superase-in rnase inhibitor New England Biolabs Search Results


  • Logo
  • About
  • News
  • Press Release
  • Team
  • Advisors
  • Partners
  • Contact
  • Bioz Stars
  • Bioz vStars
  • 99
    New England Biolabs t4 pnk
    T4 Pnk, supplied by New England Biolabs, used in various techniques. Bioz Stars score: 99/100, based on 4199 PubMed citations. ZERO BIAS - scores, article reviews, protocol conditions and more
    https://www.bioz.com/result/t4 pnk/product/New England Biolabs
    Average 99 stars, based on 4199 article reviews
    Price from $9.99 to $1999.99
    t4 pnk - by Bioz Stars, 2020-09
    99/100 stars
      Buy from Supplier

    99
    Thermo Fisher rnase inhibitor
    Rnase Inhibitor, supplied by Thermo Fisher, used in various techniques. Bioz Stars score: 99/100, based on 23270 PubMed citations. ZERO BIAS - scores, article reviews, protocol conditions and more
    https://www.bioz.com/result/rnase inhibitor/product/Thermo Fisher
    Average 99 stars, based on 23270 article reviews
    Price from $9.99 to $1999.99
    rnase inhibitor - by Bioz Stars, 2020-09
    99/100 stars
      Buy from Supplier

    99
    Thermo Fisher superase• in rnase inhibitor
    Superase• In Rnase Inhibitor, supplied by Thermo Fisher, used in various techniques. Bioz Stars score: 99/100, based on 1031 PubMed citations. ZERO BIAS - scores, article reviews, protocol conditions and more
    https://www.bioz.com/result/superase• in rnase inhibitor/product/Thermo Fisher
    Average 99 stars, based on 1031 article reviews
    Price from $9.99 to $1999.99
    superase• in rnase inhibitor - by Bioz Stars, 2020-09
    99/100 stars
      Buy from Supplier

    99
    Thermo Fisher dtt
    Dtt, supplied by Thermo Fisher, used in various techniques. Bioz Stars score: 99/100, based on 31034 PubMed citations. ZERO BIAS - scores, article reviews, protocol conditions and more
    https://www.bioz.com/result/dtt/product/Thermo Fisher
    Average 99 stars, based on 31034 article reviews
    Price from $9.99 to $1999.99
    dtt - by Bioz Stars, 2020-09
    99/100 stars
      Buy from Supplier

    99
    New England Biolabs t4 rna ligase 2
    T4 Rna Ligase 2, supplied by New England Biolabs, used in various techniques. Bioz Stars score: 99/100, based on 2023 PubMed citations. ZERO BIAS - scores, article reviews, protocol conditions and more
    https://www.bioz.com/result/t4 rna ligase 2/product/New England Biolabs
    Average 99 stars, based on 2023 article reviews
    Price from $9.99 to $1999.99
    t4 rna ligase 2 - by Bioz Stars, 2020-09
    99/100 stars
      Buy from Supplier

    99
    New England Biolabs dna polymerase
    Dna Polymerase, supplied by New England Biolabs, used in various techniques. Bioz Stars score: 99/100, based on 4972 PubMed citations. ZERO BIAS - scores, article reviews, protocol conditions and more
    https://www.bioz.com/result/dna polymerase/product/New England Biolabs
    Average 99 stars, based on 4972 article reviews
    Price from $9.99 to $1999.99
    dna polymerase - by Bioz Stars, 2020-09
    99/100 stars
      Buy from Supplier

    99
    New England Biolabs antarctic phosphatase
    Antarctic Phosphatase, supplied by New England Biolabs, used in various techniques. Bioz Stars score: 99/100, based on 6925 PubMed citations. ZERO BIAS - scores, article reviews, protocol conditions and more
    https://www.bioz.com/result/antarctic phosphatase/product/New England Biolabs
    Average 99 stars, based on 6925 article reviews
    Price from $9.99 to $1999.99
    antarctic phosphatase - by Bioz Stars, 2020-09
    99/100 stars
      Buy from Supplier

    99
    New England Biolabs rnase h
    NEAT1 forms triplexes at numerous genomic sites. ( A ) NEAT1 profiles in TriplexRNA-seq (DNA-IP) (red) and nuclear RNA (blue) from HeLa S3 and U2OS cells with shaded TFR1 and TFR2. Minus (-) and plus (+) strands are shown. The position and sequence of NEAT1-TFR1 and -TFR2 are shown below. ( B ) EMSAs using 10 or 100 pmol of synthetic NEAT1 versions comprising TFR1 (40 or 52 nt) or TFR2 incubated with 0.25 pmol of double–stranded  32 P-labeled oligonucleotides which harbor sequences of NEAT1 target genes predicted from CHART-seq (  Supplementary Table S2 ). Reactions marked with an asterisk (*) were treated with 0.5 U RNase H. As a control, RNA without a putative TFR was used. Potential Hoogsteen base pairing between motifs and respective TFR sequences are shown; mismatches are marked (*). ( C ) Schematic depiction of the TFR-based capture assay. Biotinylated RNA oligos covering NEAT1-TFR1 and NEAT1-TFR2 were used to capture genomic DNA. ( D ) MEME motif analysis identifying consensus motifs in DNA captured by NEAT1-TFR1 (399 of top 500 peaks) and by NEAT1-TFR2 (500 of top 500 peaks ranked by peak  P -value). Potential Hoogsteen base pairing between motifs and respective TFR sequences are shown; mismatches are marked (*). ( E ) TDF analysis of the triplex-forming potential of NEAT1-TFR1 and NEAT1-TFR2 RNAs with top 500 TFR-associated and control DNA peaks (ranked by peak  P -value) compared to 500 randomized regions ( N  = 1000, colored grey).  P -values were obtained from one-tailed Mann–Whitney test. ( F ) Scheme presenting antisense oligo (ASO)-based capture of NEAT1-associated DNA. ( G ) Consensus motif in NEAT1-associated DNA sites (314 of top 500 peaks ranked by peak  P -value). ( H ) TDF analysis predicting the triplex-forming potential of NEAT1 on ASO-captured DNA regions. Significant TFRs along NEAT1 are shown in orange, the number of target sites (DBS) for each TFR in purple. For TFR- and ASO-based capture assays nucleic acids isolated from HeLa S3 chromatin were used.
    Rnase H, supplied by New England Biolabs, used in various techniques. Bioz Stars score: 99/100, based on 4235 PubMed citations. ZERO BIAS - scores, article reviews, protocol conditions and more
    https://www.bioz.com/result/rnase h/product/New England Biolabs
    Average 99 stars, based on 4235 article reviews
    Price from $9.99 to $1999.99
    rnase h - by Bioz Stars, 2020-09
    99/100 stars
      Buy from Supplier

