phusion dna polymerase Search Results


  • Logo
  • About
  • News
  • Press Release
  • Team
  • Advisors
  • Partners
  • Contact
  • Bioz Stars
  • Bioz vStars
  • 99
    New England Biolabs dna polymerase phusion
    Polyacrylamide gel electrophoresis (PAGE) electrophoresis of the polymerase–endonuclease amplification reaction (PEAR) products. Lowercase letters (agct) represents unmodified dNTPs; uppercase letters (AGCT) represent modified dNTPs (2′-F-dNTPs or dNTPαSs). (A) PEAR by <t>Phusion</t> <t>DNA</t> polymerase using unmodified dNTPs, 2′-F-modified dATP and dGTP, respectively. Lane 1: 10-bp DNA ladder; lane 2: normal dNTPs; lane 3: 2′-F-dATP modified PEAR products; lane 4: control without PspGI; lane 5: control without Phusion DNA polymerase; lane 6: control without dATP; lane 7: 10-bp DNA ladder; lane 8: 2′-F-dGTP modified PEAR products; lane 9: control without PspGI; lane 10 : control without Phusion DNA polymerase; lane 11: control without dGTP. (B) PEAR by Phusion DNA polymerase using 2′-F-dCTP and 2′-F-dUTP. Lane 1: 2′-F-dCTP modified PEAR products; lane 2: control without PspGI; lane 3: control without Phusion DNA polymerase; lane 4: control without dCTP; lane 5: 10-bp DNA ladder; lane 6: 2′-F-dUTP modified PEAR products; lane 7: control without PspGI; lane 8: control without Phusion DNA polymerase; lane 9: control without dUTP; lane 10: 10-bp DNA ladder. (C) 2′-F-dATP and 2′-F-dGTP modified PEAR products as “seeds” for PEAR. Lane 1: 10-bp DNA ladder; lane 2: control without PspGI; lane 3: using 2′-F-dATP modified PEAR products as “seeds” for PEAR; lane 4: control without PspGI; lane 5: using 2′-F-dGTP modified PEAR products as seeds for PEAR. (D) 2′-F-dATP and 2′-F-dGTP modified PEAR products using KOD DNA polymerase. Lane 1: 2′-F-dATP modified PEAR products; lane 2: control without PspGI; lane 3: control without KOD DNA polymerase; lane 4: control without 2′-F-dATP; lane 5: 10-bp DNA ladder; lane 6: 2′-F-dGTP modified PEAR products; lane 7: control without PspGI; lane 8: control without KOD DNA polymerase ; lane 9: control without 2′-F-dGTP; lane 10: 10-bp DNA ladder. (E) PEAR amplification of 2′-F-dCTP and 2′-F-dUTP modified products using KOD DNA polymerase. Lane 1: 2′-F-dCTP modified PEAR products; lane 2: control without PspGI; lane 3: control without KOD DNA polymerase; lane 4: control without dCTP; lane 5: 10-bp DNA ladder; lane 6: 2′-F-dUTP modified PEAR products; lane 7: control without PspGI; lane 8: control without KOD DNA polymerase; lane 9: control without dUTP; lane 10: 10-bp DNA ladder. (F) PEAR amplification of dTTPαS modified and 2′-F-dATP+dGTPαS double modified PEAR products using KOD DNA polymerase. Lane 1: dTTPαS modified PEAR products; lane 2: control without PspGI; lane 3: control without KOD DNA polymerase; lane 4: control without dTTPαS; lane 5: 20 bp DNA ladder; lane 6: 2′-F-dATP and dGTPαS double modified PEAR amplified products; lane 7: control without PspGI; lane 8: control without KOD DNA polymerase; lane 9: control without 2′-F-dATP and dGTPαS; lane 10: 20-bp DNA ladder. (G) PEAR amplification of 2′-F-dATP+dCTPαS double modified and 2′-F-dATP+dTTPαS double modified PEAR products using KOD DNA polymerase. Lane 1: 2′-F-dATP+dCTPαS double modified PEAR products; lane 2: control without PspGI; lane 3: control without KOD DNA polymerase; lane 4: control without 2′-F-dATP and dCTPαS; lane 5: 20-bp DNA ladder; lane 6: 2′-F-dATP+dTTPαS double modified PEAR amplified products; lane 7: control without PspGI; lane 8: control without KOD DNA polymerase; lane 9: control without 2′-F-dGTP and dTTPαS; lane 10: 20-bp DNA ladder.
    Dna Polymerase Phusion, supplied by New England Biolabs, used in various techniques. Bioz Stars score: 99/100, based on 3250 PubMed citations. ZERO BIAS - scores, article reviews, protocol conditions and more
    https://www.bioz.com/result/dna polymerase phusion/product/New England Biolabs
    Average 99 stars, based on 3250 article reviews
    Price from $9.99 to $1999.99
    dna polymerase phusion - by Bioz Stars, 2020-08
    99/100 stars
      Buy from Supplier

    99
    Thermo Fisher phusion dna polymerase
    ( A ) Template hybridization, extension, and denaturation on the flowcell surface. Templates are prepared so as to possess tails that are complementary to primers on the flowcell surface. This allows one end of a template strand to hybridize to a flowcell primer. Flowcell primers are extended by <t>Phusion</t> <t>DNA</t> polymerase (Thermo Scientific), resulting in a reverse complementary copy of the original template strand, which is covalently attached to the flowcell surface. The original template strand is then removed by flushing 0.1 M NaOH though the flowcell. ( B ) Cluster amplification. The free end of the tethered reverse complementary copy of the original template strand can anneal to the other type of flowcell primer, forming a bridge. The flowcell primer is extended by Bst polymerase, in an isothermal reaction, which generates a double-stranded product. Formamide is used to denature these strands, which can then anneal to other primers on the flowcell surface, which extend in the next cycle. In this way, repeated cycles of extension and denaturation result in a cluster of strands, all of which are derived from a single template strand.
    Phusion Dna Polymerase, supplied by Thermo Fisher, used in various techniques. Bioz Stars score: 99/100, based on 10742 PubMed citations. ZERO BIAS - scores, article reviews, protocol conditions and more
    https://www.bioz.com/result/phusion dna polymerase/product/Thermo Fisher
    Average 99 stars, based on 10742 article reviews
    Price from $9.99 to $1999.99
    phusion dna polymerase - by Bioz Stars, 2020-08
    99/100 stars
      Buy from Supplier

