by Bioz Stars, 2020-07
    99/100 stars
      Buy from Supplier

    99
    New England Biolabs truncated t4rna ligase
    Graphical Visualization of the 3′ RACE-Seq Approach, Related to Figure 2 (A) Graphical representation of 3′ RACE-seq library preparation and the oligonucleotides used. First, the 3′ adaptor RA3_15N was joined to the 3′ end of RNA by enzymatic ligation. The adaptor has: (i) 5′ rApp modification for efficient and specific ligation by the truncated <t>T4</t> RNA ligase 2, (ii) delimiter sequence to be used in bioinformatics analyses to exclude RT and PCR artifacts (CTGAC, highlighted in violet), (iii) unique 15N barcode for individual transcript barcoding (highlighted in green), (iv) anchor sequence to pair with the reverse transcription primer (underlined) and (v) dideoxyC on the 3′ end to prevent concatamer formation. The RNA ligated to the adaptor sequence was purified from excess adaptor and reverse transcription was performed with the RT primer, which is compatible with Illumina sequencing and has: (i) sequences to base-pair with the adaptor (underlined), (ii) 6-nucleotide barcode for sample barcoding (highlighted in red), (iii) sequences that base pair with the universal outer primer for nested PCR (blue). Libraries were generated by nested PCR with 2 outer forward primers (F1 and F2) and a single universal reverse primer (uni rev). PCR amplicons of first and second PCRs were purified from excess primers on AmPure beads (Agencourt) before beginning the next step. (B) Flowchart of the bioinformatics approach to 3′ RACE-seq data analysis. The procedure starts at the top. Datasets are shown in rectangles. Software used is depicted in hexagons.
    Truncated T4rna Ligase, supplied by New England Biolabs, used in various techniques. Bioz Stars score: 99/100, based on 217 PubMed citations. ZERO BIAS - scores, article reviews, protocol conditions and more
    https://www.bioz.com/result/truncated t4rna ligase/product/New England Biolabs
    Average 99 stars, based on 217 article reviews
    Price from $9.99 to $1999.99
    truncated t4rna ligase - by Bioz Stars, 2020-07
    99/100 stars
      Buy from Supplier

    95
    TaKaRa t4 rna ligase
    ( A ) Schematic illustration of the formation of streptavidin–tRNA fusion using puromycin–tRNA, which contains a puromycin moiety in the place of 3′ terminal aminoacyl-adenosine and a four-base anticodon CCCG. The puromycin–tRNA binds to ribosomal A site and accepts a streptavidin polypeptide chain as an analog of aminoacyl-tRNA in response to a four-base CGGG codon at 3′ terminus of streptavidin mRNA in a cell-free translation. The resulting streptavidin–puromycin–tRNA may be translocated to the P-site. In this case, the next aminoacyl-tRNA binds to the vacant ribosomal A site, but can not accept the polypeptide chain because of the amide bond of puromycin–tRNA. The resulting streptavidin–tRNA fusion is released from the ribosome complex by the addition of EDTA. ( B ) Schematic illustration of the in vitro selection system of tRNAs. Step 1, a DNA pool encoding tRNAs containing a four-base anticodon CCCG is transcribed by T7 RNA polymerase to tRNA(-CA) pool. Step 2, the tRNA(-CA) pool is ligated with pdCp-Puromycin by <t>T4</t> RNA ligase to generate puromycin–tRNA. Step 3, a streptavidin mRNA containing a four-base CGGG codon at C-terminus is translated in an E.coli cell-free translation system in the presence of the puromycin–tRNA. Puromycin–tRNAs that successfully decode the CGGG codon form ribosome–mRNA–streptavidin–tRNA complex. Step 4, the streptavidin–tRNA fusion is dissociated from the complex by the addition of EDTA. Step 5, the streptavidin–tRNA fusion is recovered with biotin-coated magnetic beads. Step 6, the streptavidin–tRNA fusion is dissociated from the beads, and then the tRNA moiety is subjected to RT–PCR. Step 7, the tRNA genes are regenerated by overlap-extension PCR with a T7 promoter primer, which are used as template DNAs in the next round of selection.
    T4 Rna Ligase, supplied by TaKaRa, used in various techniques. Bioz Stars score: 95/100, based on 1175 PubMed citations. ZERO BIAS - scores, article reviews, protocol conditions and more
    https://www.bioz.com/result/t4 rna ligase/product/TaKaRa
    Average 95 stars, based on 1175 article reviews
    Price from $9.99 to $1999.99
    t4 rna ligase - by Bioz Stars, 2020-07
    95/100 stars
      Buy from Supplier

    95
    Thermo Fisher 10x t4 rna ligase
    ( A ) Schematic illustration of the formation of streptavidin–tRNA fusion using puromycin–tRNA, which contains a puromycin moiety in the place of 3′ terminal aminoacyl-adenosine and a four-base anticodon CCCG. The puromycin–tRNA binds to ribosomal A site and accepts a streptavidin polypeptide chain as an analog of aminoacyl-tRNA in response to a four-base CGGG codon at 3′ terminus of streptavidin mRNA in a cell-free translation. The resulting streptavidin–puromycin–tRNA may be translocated to the P-site. In this case, the next aminoacyl-tRNA binds to the vacant ribosomal A site, but can not accept the polypeptide chain because of the amide bond of puromycin–tRNA. The resulting streptavidin–tRNA fusion is released from the ribosome complex by the addition of EDTA. ( B ) Schematic illustration of the in vitro selection system of tRNAs. Step 1, a DNA pool encoding tRNAs containing a four-base anticodon CCCG is transcribed by T7 RNA polymerase to tRNA(-CA) pool. Step 2, the tRNA(-CA) pool is ligated with pdCp-Puromycin by <t>T4</t> RNA ligase to generate puromycin–tRNA. Step 3, a streptavidin mRNA containing a four-base CGGG codon at C-terminus is translated in an E.coli cell-free translation system in the presence of the puromycin–tRNA. Puromycin–tRNAs that successfully decode the CGGG codon form ribosome–mRNA–streptavidin–tRNA complex. Step 4, the streptavidin–tRNA fusion is dissociated from the complex by the addition of EDTA. Step 5, the streptavidin–tRNA fusion is recovered with biotin-coated magnetic beads. Step 6, the streptavidin–tRNA fusion is dissociated from the beads, and then the tRNA moiety is subjected to RT–PCR. Step 7, the tRNA genes are regenerated by overlap-extension PCR with a T7 promoter primer, which are used as template DNAs in the next round of selection.
    10x T4 Rna Ligase, supplied by Thermo Fisher, used in various techniques. Bioz Stars score: 95/100, based on 16 PubMed citations. ZERO BIAS - scores, article reviews, protocol conditions and more
    https://www.bioz.com/result/10x t4 rna ligase/product/Thermo Fisher
    Average 95 stars, based on 16 article reviews
    Price from $9.99 to $1999.99
    10x t4 rna ligase - by Bioz Stars, 2020-07
    95/100 stars
      Buy from Supplier

    Image Search Results


    The RNA-ligase-mediated 5′-RACE procedure to clone the 5′ terminus of a viral RNA genome. Viral RNA is converted to cDNA with random primers by reverse transcription. A phosphorylated synthetic oligodeoxynucleotide adapter is ligated to the 3′ end of cDNA by using T4 RNA ligase, and then two rounds of PCR amplification are performed. The first-round PCR is done with the adapter primer (AP-1), complementary to the 3′ end of the adapter, and the viral-specific primer 1 (VS-1). The second-round nested PCR is done with the other adapter primer (AP-2), complementary to the 5′ portion of the adapter, and the viral-specific primer 2 (VS-2). The PCR products are subjected to cloning and then sequencing. The RNA molecule is represented as a wavy line, cDNA molecules are straight lines, adapters are thick lines, and primers are short arrows.

    Journal: Proceedings of the National Academy of Sciences of the United States of America

    Article Title: Cloning and characterization of the extreme 5?-terminal sequences of the RNA genomes of GB virus C/hepatitis G virus

    doi:

    Figure Lengend Snippet: The RNA-ligase-mediated 5′-RACE procedure to clone the 5′ terminus of a viral RNA genome. Viral RNA is converted to cDNA with random primers by reverse transcription. A phosphorylated synthetic oligodeoxynucleotide adapter is ligated to the 3′ end of cDNA by using T4 RNA ligase, and then two rounds of PCR amplification are performed. The first-round PCR is done with the adapter primer (AP-1), complementary to the 3′ end of the adapter, and the viral-specific primer 1 (VS-1). The second-round nested PCR is done with the other adapter primer (AP-2), complementary to the 5′ portion of the adapter, and the viral-specific primer 2 (VS-2). The PCR products are subjected to cloning and then sequencing. The RNA molecule is represented as a wavy line, cDNA molecules are straight lines, adapters are thick lines, and primers are short arrows.