    99
    New England Biolabs rnase inhibitor
    NEAT1 forms triplexes at numerous genomic sites. ( A ) NEAT1 profiles in TriplexRNA-seq (DNA-IP) (red) and nuclear RNA (blue) from HeLa S3 and U2OS cells with shaded TFR1 and TFR2. Minus (-) and plus (+) strands are shown. The position and sequence of NEAT1-TFR1 and -TFR2 are shown below. ( B ) EMSAs using 10 or 100 pmol of synthetic NEAT1 versions comprising TFR1 (40 or 52 nt) or TFR2 incubated with 0.25 pmol of double–stranded  32 P-labeled oligonucleotides which harbor sequences of NEAT1 target genes predicted from CHART-seq (  Supplementary Table S2 ). Reactions marked with an asterisk (*) were treated with 0.5 U RNase H. As a control, RNA without a putative TFR was used. Potential Hoogsteen base pairing between motifs and respective TFR sequences are shown; mismatches are marked (*). ( C ) Schematic depiction of the TFR-based capture assay. Biotinylated RNA oligos covering NEAT1-TFR1 and NEAT1-TFR2 were used to capture genomic DNA. ( D ) MEME motif analysis identifying consensus motifs in DNA captured by NEAT1-TFR1 (399 of top 500 peaks) and by NEAT1-TFR2 (500 of top 500 peaks ranked by peak  P -value). Potential Hoogsteen base pairing between motifs and respective TFR sequences are shown; mismatches are marked (*). ( E ) TDF analysis of the triplex-forming potential of NEAT1-TFR1 and NEAT1-TFR2 RNAs with top 500 TFR-associated and control DNA peaks (ranked by peak  P -value) compared to 500 randomized regions ( N  = 1000, colored grey).  P -values were obtained from one-tailed Mann–Whitney test. ( F ) Scheme presenting antisense oligo (ASO)-based capture of NEAT1-associated DNA. ( G ) Consensus motif in NEAT1-associated DNA sites (314 of top 500 peaks ranked by peak  P -value). ( H ) TDF analysis predicting the triplex-forming potential of NEAT1 on ASO-captured DNA regions. Significant TFRs along NEAT1 are shown in orange, the number of target sites (DBS) for each TFR in purple. For TFR- and ASO-based capture assays nucleic acids isolated from HeLa S3 chromatin were used.
    Rnase Inhibitor, supplied by New England Biolabs, used in various techniques. Bioz Stars score: 99/100, based on 2182 PubMed citations. ZERO BIAS - scores, article reviews, protocol conditions and more
    https://www.bioz.com/result/rnase inhibitor/product/New England Biolabs
    Average 99 stars, based on 2182 article reviews
    Price from $9.99 to $1999.99
    rnase inhibitor - by Bioz Stars, 2020-09
    99/100 stars
      Buy from Supplier

    99
    New England Biolabs dnase i
    NEAT1 forms triplexes at numerous genomic sites. ( A ) NEAT1 profiles in TriplexRNA-seq (DNA-IP) (red) and nuclear RNA (blue) from HeLa S3 and U2OS cells with shaded TFR1 and TFR2. Minus (-) and plus (+) strands are shown. The position and sequence of NEAT1-TFR1 and -TFR2 are shown below. ( B ) EMSAs using 10 or 100 pmol of synthetic NEAT1 versions comprising TFR1 (40 or 52 nt) or TFR2 incubated with 0.25 pmol of double–stranded  32 P-labeled oligonucleotides which harbor sequences of NEAT1 target genes predicted from CHART-seq (  Supplementary Table S2 ). Reactions marked with an asterisk (*) were treated with 0.5 U RNase H. As a control, RNA without a putative TFR was used. Potential Hoogsteen base pairing between motifs and respective TFR sequences are shown; mismatches are marked (*). ( C ) Schematic depiction of the TFR-based capture assay. Biotinylated RNA oligos covering NEAT1-TFR1 and NEAT1-TFR2 were used to capture genomic DNA. ( D ) MEME motif analysis identifying consensus motifs in DNA captured by NEAT1-TFR1 (399 of top 500 peaks) and by NEAT1-TFR2 (500 of top 500 peaks ranked by peak  P -value). Potential Hoogsteen base pairing between motifs and respective TFR sequences are shown; mismatches are marked (*). ( E ) TDF analysis of the triplex-forming potential of NEAT1-TFR1 and NEAT1-TFR2 RNAs with top 500 TFR-associated and control DNA peaks (ranked by peak  P -value) compared to 500 randomized regions ( N  = 1000, colored grey).  P -values were obtained from one-tailed Mann–Whitney test. ( F ) Scheme presenting antisense oligo (ASO)-based capture of NEAT1-associated DNA. ( G ) Consensus motif in NEAT1-associated DNA sites (314 of top 500 peaks ranked by peak  P -value). ( H ) TDF analysis predicting the triplex-forming potential of NEAT1 on ASO-captured DNA regions. Significant TFRs along NEAT1 are shown in orange, the number of target sites (DBS) for each TFR in purple. For TFR- and ASO-based capture assays nucleic acids isolated from HeLa S3 chromatin were used.
    Dnase I, supplied by New England Biolabs, used in various techniques. Bioz Stars score: 99/100, based on 8697 PubMed citations. ZERO BIAS - scores, article reviews, protocol conditions and more
    https://www.bioz.com/result/dnase i/product/New England Biolabs
    Average 99 stars, based on 8697 article reviews
    Price from $9.99 to $1999.99
    dnase i - by Bioz Stars, 2020-09
    99/100 stars
      Buy from Supplier