    93
    Fisher Scientific phusion dna polymerase
    ( A ) Template hybridization, extension, and denaturation on the flowcell surface. Templates are prepared so as to possess tails that are complementary to primers on the flowcell surface. This allows one end of a template strand to hybridize to a flowcell primer. Flowcell primers are extended by <t>Phusion</t> <t>DNA</t> polymerase (Thermo Scientific), resulting in a reverse complementary copy of the original template strand, which is covalently attached to the flowcell surface. The original template strand is then removed by flushing 0.1 M NaOH though the flowcell. ( B ) Cluster amplification. The free end of the tethered reverse complementary copy of the original template strand can anneal to the other type of flowcell primer, forming a bridge. The flowcell primer is extended by Bst polymerase, in an isothermal reaction, which generates a double-stranded product. Formamide is used to denature these strands, which can then anneal to other primers on the flowcell surface, which extend in the next cycle. In this way, repeated cycles of extension and denaturation result in a cluster of strands, all of which are derived from a single template strand.
    Phusion Dna Polymerase, supplied by Fisher Scientific, used in various techniques. Bioz Stars score: 93/100, based on 217 PubMed citations. ZERO BIAS - scores, article reviews, protocol conditions and more
    https://www.bioz.com/result/phusion dna polymerase/product/Fisher Scientific
    Average 93 stars, based on 217 article reviews
    Price from $9.99 to $1999.99
    phusion dna polymerase - by Bioz Stars, 2020-08
    93/100 stars
      Buy from Supplier

    92
    Biozym phusion dna polymerase
    ( A ) Template hybridization, extension, and denaturation on the flowcell surface. Templates are prepared so as to possess tails that are complementary to primers on the flowcell surface. This allows one end of a template strand to hybridize to a flowcell primer. Flowcell primers are extended by <t>Phusion</t> <t>DNA</t> polymerase (Thermo Scientific), resulting in a reverse complementary copy of the original template strand, which is covalently attached to the flowcell surface. The original template strand is then removed by flushing 0.1 M NaOH though the flowcell. ( B ) Cluster amplification. The free end of the tethered reverse complementary copy of the original template strand can anneal to the other type of flowcell primer, forming a bridge. The flowcell primer is extended by Bst polymerase, in an isothermal reaction, which generates a double-stranded product. Formamide is used to denature these strands, which can then anneal to other primers on the flowcell surface, which extend in the next cycle. In this way, repeated cycles of extension and denaturation result in a cluster of strands, all of which are derived from a single template strand.
    Phusion Dna Polymerase, supplied by Biozym, used in various techniques. Bioz Stars score: 92/100, based on 41 PubMed citations. ZERO BIAS - scores, article reviews, protocol conditions and more
    https://www.bioz.com/result/phusion dna polymerase/product/Biozym
    Average 92 stars, based on 41 article reviews
    Price from $9.99 to $1999.99
    phusion dna polymerase - by Bioz Stars, 2020-08
    92/100 stars
      Buy from Supplier

    92
    Illumina Inc phusion dna polymerase
    ( A ) Template hybridization, extension, and denaturation on the flowcell surface. Templates are prepared so as to possess tails that are complementary to primers on the flowcell surface. This allows one end of a template strand to hybridize to a flowcell primer. Flowcell primers are extended by <t>Phusion</t> <t>DNA</t> polymerase (Thermo Scientific), resulting in a reverse complementary copy of the original template strand, which is covalently attached to the flowcell surface. The original template strand is then removed by flushing 0.1 M NaOH though the flowcell. ( B ) Cluster amplification. The free end of the tethered reverse complementary copy of the original template strand can anneal to the other type of flowcell primer, forming a bridge. The flowcell primer is extended by Bst polymerase, in an isothermal reaction, which generates a double-stranded product. Formamide is used to denature these strands, which can then anneal to other primers on the flowcell surface, which extend in the next cycle. In this way, repeated cycles of extension and denaturation result in a cluster of strands, all of which are derived from a single template strand.
    Phusion Dna Polymerase, supplied by Illumina Inc, used in various techniques. Bioz Stars score: 92/100, based on 476 PubMed citations. ZERO BIAS - scores, article reviews, protocol conditions and more
    https://www.bioz.com/result/phusion dna polymerase/product/Illumina Inc
    Average 92 stars, based on 476 article reviews
    Price from $9.99 to $1999.99
    phusion dna polymerase - by Bioz Stars, 2020-08
    92/100 stars
      Buy from Supplier

    92
    BIOKE phusion dna polymerase
    ( A ) Template hybridization, extension, and denaturation on the flowcell surface. Templates are prepared so as to possess tails that are complementary to primers on the flowcell surface. This allows one end of a template strand to hybridize to a flowcell primer. Flowcell primers are extended by <t>Phusion</t> <t>DNA</t> polymerase (Thermo Scientific), resulting in a reverse complementary copy of the original template strand, which is covalently attached to the flowcell surface. The original template strand is then removed by flushing 0.1 M NaOH though the flowcell. ( B ) