t4 β-glucosyltransferase New England Biolabs Search Results


  • Logo
  • About
  • News
  • Press Release
  • Team
  • Advisors
  • Partners
  • Contact
  • Bioz Stars
  • Bioz vStars
  • 95
    New England Biolabs t4 phage beta glucosyltransferase
    Characterization of phage T4 DNA modification. (A) Phage T4(glc-HMC), T4(HMC), and T4(C) DNA left untreated (−) or treated with (+) restriction enzymes AluI (top), which cleaves unmodified DNA; MspJI (middle), which cleaves HMC-containing DNA; or T4 <t>glucosyltransferase</t> (bottom), which increases the mobility of HMC-containing DNA by the addition of glucose groups. The arrows indicate the mobility shift due to glucose attachment. (B) Analysis of phage T4 DNA modification by single-molecule sequencing. Results are summarized for each genome by mapping IPD ratios at each base for each of the T4 strains studied. The coloration of each base is shown by the key at the bottom left. The T4 nucleotide sequence runs from top to bottom for each of the four genomes. The distance each colored point is displaced from the center indicates the IPD ratio (scale at bottom; leftward for the reverse strand, rightward for the forward strand). Examples of interpulse distances (indicative of modification) are shown to the right for a short segment of the T4 genome. Bars indicate the magnitude of the IPD ratio (upward for the forward strand and downward for the reverse strand). A 5′ GATC 3′ site of DAM methylation is highlighted in yellow. (C) Violin plot showing IPD ratios of A residues at 5′ GATC 3′ sequences.
    T4 Phage Beta Glucosyltransferase, supplied by New England Biolabs, used in various techniques. Bioz Stars score: 95/100, based on 48 PubMed citations. ZERO BIAS - scores, article reviews, protocol conditions and more
    https://www.bioz.com/result/t4 phage beta glucosyltransferase/product/New England Biolabs
    Average 95 stars, based on 48 article reviews
    Price from $9.99 to $1999.99
    t4 phage beta glucosyltransferase - by Bioz Stars, 2020-02
    95/100 stars
      Buy from Supplier

    76
    New England Biolabs t4 β glucosyltransferase β gt
    Characterization of phage T4 DNA modification. (A) Phage T4(glc-HMC), T4(HMC), and T4(C) DNA left untreated (−) or treated with (+) restriction enzymes AluI (top), which cleaves unmodified DNA; MspJI (middle), which cleaves HMC-containing DNA; or T4 <t>glucosyltransferase</t> (bottom), which increases the mobility of HMC-containing DNA by the addition of glucose groups. The arrows indicate the mobility shift due to glucose attachment. (B) Analysis of phage T4 DNA modification by single-molecule sequencing. Results are summarized for each genome by mapping IPD ratios at each base for each of the T4 strains studied. The coloration of each base is shown by the key at the bottom left. The T4 nucleotide sequence runs from top to bottom for each of the four genomes. The distance each colored point is displaced from the center indicates the IPD ratio (scale at bottom; leftward for the reverse strand, rightward for the forward strand). Examples of interpulse distances (indicative of modification) are shown to the right for a short segment of the T4 genome. Bars indicate the magnitude of the IPD ratio (upward for the forward strand and downward for the reverse strand). A 5′ GATC 3′ site of DAM methylation is highlighted in yellow. (C) Violin plot showing IPD ratios of A residues at 5′ GATC 3′ sequences.
    T4 β Glucosyltransferase β Gt, supplied by New England Biolabs, used in various techniques. Bioz Stars score: 76/100, based on 1 PubMed citations. ZERO BIAS - scores, article reviews, protocol conditions and more
    https://www.bioz.com/result/t4 β glucosyltransferase β gt/product/New England Biolabs
    Average 76 stars, based on 1 article reviews
    Price from $9.99 to $1999.99
    t4 β glucosyltransferase β gt - by Bioz Stars, 2020-02
    76/100 stars
      Buy from Supplier

    79
    New England Biolabs t4 β glucosyltransferase βgt
    Characterization of phage T4 DNA modification. (A) Phage T4(glc-HMC), T4(HMC), and T4(C) DNA left untreated (−) or treated with (+) restriction enzymes AluI (top), which cleaves unmodified DNA; MspJI (middle), which cleaves HMC-containing DNA; or T4 <t>glucosyltransferase</t> (bottom), which increases the mobility of HMC-containing DNA by the addition of glucose groups. The arrows indicate the mobility shift due to glucose attachment. (B) Analysis of phage T4 DNA modification by single-molecule sequencing. Results are summarized for each genome by mapping IPD ratios at each base for each of the T4 strains studied. The coloration of each base is shown by the key at the bottom left. The T4 nucleotide sequence runs from top to bottom for each of the four genomes. The distance each colored point is displaced from the center indicates the IPD ratio (scale at bottom; leftward for the reverse strand, rightward for the forward strand). Examples of interpulse distances (indicative of modification) are shown to the right for a short segment of the T4 genome. Bars indicate the magnitude of the IPD ratio (upward for the forward strand and downward for the reverse strand). A 5′ GATC 3′ site of DAM methylation is highlighted in yellow. (C) Violin plot showing IPD ratios of A residues at 5′ GATC 3′ sequences.
    T4 β Glucosyltransferase βgt, supplied by New England Biolabs, used in various techniques. Bioz Stars score: 79/100, based on 6 PubMed citations. ZERO BIAS - scores, article reviews, protocol conditions and more
    https://www.bioz.com/result/t4 β glucosyltransferase βgt/product/New England Biolabs
    Average 79 stars, based on 6 article reviews
    Price from $9.99 to $1999.99
    t4 β glucosyltransferase βgt - by Bioz Stars, 2020-02
    79/100 stars
      Buy from Supplier