    99
    Thermo Fisher hepes koh
    NEAT1 forms triplexes at numerous genomic sites. ( A ) NEAT1 profiles in TriplexRNA-seq (DNA-IP) (red) and nuclear RNA (blue) from HeLa S3 and U2OS cells with shaded TFR1 and TFR2. Minus (-) and plus (+) strands are shown. The position and sequence of NEAT1-TFR1 and -TFR2 are shown below. ( B ) EMSAs using 10 or 100 pmol of synthetic NEAT1 versions comprising TFR1 (40 or 52 nt) or TFR2 incubated with 0.25 pmol of double–stranded  32 P-labeled oligonucleotides which harbor sequences of NEAT1 target genes predicted from CHART-seq (  Supplementary Table S2 ). Reactions marked with an asterisk (*) were treated with 0.5 U RNase H. As a control, RNA without a putative TFR was used. Potential Hoogsteen base pairing between motifs and respective TFR sequences are shown; mismatches are marked (*). ( C ) Schematic depiction of the TFR-based capture assay. Biotinylated RNA oligos covering NEAT1-TFR1 and NEAT1-TFR2 were used to capture genomic DNA. ( D ) MEME motif analysis identifying consensus motifs in DNA captured by NEAT1-TFR1 (399 of top 500 peaks) and by NEAT1-TFR2 (500 of top 500 peaks ranked by peak  P -value). Potential Hoogsteen base pairing between motifs and respective TFR sequences are shown; mismatches are marked (*). ( E ) TDF analysis of the triplex-forming potential of NEAT1-TFR1 and NEAT1-TFR2 RNAs with top 500 TFR-associated and control DNA peaks (ranked by peak  P -value) compared to 500 randomized regions ( N  = 1000, colored grey).  P -values were obtained from one-tailed Mann–Whitney test. ( F ) Scheme presenting antisense oligo (ASO)-based capture of NEAT1-associated DNA. ( G ) Consensus motif in NEAT1-associated DNA sites (314 of top 500 peaks ranked by peak  P -value). ( H ) TDF analysis predicting the triplex-forming potential of NEAT1 on ASO-captured DNA regions. Significant TFRs along NEAT1 are shown in orange, the number of target sites (DBS) for each TFR in purple. For TFR- and ASO-based capture assays nucleic acids isolated from HeLa S3 chromatin were used.
    Hepes Koh, supplied by Thermo Fisher, used in various techniques. Bioz Stars score: 99/100, based on 452 PubMed citations. ZERO BIAS - scores, article reviews, protocol conditions and more
    https://www.bioz.com/result/hepes koh/product/Thermo Fisher
    Average 99 stars, based on 452 article reviews
    Price from $9.99 to $1999.99
    hepes koh - by Bioz Stars, 2020-09
    99/100 stars
      Buy from Supplier

    99
    Thermo Fisher protein a dynabeads
    NEAT1 forms triplexes at numerous genomic sites. ( A ) NEAT1 profiles in TriplexRNA-seq (DNA-IP) (red) and nuclear RNA (blue) from HeLa S3 and U2OS cells with shaded TFR1 and TFR2. Minus (-) and plus (+) strands are shown. The position and sequence of NEAT1-TFR1 and -TFR2 are shown below. ( B ) EMSAs using 10 or 100 pmol of synthetic NEAT1 versions comprising TFR1 (40 or 52 nt) or TFR2 incubated with 0.25 pmol of double–stranded  32 P-labeled oligonucleotides which harbor sequences of NEAT1 target genes predicted from CHART-seq (  Supplementary Table S2 ). Reactions marked with an asterisk (*) were treated with 0.5 U RNase H. As a control, RNA without a putative TFR was used. Potential Hoogsteen base pairing between motifs and respective TFR sequences are shown; mismatches are marked (*). ( C ) Schematic depiction of the TFR-based capture assay. Biotinylated RNA oligos covering NEAT1-TFR1 and NEAT1-TFR2 were used to capture genomic DNA. ( D ) MEME motif analysis identifying consensus motifs in DNA captured by NEAT1-TFR1 (399 of top 500 peaks) and by NEAT1-TFR2 (500 of top 500 peaks ranked by peak  P -value). Potential Hoogsteen base pairing between motifs and respective TFR sequences are shown; mismatches are marked (*). ( E ) TDF analysis of the triplex-forming potential of NEAT1-TFR1 and NEAT1-TFR2 RNAs with top 500 TFR-associated and control DNA peaks (ranked by peak  P -value) compared to 500 randomized regions ( N  = 1000, colored grey).  P -values were obtained from one-tailed Mann–Whitney test. ( F ) Scheme presenting antisense oligo (ASO)-based capture of NEAT1-associated DNA. ( G ) Consensus motif in NEAT1-associated DNA sites (314 of top 500 peaks ranked by peak  P -value). ( H ) TDF analysis predicting the triplex-forming potential of NEAT1 on ASO-captured DNA regions. Significant TFRs along NEAT1 are shown in orange, the number of target sites (DBS) for each TFR in purple. For TFR- and ASO-based capture assays nucleic acids isolated from HeLa S3 chromatin were used.
    Protein A Dynabeads, supplied by Thermo Fisher, used in various techniques. Bioz Stars score: 99/100, based on 1784 PubMed citations. ZERO BIAS - scores, article reviews, protocol conditions and more
    https://www.bioz.com/result/protein a dynabeads/product/Thermo Fisher
    Average 99 stars, based on 1784 article reviews
    Price from $9.99 to $1999.99
    protein a dynabeads - by Bioz Stars, 2020-09
    99/100 stars
      Buy from Supplier

    99
    Thermo Fisher mgcl2
    NEAT1 forms triplexes at numerous genomic sites. ( A ) NEAT1 profiles in TriplexRNA-seq (DNA-IP) (red) and nuclear RNA (blue) from HeLa S3 and U2OS cells with shaded TFR1 and TFR2. Minus (-) and plus (+) strands are shown. The position and sequence of NEAT1-TFR1 and -TFR2 are shown below. ( B ) EMSAs using 10 or 100 pmol of synthetic NEAT1 versions comprising TFR1 (40 or 52 nt) or TFR2 incubated with 0.25 pmol of double–stranded  32 P-labeled oligonucleotides which harbor sequences of NEAT1 target genes predicted from CHART-seq (  Supplementary Table S2 ). Reactions marked with an asterisk (*) were treated with 0.5 U RNase H. As a control, RNA without a putative TFR was used. Potential Hoogsteen base pairing between motifs and respective TFR sequences are shown; mismatches are marked (*). ( C ) Schematic depiction of the TFR-based capture assay. Biotinylated RNA oligos covering NEAT1-TFR1 and NEAT1-TFR2 were used to capture genomic DNA. ( D ) MEME motif analysis identifying consensus motifs in DNA captured by NEAT1-TFR1 (399 of top 500 peaks) and by NEAT1-TFR2 (500 of top 500 peaks ranked by peak  P -value). Potential Hoogsteen base pairing between motifs and respective TFR sequences are shown; mismatches are marked (*). ( E ) TDF analysis of the triplex-forming potential of NEAT1-TFR1 and NEAT1-TFR2 RNAs with top 500 TFR-associated and control DNA peaks (ranked by peak  P -value) compared to 500 randomized regions ( N  = 1000, colored grey).  P -values were obtained from one-tailed Mann–Whitney test. ( F ) Scheme presenting antisense oligo (ASO)-based capture of NEAT1-associated DNA. ( G ) Consensus motif in NEAT1-associated DNA sites (314 of top 500 peaks ranked by peak  P -value). ( H ) TDF analysis predicting the triplex-forming potential of NEAT1 on ASO-captured DNA regions. Significant TFRs along NEAT1 are shown in orange, the number of target sites (DBS) for each TFR in purple. For TFR- and ASO-based capture assays nucleic acids isolated from HeLa S3 chromatin were used.
    Mgcl2, supplied by Thermo Fisher, used in various techniques. Bioz Stars score: 99/100, based on 104037 PubMed citations. ZERO BIAS - scores, article reviews, protocol conditions and more
    https://www.bioz.com/result/mgcl2/product/Thermo Fisher
    Average 99 stars, based on 104037 article reviews
    Price from $9.99 to $1999.99
    mgcl2 - by Bioz Stars, 2020-09
    99/100 stars
      Buy from Supplier