    Article Snippet: The ligation solution contained 5 pg of the synthetic oligonucleotide adapter, 50 mM Tris·HCl (pH 7.8), 10 mM MgCl2 , 1 mM 2-mercaptoethanol, 1 mM ATP, 20 units of human placenta ribonuclease inhibitor (RNasin, Promega), and 20 units of T4 RNA ligase (New England BioLabs).

    Techniques: Polymerase Chain Reaction, Amplification, Nested PCR, Clone Assay, Sequencing

    Identifying EBER2-interacting RNAs by combining psoralen crosslinking, ASO-mediated selection, and RNase V1 treatment. (A) The psoralen derivative AMT is used to crosslink RNA duplexes in intact cells to preserve in vivo RNA-RNA interactions. An EBER2-targeting ASO is then used to select EBER2 together with crosslinked interacting RNAs. These duplexes are eluted from the ASO beads using TEACl-containing buffer and are subjected to RNase V1 digestion. Following cleavage of double-stranded regions, a linker is ligated to the newly-generated 5′ phosphate group at the cut site using T4 RNA ligase (inset). Only one possible cleavage event is depicted for simplicity. After deep sequencing, not only can the interacting RNAs be identified, but also the site of RNA-RNA interactions can be deduced, which are specified by the junction of the linker and interacting RNA. (B) Cobra venom fractions were examined for activity towards doubled-stranded and single-stranded substrates. The double-stranded substrate consists of a shRNA with a pyrimidine-rich loop, which can be digested by single-strand specific RNases, such as RNase A. The trimmed RNA duplex with no loop region migrates faster in a native polyacrylamide gel. Digestion within the stem region by a double-strand specific RNase results in the disappearance of radioactive signal, as observed after digestion with all input material as well as hydroxyapatite (HAP) fraction 15; note that the weak activity of the MonoS input sample is due to the great dilution of protein concentration following size exclusion chromatography. Indicated fractions were also used in a ligation assay (outlined in D) to verify the compatibility of RNase V1 digest with T4 RNA ligase reaction. A silver-stained gel of the purified fractions is shown in the bottom panel, revealing the partial purification only of RNase V1; many other proteins are present in our sample preparation, which, importantly, do not interfere with RNase V1 activity. (C) Purification scheme of RNase V1 from Naja oxiana venom. (D) Outline of ligation reaction after RNase V1 digest. An oligonucleotide blocked at the 3′ end with puromycin was 5′ end-labeled (arrow in B, third panel from top) and annealed to a partially complementary oligonucleotide with a 3′ amino modifier. A free 3′ OH group is created only after RNase V1 digest, to which a 5′ phosphorylated linker blocked at the 3′ end with puromycin can be ligated using T4 RNA ligase. This ligation product is the only one that can be visualized by autoradiography as shown in B (arrowhead, third panel from top).

    Journal: RNA Biology

    Article Title: Identification of host RNAs that interact with EBV noncoding RNA EBER2

    doi: 10.1080/15476286.2018.1518854

    Figure Lengend Snippet: Identifying EBER2-interacting RNAs by combining psoralen crosslinking, ASO-mediated selection, and RNase V1 treatment. (A) The psoralen derivative AMT is used to crosslink RNA duplexes in intact cells to preserve in vivo RNA-RNA interactions. An EBER2-targeting ASO is then used to select EBER2 together with crosslinked interacting RNAs. These duplexes are eluted from the ASO beads using TEACl-containing buffer and are subjected to RNase V1 digestion. Following cleavage of double-stranded regions, a linker is ligated to the newly-generated 5′ phosphate group at the cut site using T4 RNA ligase (inset). Only one possible cleavage event is depicted for simplicity. After deep sequencing, not only can the interacting RNAs be identified, but also the site of RNA-RNA interactions can be deduced, which are specified by the junction of the linker and interacting RNA. (B) Cobra venom fractions were examined for activity towards doubled-stranded and single-stranded substrates. The double-stranded substrate consists of a shRNA with a pyrimidine-rich loop, which can be digested by single-strand specific RNases, such as RNase A. The trimmed RNA duplex with no loop region migrates faster in a native polyacrylamide gel. Digestion within the stem region by a double-strand specific RNase results in the disappearance of radioactive signal, as observed after digestion with all input material as well as hydroxyapatite (HAP) fraction 15; note that the weak activity of the MonoS input sample is due to the great dilution of protein concentration following size exclusion chromatography. Indicated fractions were also used in a ligation assay (outlined in D) to verify the compatibility of RNase V1 digest with T4 RNA ligase reaction. A silver-stained gel of the purified fractions is shown in the bottom panel, revealing the partial purification only of RNase V1; many other proteins are present in our sample preparation, which, importantly, do not interfere with RNase V1 activity. (C) Purification scheme of RNase V1 from Naja oxiana venom. (D) Outline of ligation reaction after RNase V1 digest. An oligonucleotide blocked at the 3′ end with puromycin was 5′ end-labeled (arrow in B, third panel from top) and annealed to a partially complementary oligonucleotide with a 3′ amino modifier. A free 3′ OH group is created only after RNase V1 digest, to which a 5′ phosphorylated linker blocked at the 3′ end with puromycin can be ligated using T4 RNA ligase. This ligation product is the only one that can be visualized by autoradiography as shown in B (arrowhead, third panel from top).