    88
    New England Biolabs t4 β glucosyltransferase t4 bgt
    Characterization of phage T4 DNA modification. (A) Phage T4(glc-HMC), T4(HMC), and T4(C) DNA left untreated (−) or treated with (+) restriction enzymes AluI (top), which cleaves unmodified DNA; MspJI (middle), which cleaves HMC-containing DNA; or T4 <t>glucosyltransferase</t> (bottom), which increases the mobility of HMC-containing DNA by the addition of glucose groups. The arrows indicate the mobility shift due to glucose attachment. (B) Analysis of phage T4 DNA modification by single-molecule sequencing. Results are summarized for each genome by mapping IPD ratios at each base for each of the T4 strains studied. The coloration of each base is shown by the key at the bottom left. The T4 nucleotide sequence runs from top to bottom for each of the four genomes. The distance each colored point is displaced from the center indicates the IPD ratio (scale at bottom; leftward for the reverse strand, rightward for the forward strand). Examples of interpulse distances (indicative of modification) are shown to the right for a short segment of the T4 genome. Bars indicate the magnitude of the IPD ratio (upward for the forward strand and downward for the reverse strand). A 5′ GATC 3′ site of DAM methylation is highlighted in yellow. (C) Violin plot showing IPD ratios of A residues at 5′ GATC 3′ sequences.
    T4 β Glucosyltransferase T4 Bgt, supplied by New England Biolabs, used in various techniques. Bioz Stars score: 88/100, based on 12 PubMed citations. ZERO BIAS - scores, article reviews, protocol conditions and more
    https://www.bioz.com/result/t4 β glucosyltransferase t4 bgt/product/New England Biolabs
    Average 88 stars, based on 12 article reviews
    Price from $9.99 to $1999.99
    t4 β glucosyltransferase t4 bgt - by Bioz Stars, 2020-02
    88/100 stars
      Buy from Supplier

    Image Search Results


    Characterization of phage T4 DNA modification. (A) Phage T4(glc-HMC), T4(HMC), and T4(C) DNA left untreated (−) or treated with (+) restriction enzymes AluI (top), which cleaves unmodified DNA; MspJI (middle), which cleaves HMC-containing DNA; or T4 glucosyltransferase (bottom), which increases the mobility of HMC-containing DNA by the addition of glucose groups. The arrows indicate the mobility shift due to glucose attachment. (B) Analysis of phage T4 DNA modification by single-molecule sequencing. Results are summarized for each genome by mapping IPD ratios at each base for each of the T4 strains studied. The coloration of each base is shown by the key at the bottom left. The T4 nucleotide sequence runs from top to bottom for each of the four genomes. The distance each colored point is displaced from the center indicates the IPD ratio (scale at bottom; leftward for the reverse strand, rightward for the forward strand). Examples of interpulse distances (indicative of modification) are shown to the right for a short segment of the T4 genome. Bars indicate the magnitude of the IPD ratio (upward for the forward strand and downward for the reverse strand). A 5′ GATC 3′ site of DAM methylation is highlighted in yellow. (C) Violin plot showing IPD ratios of A residues at 5′ GATC 3′ sequences.

    Journal: mBio

    Article Title: Covalent Modification of Bacteriophage T4 DNA Inhibits CRISPR-Cas9

    doi: 10.1128/mBio.00648-15

    Figure Lengend Snippet: Characterization of phage T4 DNA modification. (A) Phage T4(glc-HMC), T4(HMC), and T4(C) DNA left untreated (−) or treated with (+) restriction enzymes AluI (top), which cleaves unmodified DNA; MspJI (middle), which cleaves HMC-containing DNA; or T4 glucosyltransferase (bottom), which increases the mobility of HMC-containing DNA by the addition of glucose groups. The arrows indicate the mobility shift due to glucose attachment. (B) Analysis of phage T4 DNA modification by single-molecule sequencing. Results are summarized for each genome by mapping IPD ratios at each base for each of the T4 strains studied. The coloration of each base is shown by the key at the bottom left. The T4 nucleotide sequence runs from top to bottom for each of the four genomes. The distance each colored point is displaced from the center indicates the IPD ratio (scale at bottom; leftward for the reverse strand, rightward for the forward strand). Examples of interpulse distances (indicative of modification) are shown to the right for a short segment of the T4 genome. Bars indicate the magnitude of the IPD ratio (upward for the forward strand and downward for the reverse strand). A 5′ GATC 3′ site of DAM methylation is highlighted in yellow. (C) Violin plot showing IPD ratios of A residues at 5′ GATC 3′ sequences.

    Article Snippet: One microgram of T4(C), T4(HMC), or T4(glc-HMC) was digested with AluI (R0137s; NEB), MspJI (R0661S; NEB), or T4 phage β-glucosyltransferase (M0357S; NEB) in accordance with NEB-specified protocols.

    Techniques: Modification, Mobility Shift, Sequencing, Methylation