    99
    New England Biolabs proteinase k
    Schematic representation of yeast  in vivo  RNA–protein Ni 2+ -pull down (RaP-NiP) assay using formaldehyde crosslinking. The basic scheme of the RaP-NiP is described in the form of a flowchart. Green and red balls represent 40S ribosomes and eIF3 complexes, respectively, grey balls stand for the Ni 2+  beads, and purple and blue balls depict some non-specific RNA binding proteins. Exponentially growing yeast cells were crosslinked with 1% formaldehyde. Crosslinking was stopped by adding glycine and the fixed cells were lysed using glass beads by rigorous vortexing. Pre-cleared whole cell extract (WCE) containing RaP-NiP mRNAs in protein-RNA complexes were selectively digested with RNase H using sequence specific custom-made oligos. The resulting specific mRNA segments were purified with the help of the His-tagged a/TIF32 subunit of yeast eIF3 or its mutant variants using the Ni-NTA sepharose beads. Thus isolated protein-RNA complexes were subsequently treated with Proteinase K, and the captured RNAs were further purified by hot phenol extraction, reverse transcribed and their amounts were then quantified by qRT-PCR. The schematic boxed on the right-hand side illustrates typical amounts of RNAse H digested RNA segments of REI-permissive uORF1 and REI-non-permissive uORF4 from the  GCN4  mRNA leader co-purifying with eIF3, the typical ratio of which is ∼4:1.
    Proteinase K, supplied by New England Biolabs, used in various techniques. Bioz Stars score: 99/100, based on 4094 PubMed citations. ZERO BIAS - scores, article reviews, protocol conditions and more
    https://www.bioz.com/result/proteinase k/product/New England Biolabs
    Average 99 stars, based on 4094 article reviews
    Price from $9.99 to $1999.99
    proteinase k - by Bioz Stars, 2020-09
    99/100 stars
      Buy from Supplier

    99
    New England Biolabs nuclease free water
    Schematic representation of yeast  in vivo  RNA–protein Ni 2+ -pull down (RaP-NiP) assay using formaldehyde crosslinking. The basic scheme of the RaP-NiP is described in the form of a flowchart. Green and red balls represent 40S ribosomes and eIF3 complexes, respectively, grey balls stand for the Ni 2+  beads, and purple and blue balls depict some non-specific RNA binding proteins. Exponentially growing yeast cells were crosslinked with 1% formaldehyde. Crosslinking was stopped by adding glycine and the fixed cells were lysed using glass beads by rigorous vortexing. Pre-cleared whole cell extract (WCE) containing RaP-NiP mRNAs in protein-RNA complexes were selectively digested with RNase H using sequence specific custom-made oligos. The resulting specific mRNA segments were purified with the help of the His-tagged a/TIF32 subunit of yeast eIF3 or its mutant variants using the Ni-NTA sepharose beads. Thus isolated protein-RNA complexes were subsequently treated with Proteinase K, and the captured RNAs were further purified by hot phenol extraction, reverse transcribed and their amounts were then quantified by qRT-PCR. The schematic boxed on the right-hand side illustrates typical amounts of RNAse H digested RNA segments of REI-permissive uORF1 and REI-non-permissive uORF4 from the  GCN4  mRNA leader co-purifying with eIF3, the typical ratio of which is ∼4:1.
    Nuclease Free Water, supplied by New England Biolabs, used in various techniques. Bioz Stars score: 99/100, based on 1067 PubMed citations. ZERO BIAS - scores, article reviews, protocol conditions and more
    https://www.bioz.com/result/nuclease free water/product/New England Biolabs
    Average 99 stars, based on 1067 article reviews
    Price from $9.99 to $1999.99
    nuclease free water - by Bioz Stars, 2020-09
    99/100 stars
      Buy from Supplier

    99
    Thermo Fisher nuclease free water
    Schematic representation of yeast  in vivo  RNA–protein Ni 2+ -pull down (RaP-NiP) assay using formaldehyde crosslinking. The basic scheme of the RaP-NiP is described in the form of a flowchart. Green and red balls represent 40S ribosomes and eIF3 complexes, respectively, grey balls stand for the Ni 2+  beads, and purple and blue balls depict some non-specific RNA binding proteins. Exponentially growing yeast cells were crosslinked with 1% formaldehyde. Crosslinking was stopped by adding glycine and the fixed cells were lysed using glass beads by rigorous vortexing. Pre-cleared whole cell extract (WCE) containing RaP-NiP mRNAs in protein-RNA complexes were selectively digested with RNase H using sequence specific custom-made oligos. The resulting specific mRNA segments were purified with the help of the His-tagged a/TIF32 subunit of yeast eIF3 or its mutant variants using the Ni-NTA sepharose beads. Thus isolated protein-RNA complexes were subsequently treated with Proteinase K, and the captured RNAs were further purified by hot phenol extraction, reverse transcribed and their amounts were then quantified by qRT-PCR. The schematic boxed on the right-hand side illustrates typical amounts of RNAse H digested RNA segments of REI-permissive uORF1 and REI-non-permissive uORF4 from the  GCN4  mRNA leader co-purifying with eIF3, the typical ratio of which is ∼4:1.
    Nuclease Free Water, supplied by Thermo Fisher, used in various techniques. Bioz Stars score: 99/100, based on 19264 PubMed citations. ZERO BIAS - scores, article reviews, protocol conditions and more
    https://www.bioz.com/result/nuclease free water/product/Thermo Fisher
    Average 99 stars, based on 19264 article reviews
    Price from $9.99 to $1999.99
    nuclease free water - by Bioz Stars, 2020-09
    99/100 stars
      Buy from Supplier