    Article Snippet: RNA was resuspended in 14.5 µl H2 O and subjected to T4 RNA Ligase reaction by adding 1 µl of 20 µM 5′-phosporylated RL3 (5′-P -GUGUCAGUCACUUCCAGCGG-Puromycin-3′), 2 µl 10× T4 Ligase Buffer, 2 µl BSA, 0.5 µl T4 RNA Ligase (ThermoFisher), and incubated overnight at 16°C.

    Techniques: Allele-specific Oligonucleotide, Selection, In Vivo, Generated, Sequencing, Combined Bisulfite Restriction Analysis Assay, Activity Assay, shRNA, Protein Concentration, Size-exclusion Chromatography, Ligation, Staining, Purification, Sample Prep, Labeling, Autoradiography

    MicroRNA capture was performed with 4 different ligases using the vendor recommended protocols to compare capture efficiency across 20 different microRNA. The ligation products were analyzed by 15% denaturing urea-PAGE. Capture efficiency was determined by performing a Cy3 scan and comparing the intensities of the ∼40 nt captured microRNA band versus the ∼20 nt free microRNA band. T4 RNA Ligase 2 truncated (T4 Rnl2 T) had high average capture efficiency and low bias but many randomly sized background products. The point mutant enzymes T4 RNA Ligase 2 truncated K227Q (T4 Rnl2 TK) and T4 RNA Ligase 2 truncated KQ (T4 Rnl2 TKQ) had decreased side product formation but also lower average capture efficiency and higher bias. Thermostable 5′ App DNA/RNA Ligase (Mth Rnl), which was performed at 65°C instead of 25°C, had similar average capture efficiency and bias but with distinct ligation efficiency pattern.

    Journal: PLoS ONE

    Article Title: Elimination of Ligation Dependent Artifacts in T4 RNA Ligase to Achieve High Efficiency and Low Bias MicroRNA Capture

    doi: 10.1371/journal.pone.0094619

    Figure Lengend Snippet: MicroRNA capture was performed with 4 different ligases using the vendor recommended protocols to compare capture efficiency across 20 different microRNA. The ligation products were analyzed by 15% denaturing urea-PAGE. Capture efficiency was determined by performing a Cy3 scan and comparing the intensities of the ∼40 nt captured microRNA band versus the ∼20 nt free microRNA band. T4 RNA Ligase 2 truncated (T4 Rnl2 T) had high average capture efficiency and low bias but many randomly sized background products. The point mutant enzymes T4 RNA Ligase 2 truncated K227Q (T4 Rnl2 TK) and T4 RNA Ligase 2 truncated KQ (T4 Rnl2 TKQ) had decreased side product formation but also lower average capture efficiency and higher bias. Thermostable 5′ App DNA/RNA Ligase (Mth Rnl), which was performed at 65°C instead of 25°C, had similar average capture efficiency and bias but with distinct ligation efficiency pattern.

    Article Snippet: Ligation Protocol Unless otherwise indicated, ligation was performed by mixing 1.25 µL of 2 µM adenylated adapter, 1 µL of T4 RNA Ligase buffer (New England Biolabs, Ipswich, MA), 5 µL of 50% PEG8000, 1 µL of synthetic target, 0.5 µL of total RNA, 1 µL of T4 RNA Ligase 2 truncated K227Q (New England Biolabs, Ipswich, MA) and water into a 20 µL reaction volume.