    99
    New England Biolabs t4 rna ligase buffer
    Schematic representation of yeast  in vivo  RNA–protein Ni 2+ -pull down (RaP-NiP) assay using formaldehyde crosslinking. The basic scheme of the RaP-NiP is described in the form of a flowchart. Green and red balls represent 40S ribosomes and eIF3 complexes, respectively, grey balls stand for the Ni 2+  beads, and purple and blue balls depict some non-specific RNA binding proteins. Exponentially growing yeast cells were crosslinked with 1% formaldehyde. Crosslinking was stopped by adding glycine and the fixed cells were lysed using glass beads by rigorous vortexing. Pre-cleared whole cell extract (WCE) containing RaP-NiP mRNAs in protein-RNA complexes were selectively digested with RNase H using sequence specific custom-made oligos. The resulting specific mRNA segments were purified with the help of the His-tagged a/TIF32 subunit of yeast eIF3 or its mutant variants using the Ni-NTA sepharose beads. Thus isolated protein-RNA complexes were subsequently treated with Proteinase K, and the captured RNAs were further purified by hot phenol extraction, reverse transcribed and their amounts were then quantified by qRT-PCR. The schematic boxed on the right-hand side illustrates typical amounts of RNAse H digested RNA segments of REI-permissive uORF1 and REI-non-permissive uORF4 from the  GCN4  mRNA leader co-purifying with eIF3, the typical ratio of which is ∼4:1.
    T4 Rna Ligase Buffer, supplied by New England Biolabs, used in various techniques. Bioz Stars score: 99/100, based on 462 PubMed citations. ZERO BIAS - scores, article reviews, protocol conditions and more
    https://www.bioz.com/result/t4 rna ligase buffer/product/New England Biolabs
    Average 99 stars, based on 462 article reviews
    Price from $9.99 to $1999.99
    t4 rna ligase buffer - by Bioz Stars, 2020-09
    99/100 stars
      Buy from Supplier

    89
    Agilent technologies accuscript high fidelity reverse transcriptase
    Schematic representation of yeast  in vivo  RNA–protein Ni 2+ -pull down (RaP-NiP) assay using formaldehyde crosslinking. The basic scheme of the RaP-NiP is described in the form of a flowchart. Green and red balls represent 40S ribosomes and eIF3 complexes, respectively, grey balls stand for the Ni 2+  beads, and purple and blue balls depict some non-specific RNA binding proteins. Exponentially growing yeast cells were crosslinked with 1% formaldehyde. Crosslinking was stopped by adding glycine and the fixed cells were lysed using glass beads by rigorous vortexing. Pre-cleared whole cell extract (WCE) containing RaP-NiP mRNAs in protein-RNA complexes were selectively digested with RNase H using sequence specific custom-made oligos. The resulting specific mRNA segments were purified with the help of the His-tagged a/TIF32 subunit of yeast eIF3 or its mutant variants using the Ni-NTA sepharose beads. Thus isolated protein-RNA complexes were subsequently treated with Proteinase K, and the captured RNAs were further purified by hot phenol extraction, reverse transcribed and their amounts were then quantified by qRT-PCR. The schematic boxed on the right-hand side illustrates typical amounts of RNAse H digested RNA segments of REI-permissive uORF1 and REI-non-permissive uORF4 from the  GCN4  mRNA leader co-purifying with eIF3, the typical ratio of which is ∼4:1.
    Accuscript High Fidelity Reverse Transcriptase, supplied by Agilent technologies, used in various techniques. Bioz Stars score: 89/100, based on 185 PubMed citations. ZERO BIAS - scores, article reviews, protocol conditions and more
    https://www.bioz.com/result/accuscript high fidelity reverse transcriptase/product/Agilent technologies
    Average 89 stars, based on 185 article reviews
    Price from $9.99 to $1999.99
    accuscript high fidelity reverse transcriptase - by Bioz Stars, 2020-09
    89/100 stars
      Buy from Supplier

    99
    New England Biolabs t4 rna ligase 1
    Schematic representation of yeast  in vivo  RNA–protein Ni 2+ -pull down (RaP-NiP) assay using formaldehyde crosslinking. The basic scheme of the RaP-NiP is described in the form of a flowchart. Green and red balls represent 40S ribosomes and eIF3 complexes, respectively, grey balls stand for the Ni 2+  beads, and purple and blue balls depict some non-specific RNA binding proteins. Exponentially growing yeast cells were crosslinked with 1% formaldehyde. Crosslinking was stopped by adding glycine and the fixed cells were lysed using glass beads by rigorous vortexing. Pre-cleared whole cell extract (WCE) containing RaP-NiP mRNAs in protein-RNA complexes were selectively digested with RNase H using sequence specific custom-made oligos. The resulting specific mRNA segments were purified with the help of the His-tagged a/TIF32 subunit of yeast eIF3 or its mutant variants using the Ni-NTA sepharose beads. Thus isolated protein-RNA complexes were subsequently treated with Proteinase K, and the captured RNAs were further purified by hot phenol extraction, reverse transcribed and their amounts were then quantified by qRT-PCR. The schematic boxed on the right-hand side illustrates typical amounts of RNAse H digested RNA segments of REI-permissive uORF1 and REI-non-permissive uORF4 from the  GCN4  mRNA leader co-purifying with eIF3, the typical ratio of which is ∼4:1.
    T4 Rna Ligase 1, supplied by New England Biolabs, used in various techniques. Bioz Stars score: 99/100, based on 2217 PubMed citations. ZERO BIAS - scores, article reviews, protocol conditions and more
    https://www.bioz.com/result/t4 rna ligase 1/product/New England Biolabs
    Average 99 stars, based on 2217 article reviews
    Price from $9.99 to $1999.99
    t4 rna ligase 1 - by Bioz Stars, 2020-09
    99/100 stars
      Buy from Supplier

    99
    New England Biolabs atp
    Schematic representation of yeast  in vivo  RNA–protein Ni 2+ -pull down (RaP-NiP) assay using formaldehyde crosslinking. The basic scheme of the RaP-NiP is described in the form of a flowchart. Green and red balls represent 40S ribosomes and eIF3 complexes, respectively, grey balls stand for the Ni 2+  beads, and purple and blue balls depict some non-specific RNA binding proteins. Exponentially growing yeast cells were crosslinked with 1% formaldehyde. Crosslinking was stopped by adding glycine and the fixed cells were lysed using glass beads by rigorous vortexing. Pre-cleared whole cell extract (WCE) containing RaP-NiP mRNAs in protein-RNA complexes were selectively digested with RNase H using sequence specific custom-made oligos. The resulting specific mRNA segments were purified with the help of the His-tagged a/TIF32 subunit of yeast eIF3 or its mutant variants using the Ni-NTA sepharose beads. Thus isolated protein-RNA complexes were subsequently treated with Proteinase K, and the captured RNAs were further purified by hot phenol extraction, reverse transcribed and their amounts were then quantified by qRT-PCR. The schematic boxed on the right-hand side illustrates typical amounts of RNAse H digested RNA segments of REI-permissive uORF1 and REI-non-permissive uORF4 from the  GCN4  mRNA leader co-purifying with eIF3, the typical ratio of which is ∼4:1.
    Atp, supplied by New England Biolabs, used in various techniques. Bioz Stars score: 99/100, based on 2343 PubMed citations. ZERO BIAS - scores, article reviews, protocol conditions and more
    https://www.bioz.com/result/atp/product/New England Biolabs
    Average 99 stars, based on 2343 article reviews
    Price from $9.99 to $1999.99
    atp - by Bioz Stars, 2020-09
    99/100 stars
      Buy from Supplier