    Techniques: Ligation, Polyacrylamide Gel Electrophoresis, Mutagenesis

    Schematic illustration of microRNA capture by 3′ adapter ligation. The 19 nt, enzymatically pre-adenlyated adapter is ligated to the 3′ OH of microRNA using T4 RNA ligase 2. The reaction is run at 25°C for 4 hours in the absence of ATP. In order to characterize capture efficiency, the microRNA is end labeled with Cy3. The 3′ end of the adapter is blocked by –ddC, a fluorophore, or other moiety to prevent the formation of concatemers and circularized products.

    Journal: PLoS ONE

    Article Title: Elimination of Ligation Dependent Artifacts in T4 RNA Ligase to Achieve High Efficiency and Low Bias MicroRNA Capture

    doi: 10.1371/journal.pone.0094619

    Figure Lengend Snippet: Schematic illustration of microRNA capture by 3′ adapter ligation. The 19 nt, enzymatically pre-adenlyated adapter is ligated to the 3′ OH of microRNA using T4 RNA ligase 2. The reaction is run at 25°C for 4 hours in the absence of ATP. In order to characterize capture efficiency, the microRNA is end labeled with Cy3. The 3′ end of the adapter is blocked by –ddC, a fluorophore, or other moiety to prevent the formation of concatemers and circularized products.

    Article Snippet: Ligation Protocol Unless otherwise indicated, ligation was performed by mixing 1.25 µL of 2 µM adenylated adapter, 1 µL of T4 RNA Ligase buffer (New England Biolabs, Ipswich, MA), 5 µL of 50% PEG8000, 1 µL of synthetic target, 0.5 µL of total RNA, 1 µL of T4 RNA Ligase 2 truncated K227Q (New England Biolabs, Ipswich, MA) and water into a 20 µL reaction volume.

    Techniques: Ligation, Labeling

    DSSS protocol workflow. ( A ) Fragmentation. RNA is fragmented to sizes in the range of 60–200 nt. ( B ) Dephosphorylation. 5′ phosphates are removed from RNA by treatment with alkaline phosphatase. ( C ) 3′ adapter ligation. Dephosphorylated 200-nt-long RNA fragments are selected by urea-PAGE. The 3′ adapter is ligated to the 3′ ends using T4 RNA ligase I. ( D ) Rephosphorylation. Fragments are rephosphorylated by treatment with T4 polynucleotide kinase as preparation for the next ligation step. ( E ) 5′ adapter ligation, preceded by removal of the nonligated 3′adapter by urea-PAGE size selection. ( F ) Reverse transcription (RT) and amplification of library. Molecules with 5′ and 3′ adapters were selected by urea-PAGE. First strand cDNA synthesis and PCR amplification were carried out with the indicated primers. ( G ) Sequencing.

    Journal: Genome Research

    Article Title: Strand-specific deep sequencing of the transcriptome

    doi: 10.1101/gr.094318.109

    Figure Lengend Snippet: DSSS protocol workflow. ( A ) Fragmentation. RNA is fragmented to sizes in the range of 60–200 nt. ( B ) Dephosphorylation. 5′ phosphates are removed from RNA by treatment with alkaline phosphatase. ( C ) 3′ adapter ligation. Dephosphorylated 200-nt-long RNA fragments are selected by urea-PAGE. The 3′ adapter is ligated to the 3′ ends using T4 RNA ligase I. ( D ) Rephosphorylation. Fragments are rephosphorylated by treatment with T4 polynucleotide kinase as preparation for the next ligation step. ( E ) 5′ adapter ligation, preceded by removal of the nonligated 3′adapter by urea-PAGE size selection. ( F ) Reverse transcription (RT) and amplification of library. Molecules with 5′ and 3′ adapters were selected by urea-PAGE. First strand cDNA synthesis and PCR amplification were carried out with the indicated primers. ( G ) Sequencing.

    Article Snippet: We incubated the following reaction mixture for 30 min at 37°C: 10 μL of sample, 1 μL of 10× T4 RNA ligase buffer (as fresh ATP supply), 10 U of polynucleotide kinase (New England BioLabs), 3 μL of RNase free water.

    Techniques: De-Phosphorylation Assay, Ligation, Polyacrylamide Gel Electrophoresis, Selection, Amplification, Polymerase Chain Reaction, Sequencing

    Schematic overview of the modified protocol. a , wet experiment. Irradiated with 365 nm UV, RNAs were cross-linked by AMT at the paired region, and survive DNase I, RNase T1 and RNase H treatments which digest DNA and single strand RNA. Cross-linked RNAs were ligated by T4 RNA ligase 1. After photoreversal of cross-linkages by 254 nm UV, the ligated RNAs could be sequenced and identified. b , bioinformatics analysis

    Journal: BMC Genomics

    Article Title: Detecting RNA-RNA interactions in E. coli using a modified CLASH method

    doi: 10.1186/s12864-017-3725-3

    Figure Lengend Snippet: Schematic overview of the modified protocol. a , wet experiment. Irradiated with 365 nm UV, RNAs were cross-linked by AMT at the paired region, and survive DNase I, RNase T1 and RNase H treatments which digest DNA and single strand RNA. Cross-linked RNAs were ligated by T4 RNA ligase 1. After photoreversal of cross-linkages by 254 nm UV, the ligated RNAs could be sequenced and identified. b , bioinformatics analysis

    Article Snippet: Cross-linked RNA molecules were then ligated using 40 U of T4 RNA ligase 1 (New England Biolabs, M0204), 1 mM ATP, and 40 U RNase inhibitors in RNA ligase 1 buffer for 1 h at 15 °C, and kept for 16 h at 4 °C.

    Techniques: Modification, Irradiation

    Graphical Visualization of the 3′ RACE-Seq Approach, Related to Figure 2 (A) Graphical representation of 3′ RACE-seq library preparation and the oligonucleotides used. First, the 3′ adaptor RA3_15N was joined to the 3′ end of RNA by enzymatic ligation. The adaptor has: (i) 5′ rApp modification for efficient and specific ligation by the truncated T4 RNA ligase 2, (ii) delimiter sequence to be used in bioinformatics analyses to exclude RT and PCR artifacts (CTGAC, highlighted in violet), (iii) unique 15N barcode for individual transcript barcoding (highlighted in green), (iv) anchor sequence to pair with the reverse transcription primer (underlined) and (v) dideoxyC on the 3′ end to prevent concatamer formation. The RNA ligated to the adaptor sequence was purified from excess adaptor and reverse transcription was performed with the RT primer, which is compatible with Illumina sequencing and has: (i) sequences to base-pair with the adaptor (underlined), (ii) 6-nucleotide barcode for sample barcoding (highlighted in red), (iii) sequences that base pair with the universal outer primer for nested PCR (blue). Libraries were generated by nested PCR with 2 outer forward primers (F1 and F2) and a single universal reverse primer (uni rev). PCR amplicons of first and second PCRs were purified from excess primers on AmPure beads (Agencourt) before beginning the next step. (B) Flowchart of the bioinformatics approach to 3′ RACE-seq data analysis. The procedure starts at the top. Datasets are shown in rectangles. Software used is depicted in hexagons.

    Journal: Cell

    Article Title: Uridylation by TUT4/7 Restricts Retrotransposition of Human LINE-1s

    doi: 10.1016/j.cell.2018.07.022

    Figure Lengend Snippet: Graphical Visualization of the 3′ RACE-Seq Approach, Related to Figure 2 (A) Graphical representation of 3′ RACE-seq library preparation and the oligonucleotides used. First, the 3′ adaptor RA3_15N was joined to the 3′ end of RNA by enzymatic ligation. The adaptor has: (i) 5′ rApp modification for efficient and specific ligation by the truncated T4 RNA ligase 2, (ii) delimiter sequence to be used in bioinformatics analyses to exclude RT and PCR artifacts (CTGAC, highlighted in violet), (iii) unique 15N barcode for individual transcript barcoding (highlighted in green), (iv) anchor sequence to pair with the reverse transcription primer (underlined) and (v) dideoxyC on the 3′ end to prevent concatamer formation. The RNA ligated to the adaptor sequence was purified from excess adaptor and reverse transcription was performed with the RT primer, which is compatible with Illumina sequencing and has: (i) sequences to base-pair with the adaptor (underlined), (ii) 6-nucleotide barcode for sample barcoding (highlighted in red), (iii) sequences that base pair with the universal outer primer for nested PCR (blue). Libraries were generated by nested PCR with 2 outer forward primers (F1 and F2) and a single universal reverse primer (uni rev). PCR amplicons of first and second PCRs were purified from excess primers on AmPure beads (Agencourt) before beginning the next step. (B) Flowchart of the bioinformatics approach to 3′ RACE-seq data analysis. The procedure starts at the top. Datasets are shown in rectangles. Software used is depicted in hexagons.

    Article Snippet: The reactions were carried out in 20 μL with 1x T4 RNA ligase 2 truncated buffer (NEB) supplemented with PEG-8000 at 10% final concentration, 0.25 U/μl RiboLock inhibitor (Thermo Fisher Scientific), 3 pmol of the 5′ FAM-labeled 44-mer oligonucleotide RNA44 (Future Synthesis) and 300 U T4 RNA ligase 2 truncated (NEB) for 18h at 18°C.