    99
    New England Biolabs t4 dna ligase
    Schematic representation of yeast  in vivo  RNA–protein Ni 2+ -pull down (RaP-NiP) assay using formaldehyde crosslinking. The basic scheme of the RaP-NiP is described in the form of a flowchart. Green and red balls represent 40S ribosomes and eIF3 complexes, respectively, grey balls stand for the Ni 2+  beads, and purple and blue balls depict some non-specific RNA binding proteins. Exponentially growing yeast cells were crosslinked with 1% formaldehyde. Crosslinking was stopped by adding glycine and the fixed cells were lysed using glass beads by rigorous vortexing. Pre-cleared whole cell extract (WCE) containing RaP-NiP mRNAs in protein-RNA complexes were selectively digested with RNase H using sequence specific custom-made oligos. The resulting specific mRNA segments were purified with the help of the His-tagged a/TIF32 subunit of yeast eIF3 or its mutant variants using the Ni-NTA sepharose beads. Thus isolated protein-RNA complexes were subsequently treated with Proteinase K, and the captured RNAs were further purified by hot phenol extraction, reverse transcribed and their amounts were then quantified by qRT-PCR. The schematic boxed on the right-hand side illustrates typical amounts of RNAse H digested RNA segments of REI-permissive uORF1 and REI-non-permissive uORF4 from the  GCN4  mRNA leader co-purifying with eIF3, the typical ratio of which is ∼4:1.
    T4 Dna Ligase, supplied by New England Biolabs, used in various techniques. Bioz Stars score: 99/100, based on 49148 PubMed citations. ZERO BIAS - scores, article reviews, protocol conditions and more
    https://www.bioz.com/result/t4 dna ligase/product/New England Biolabs
    Average 99 stars, based on 49148 article reviews
    Price from $9.99 to $1999.99
    t4 dna ligase - by Bioz Stars, 2020-09
    99/100 stars
      Buy from Supplier

    99
    Millipore triton x 100
    Schematic representation of yeast  in vivo  RNA–protein Ni 2+ -pull down (RaP-NiP) assay using formaldehyde crosslinking. The basic scheme of the RaP-NiP is described in the form of a flowchart. Green and red balls represent 40S ribosomes and eIF3 complexes, respectively, grey balls stand for the Ni 2+  beads, and purple and blue balls depict some non-specific RNA binding proteins. Exponentially growing yeast cells were crosslinked with 1% formaldehyde. Crosslinking was stopped by adding glycine and the fixed cells were lysed using glass beads by rigorous vortexing. Pre-cleared whole cell extract (WCE) containing RaP-NiP mRNAs in protein-RNA complexes were selectively digested with RNase H using sequence specific custom-made oligos. The resulting specific mRNA segments were purified with the help of the His-tagged a/TIF32 subunit of yeast eIF3 or its mutant variants using the Ni-NTA sepharose beads. Thus isolated protein-RNA complexes were subsequently treated with Proteinase K, and the captured RNAs were further purified by hot phenol extraction, reverse transcribed and their amounts were then quantified by qRT-PCR. The schematic boxed on the right-hand side illustrates typical amounts of RNAse H digested RNA segments of REI-permissive uORF1 and REI-non-permissive uORF4 from the  GCN4  mRNA leader co-purifying with eIF3, the typical ratio of which is ∼4:1.
    Triton X 100, supplied by Millipore, used in various techniques. Bioz Stars score: 99/100, based on 65173 PubMed citations. ZERO BIAS - scores, article reviews, protocol conditions and more
    https://www.bioz.com/result/triton x 100/product/Millipore
    Average 99 stars, based on 65173 article reviews
    Price from $9.99 to $1999.99
    triton x 100 - by Bioz Stars, 2020-09
    99/100 stars
      Buy from Supplier

    99
    New England Biolabs taq polymerase
    Schematic representation of yeast  in vivo  RNA–protein Ni 2+ -pull down (RaP-NiP) assay using formaldehyde crosslinking. The basic scheme of the RaP-NiP is described in the form of a flowchart. Green and red balls represent 40S ribosomes and eIF3 complexes, respectively, grey balls stand for the Ni 2+  beads, and purple and blue balls depict some non-specific RNA binding proteins. Exponentially growing yeast cells were crosslinked with 1% formaldehyde. Crosslinking was stopped by adding glycine and the fixed cells were lysed using glass beads by rigorous vortexing. Pre-cleared whole cell extract (WCE) containing RaP-NiP mRNAs in protein-RNA complexes were selectively digested with RNase H using sequence specific custom-made oligos. The resulting specific mRNA segments were purified with the help of the His-tagged a/TIF32 subunit of yeast eIF3 or its mutant variants using the Ni-NTA sepharose beads. Thus isolated protein-RNA complexes were subsequently treated with Proteinase K, and the captured RNAs were further purified by hot phenol extraction, reverse transcribed and their amounts were then quantified by qRT-PCR. The schematic boxed on the right-hand side illustrates typical amounts of RNAse H digested RNA segments of REI-permissive uORF1 and REI-non-permissive uORF4 from the  GCN4  mRNA leader co-purifying with eIF3, the typical ratio of which is ∼4:1.
    Taq Polymerase, supplied by New England Biolabs, used in various techniques. Bioz Stars score: 99/100, based on 8780 PubMed citations. ZERO BIAS - scores, article reviews, protocol conditions and more
    https://www.bioz.com/result/taq polymerase/product/New England Biolabs
    Average 99 stars, based on 8780 article reviews
    Price from $9.99 to $1999.99
    taq polymerase - by Bioz Stars, 2020-09
    99/100 stars
      Buy from Supplier