    Techniques: Ligation, Modification, Sequencing, Polymerase Chain Reaction, Purification, Nested PCR, Generated, Software

    ( A ) Schematic illustration of the formation of streptavidin–tRNA fusion using puromycin–tRNA, which contains a puromycin moiety in the place of 3′ terminal aminoacyl-adenosine and a four-base anticodon CCCG. The puromycin–tRNA binds to ribosomal A site and accepts a streptavidin polypeptide chain as an analog of aminoacyl-tRNA in response to a four-base CGGG codon at 3′ terminus of streptavidin mRNA in a cell-free translation. The resulting streptavidin–puromycin–tRNA may be translocated to the P-site. In this case, the next aminoacyl-tRNA binds to the vacant ribosomal A site, but can not accept the polypeptide chain because of the amide bond of puromycin–tRNA. The resulting streptavidin–tRNA fusion is released from the ribosome complex by the addition of EDTA. ( B ) Schematic illustration of the in vitro selection system of tRNAs. Step 1, a DNA pool encoding tRNAs containing a four-base anticodon CCCG is transcribed by T7 RNA polymerase to tRNA(-CA) pool. Step 2, the tRNA(-CA) pool is ligated with pdCp-Puromycin by T4 RNA ligase to generate puromycin–tRNA. Step 3, a streptavidin mRNA containing a four-base CGGG codon at C-terminus is translated in an E.coli cell-free translation system in the presence of the puromycin–tRNA. Puromycin–tRNAs that successfully decode the CGGG codon form ribosome–mRNA–streptavidin–tRNA complex. Step 4, the streptavidin–tRNA fusion is dissociated from the complex by the addition of EDTA. Step 5, the streptavidin–tRNA fusion is recovered with biotin-coated magnetic beads. Step 6, the streptavidin–tRNA fusion is dissociated from the beads, and then the tRNA moiety is subjected to RT–PCR. Step 7, the tRNA genes are regenerated by overlap-extension PCR with a T7 promoter primer, which are used as template DNAs in the next round of selection.

    Journal: Nucleic Acids Research

    Article Title: In vitro selection of tRNAs for efficient four-base decoding to incorporate non-natural amino acids into proteins in an Escherichia coli cell-free translation system

    doi: 10.1093/nar/gkl087

    Figure Lengend Snippet: ( A ) Schematic illustration of the formation of streptavidin–tRNA fusion using puromycin–tRNA, which contains a puromycin moiety in the place of 3′ terminal aminoacyl-adenosine and a four-base anticodon CCCG. The puromycin–tRNA binds to ribosomal A site and accepts a streptavidin polypeptide chain as an analog of aminoacyl-tRNA in response to a four-base CGGG codon at 3′ terminus of streptavidin mRNA in a cell-free translation. The resulting streptavidin–puromycin–tRNA may be translocated to the P-site. In this case, the next aminoacyl-tRNA binds to the vacant ribosomal A site, but can not accept the polypeptide chain because of the amide bond of puromycin–tRNA. The resulting streptavidin–tRNA fusion is released from the ribosome complex by the addition of EDTA. ( B ) Schematic illustration of the in vitro selection system of tRNAs. Step 1, a DNA pool encoding tRNAs containing a four-base anticodon CCCG is transcribed by T7 RNA polymerase to tRNA(-CA) pool. Step 2, the tRNA(-CA) pool is ligated with pdCp-Puromycin by T4 RNA ligase to generate puromycin–tRNA. Step 3, a streptavidin mRNA containing a four-base CGGG codon at C-terminus is translated in an E.coli cell-free translation system in the presence of the puromycin–tRNA. Puromycin–tRNAs that successfully decode the CGGG codon form ribosome–mRNA–streptavidin–tRNA complex. Step 4, the streptavidin–tRNA fusion is dissociated from the complex by the addition of EDTA. Step 5, the streptavidin–tRNA fusion is recovered with biotin-coated magnetic beads. Step 6, the streptavidin–tRNA fusion is dissociated from the beads, and then the tRNA moiety is subjected to RT–PCR. Step 7, the tRNA genes are regenerated by overlap-extension PCR with a T7 promoter primer, which are used as template DNAs in the next round of selection.

    Article Snippet: T4 RNA ligase, Bca BEST RNA PCR kit ver1.1, GelStar Nucleic Acid Stain and ribonuclease inhibitor were from TaKaRa BIO.