    Image Search Results


    NEAT1 forms triplexes at numerous genomic sites. ( A ) NEAT1 profiles in TriplexRNA-seq (DNA-IP) (red) and nuclear RNA (blue) from HeLa S3 and U2OS cells with shaded TFR1 and TFR2. Minus (-) and plus (+) strands are shown. The position and sequence of NEAT1-TFR1 and -TFR2 are shown below. ( B ) EMSAs using 10 or 100 pmol of synthetic NEAT1 versions comprising TFR1 (40 or 52 nt) or TFR2 incubated with 0.25 pmol of double–stranded  32 P-labeled oligonucleotides which harbor sequences of NEAT1 target genes predicted from CHART-seq (  Supplementary Table S2 ). Reactions marked with an asterisk (*) were treated with 0.5 U RNase H. As a control, RNA without a putative TFR was used. Potential Hoogsteen base pairing between motifs and respective TFR sequences are shown; mismatches are marked (*). ( C ) Schematic depiction of the TFR-based capture assay. Biotinylated RNA oligos covering NEAT1-TFR1 and NEAT1-TFR2 were used to capture genomic DNA. ( D ) MEME motif analysis identifying consensus motifs in DNA captured by NEAT1-TFR1 (399 of top 500 peaks) and by NEAT1-TFR2 (500 of top 500 peaks ranked by peak  P -value). Potential Hoogsteen base pairing between motifs and respective TFR sequences are shown; mismatches are marked (*). ( E ) TDF analysis of the triplex-forming potential of NEAT1-TFR1 and NEAT1-TFR2 RNAs with top 500 TFR-associated and control DNA peaks (ranked by peak  P -value) compared to 500 randomized regions ( N  = 1000, colored grey).  P -values were obtained from one-tailed Mann–Whitney test. ( F ) Scheme presenting antisense oligo (ASO)-based capture of NEAT1-associated DNA. ( G ) Consensus motif in NEAT1-associated DNA sites (314 of top 500 peaks ranked by peak  P -value). ( H ) TDF analysis predicting the triplex-forming potential of NEAT1 on ASO-captured DNA regions. Significant TFRs along NEAT1 are shown in orange, the number of target sites (DBS) for each TFR in purple. For TFR- and ASO-based capture assays nucleic acids isolated from HeLa S3 chromatin were used.

    Journal: Nucleic Acids Research

    Article Title: Isolation and genome-wide characterization of cellular DNA:RNA triplex structures

    doi: 10.1093/nar/gky1305

    Figure Lengend Snippet: NEAT1 forms triplexes at numerous genomic sites. ( A ) NEAT1 profiles in TriplexRNA-seq (DNA-IP) (red) and nuclear RNA (blue) from HeLa S3 and U2OS cells with shaded TFR1 and TFR2. Minus (-) and plus (+) strands are shown. The position and sequence of NEAT1-TFR1 and -TFR2 are shown below. ( B ) EMSAs using 10 or 100 pmol of synthetic NEAT1 versions comprising TFR1 (40 or 52 nt) or TFR2 incubated with 0.25 pmol of double–stranded 32 P-labeled oligonucleotides which harbor sequences of NEAT1 target genes predicted from CHART-seq ( Supplementary Table S2 ). Reactions marked with an asterisk (*) were treated with 0.5 U RNase H. As a control, RNA without a putative TFR was used. Potential Hoogsteen base pairing between motifs and respective TFR sequences are shown; mismatches are marked (*). ( C ) Schematic depiction of the TFR-based capture assay. Biotinylated RNA oligos covering NEAT1-TFR1 and NEAT1-TFR2 were used to capture genomic DNA. ( D ) MEME motif analysis identifying consensus motifs in DNA captured by NEAT1-TFR1 (399 of top 500 peaks) and by NEAT1-TFR2 (500 of top 500 peaks ranked by peak P -value). Potential Hoogsteen base pairing between motifs and respective TFR sequences are shown; mismatches are marked (*). ( E ) TDF analysis of the triplex-forming potential of NEAT1-TFR1 and NEAT1-TFR2 RNAs with top 500 TFR-associated and control DNA peaks (ranked by peak P -value) compared to 500 randomized regions ( N = 1000, colored grey). P -values were obtained from one-tailed Mann–Whitney test. ( F ) Scheme presenting antisense oligo (ASO)-based capture of NEAT1-associated DNA. ( G ) Consensus motif in NEAT1-associated DNA sites (314 of top 500 peaks ranked by peak P -value). ( H ) TDF analysis predicting the triplex-forming potential of NEAT1 on ASO-captured DNA regions. Significant TFRs along NEAT1 are shown in orange, the number of target sites (DBS) for each TFR in purple. For TFR- and ASO-based capture assays nucleic acids isolated from HeLa S3 chromatin were used.

    Article Snippet: To separate free RNA from DNA-associated RNA by immunopurification with anti-DNA antibody, 16–20 μg of nucleic acids were treated for 30 min with 200 mU/μl RNase H and 75 mU/μl Shearase Plus to digest RNAs in R-loops and trim the size of genomic DNA to 500–1000 bp.

    Techniques: Sequencing, Incubation, Labeling, One-tailed Test, MANN-WHITNEY, Allele-specific Oligonucleotide, Isolation

    Validation of triplex-forming RNA and DNAs. ( A ) TDF analysis predicting the potential of top 1000 enriched TriplexRNA (DNA-IP) regions (ranked by peak  P -value) to bind to active promoters defined by ChromHMM. Number of TFRs in RNA (per kilobase of RNA, left) and the number of putative DBSs at promoters (per kilobase of RNA, right) are shown. Boxplot borders are defined by the 1st and 3rd quantiles of the distributions, the middle line corresponds to the median value. The top whisker denotes the maximum value within the third quartile plus 1.5 times the interquartile range (bottom whisker is defined analogously). Dark gray dots represent outliers with values higher or lower than whiskers. Further box plots are based on the same definitions. ( B ) Motif analysis of triplexes formed between TriplexRNA (DNA-IP) and active promoters. The diagram depicts the fraction of antiparallel and parallel triplexes with the respective motif and nucleotide composition of TFRs in TriplexRNA. ( C ) TDF analysis comparing the triplex-forming potential of top 2000 TriplexDNA-seq regions with top 1000 TriplexRNA (DNA-IP) (ranked by peak  P -value). The number of putative DBSs (per kilobase of RNA) is shown. ( D ) Motif analysis of predicted triplexes formed between TriplexRNAs (DNA-IP) and TriplexDNA. The diagram depicts the fraction of antiparallel and parallel triplexes, with the respective motif and nucleotide composition of TFRs in TriplexRNA. ( E ) Box plot classifying triplex interactions between TriplexRNAs (DNA-IP) and TriplexDNA-seq regions as  cis  ( > 10 kb in the same chromosome) and  trans  (at different chromosomes) interactions, excluding underrepresented local interactions (within 10 kb distance). ( F ) EMSAs using 10 or 100 pmol of synthetic TriplexRNAs and 0.25 pmol of double–stranded  32 P-labeled oligonucleotides comprising target regions from TriplexDNA (  Supplementary Table S2 ). Reactions marked with an asterisk (*) were treated with 0.5 U RNase H. As a control (C), RNA without a putative TFR was used. Potential Hoogsteen base pairing between motifs and respective TFR sequences are shown; mismatches are marked (*). TriplexRNA-seq and TriplexDNA-seq data are from HeLa S3 cells. Adjusted  P -values