    Techniques: In Vitro, Selection, Magnetic Beads, Reverse Transcription Polymerase Chain Reaction, Polymerase Chain Reaction

    Gel electrophoresis pattern of mRNA-linker ligation. The ligation products reacted with or without prRT- DNA oligomer used as a blocker of the 3'-end of mRNA were electrophoresis on 8 M urea 8 % PAGE at 65 °C and were visualized with fluorescence of (A) SYBR Green II and (B) FITC. Lane M: DNA ladder, Lane Y: ligation product, Lane L-: negative control, reaction product without DNA-linker, Lane E-: negative control, reaction product without T4 RNA ligase. Mobility of the mRNA-linker and the self-ligation product of mRNA are shown to be equivalent.

    Journal: International Journal of Biological Sciences

    Article Title: An mRNA-protein Fusion at N-terminus for Evolutionary Protein Engineering

    doi:

    Figure Lengend Snippet: Gel electrophoresis pattern of mRNA-linker ligation. The ligation products reacted with or without prRT- DNA oligomer used as a blocker of the 3'-end of mRNA were electrophoresis on 8 M urea 8 % PAGE at 65 °C and were visualized with fluorescence of (A) SYBR Green II and (B) FITC. Lane M: DNA ladder, Lane Y: ligation product, Lane L-: negative control, reaction product without DNA-linker, Lane E-: negative control, reaction product without T4 RNA ligase. Mobility of the mRNA-linker and the self-ligation product of mRNA are shown to be equivalent.

    Article Snippet: Ligation between the mRNA and the hydrazide-linker The mRNA (2 µM) was hybridized to the DNA moiety of the hydrazide-linker (4 µM) and prRT- (4 µM) by heating at 95 °C and cooling to 25 °C in 50 µl of T4 RNA ligase buffer (Takara Bio) and ligation reaction was started by adding T4 RNA ligase (40 U, Takara Bio) and ribonuclease inhibitor (40 U, Takara Bio).

    Techniques: Nucleic Acid Electrophoresis, Ligation, Electrophoresis, Polyacrylamide Gel Electrophoresis, Fluorescence, SYBR Green Assay, Negative Control

    Screening cycle of the mRNA-protein fusion in this study. The dsDNA library is transcribed to mRNA. The mRNA is hybridized to the DNA moiety of the linker having hydrazide group and ligated with T4 RNA ligase. Hydrazide group of the ligated product and acetyl group of the phenylalanine derivative that is acylated to sup tRNA are ligated chemically and the modified mRNA is translated. The modified aminoacyl sup tRNA tends to occupy the A-site of ribosome at UAG codon inserted near downstream of initiation codon and the phenylalanine is incorporated into the growing peptide. Thus, linkage between N-terminus of the nascent peptide and 5'-terminus of its mRNA is achieved. Screening of mRNA-peptide fusion library according to property of the displayed peptide and amplify the genotype molecules of the screened fusions by RT-PCR.

    Journal: International Journal of Biological Sciences

    Article Title: An mRNA-protein Fusion at N-terminus for Evolutionary Protein Engineering

    doi:

    Figure Lengend Snippet: Screening cycle of the mRNA-protein fusion in this study. The dsDNA library is transcribed to mRNA. The mRNA is hybridized to the DNA moiety of the linker having hydrazide group and ligated with T4 RNA ligase. Hydrazide group of the ligated product and acetyl group of the phenylalanine derivative that is acylated to sup tRNA are ligated chemically and the modified mRNA is translated. The modified aminoacyl sup tRNA tends to occupy the A-site of ribosome at UAG codon inserted near downstream of initiation codon and the phenylalanine is incorporated into the growing peptide. Thus, linkage between N-terminus of the nascent peptide and 5'-terminus of its mRNA is achieved. Screening of mRNA-peptide fusion library according to property of the displayed peptide and amplify the genotype molecules of the screened fusions by RT-PCR.

    Article Snippet: Ligation between the mRNA and the hydrazide-linker The mRNA (2 µM) was hybridized to the DNA moiety of the hydrazide-linker (4 µM) and prRT- (4 µM) by heating at 95 °C and cooling to 25 °C in 50 µl of T4 RNA ligase buffer (Takara Bio) and ligation reaction was started by adding T4 RNA ligase (40 U, Takara Bio) and ribonuclease inhibitor (40 U, Takara Bio).

    Techniques: Modification, Reverse Transcription Polymerase Chain Reaction