    Journal: Nucleic Acids Research

    Article Title: Isolation and genome-wide characterization of cellular DNA:RNA triplex structures

    doi: 10.1093/nar/gky1305

    Figure Lengend Snippet: Validation of triplex-forming RNA and DNAs. ( A ) TDF analysis predicting the potential of top 1000 enriched TriplexRNA (DNA-IP) regions (ranked by peak P -value) to bind to active promoters defined by ChromHMM. Number of TFRs in RNA (per kilobase of RNA, left) and the number of putative DBSs at promoters (per kilobase of RNA, right) are shown. Boxplot borders are defined by the 1st and 3rd quantiles of the distributions, the middle line corresponds to the median value. The top whisker denotes the maximum value within the third quartile plus 1.5 times the interquartile range (bottom whisker is defined analogously). Dark gray dots represent outliers with values higher or lower than whiskers. Further box plots are based on the same definitions. ( B ) Motif analysis of triplexes formed between TriplexRNA (DNA-IP) and active promoters. The diagram depicts the fraction of antiparallel and parallel triplexes with the respective motif and nucleotide composition of TFRs in TriplexRNA. ( C ) TDF analysis comparing the triplex-forming potential of top 2000 TriplexDNA-seq regions with top 1000 TriplexRNA (DNA-IP) (ranked by peak P -value). The number of putative DBSs (per kilobase of RNA) is shown. ( D ) Motif analysis of predicted triplexes formed between TriplexRNAs (DNA-IP) and TriplexDNA. The diagram depicts the fraction of antiparallel and parallel triplexes, with the respective motif and nucleotide composition of TFRs in TriplexRNA. ( E ) Box plot classifying triplex interactions between TriplexRNAs (DNA-IP) and TriplexDNA-seq regions as cis ( > 10 kb in the same chromosome) and trans (at different chromosomes) interactions, excluding underrepresented local interactions (within 10 kb distance). ( F ) EMSAs using 10 or 100 pmol of synthetic TriplexRNAs and 0.25 pmol of double–stranded 32 P-labeled oligonucleotides comprising target regions from TriplexDNA ( Supplementary Table S2 ). Reactions marked with an asterisk (*) were treated with 0.5 U RNase H. As a control (C), RNA without a putative TFR was used. Potential Hoogsteen base pairing between motifs and respective TFR sequences are shown; mismatches are marked (*). TriplexRNA-seq and TriplexDNA-seq data are from HeLa S3 cells. Adjusted P -values

    Article Snippet: To separate free RNA from DNA-associated RNA by immunopurification with anti-DNA antibody, 16–20 μg of nucleic acids were treated for 30 min with 200 mU/μl RNase H and 75 mU/μl Shearase Plus to digest RNAs in R-loops and trim the size of genomic DNA to 500–1000 bp.

    Techniques: Whisker Assay, Labeling

    Schematic representation of yeast  in vivo  RNA–protein Ni 2+ -pull down (RaP-NiP) assay using formaldehyde crosslinking. The basic scheme of the RaP-NiP is described in the form of a flowchart. Green and red balls represent 40S ribosomes and eIF3 complexes, respectively, grey balls stand for the Ni 2+  beads, and purple and blue balls depict some non-specific RNA binding proteins. Exponentially growing yeast cells were crosslinked with 1% formaldehyde. Crosslinking was stopped by adding glycine and the fixed cells were lysed using glass beads by rigorous vortexing. Pre-cleared whole cell extract (WCE) containing RaP-NiP mRNAs in protein-RNA complexes were selectively digested with RNase H using sequence specific custom-made oligos. The resulting specific mRNA segments were purified with the help of the His-tagged a/TIF32 subunit of yeast eIF3 or its mutant variants using the Ni-NTA sepharose beads. Thus isolated protein-RNA complexes were subsequently treated with Proteinase K, and the captured RNAs were further purified by hot phenol extraction, reverse transcribed and their amounts were then quantified by qRT-PCR. The schematic boxed on the right-hand side illustrates typical amounts of RNAse H digested RNA segments of REI-permissive uORF1 and REI-non-permissive uORF4 from the  GCN4  mRNA leader co-purifying with eIF3, the typical ratio of which is ∼4:1.

    Journal: Nucleic Acids Research

    Article Title: In vivo evidence that eIF3 stays bound to ribosomes elongating and terminating on short upstream ORFs to promote reinitiation

    doi: 10.1093/nar/gkx049

    Figure Lengend Snippet: Schematic representation of yeast in vivo RNA–protein Ni 2+ -pull down (RaP-NiP) assay using formaldehyde crosslinking. The basic scheme of the RaP-NiP is described in the form of a flowchart. Green and red balls represent 40S ribosomes and eIF3 complexes, respectively, grey balls stand for the Ni 2+ beads, and purple and blue balls depict some non-specific RNA binding proteins. Exponentially growing yeast cells were crosslinked with 1% formaldehyde. Crosslinking was stopped by adding glycine and the fixed cells were lysed using glass beads by rigorous vortexing. Pre-cleared whole cell extract (WCE) containing RaP-NiP mRNAs in protein-RNA complexes were selectively digested with RNase H using sequence specific custom-made oligos. The resulting specific mRNA segments were purified with the help of the His-tagged a/TIF32 subunit of yeast eIF3 or its mutant variants using the Ni-NTA sepharose beads. Thus isolated protein-RNA complexes were subsequently treated with Proteinase K, and the captured RNAs were further purified by hot phenol extraction, reverse transcribed and their amounts were then quantified by qRT-PCR. The schematic boxed on the right-hand side illustrates typical amounts of RNAse H digested RNA segments of REI-permissive uORF1 and REI-non-permissive uORF4 from the GCN4 mRNA leader co-purifying with eIF3, the typical ratio of which is ∼4:1.

    Article Snippet: The resulting eluates were collected by centrifugation at 500 rcf for 2 min (at this step we always preserved 10 μl of eluate as ‘Elute’ for western blot analysis of our routine check-ups of the Ni2+ -pull down efficiency, as described in ( )) and subsequently all proteins in the samples were digested with 0.8 U of Proteinase K (NE Biolabs) at 37°C for 30 min.

    Techniques: In Vivo, RNA Binding Assay, Sequencing, Purification, Mutagenesis, Isolation, Quantitative RT-PCR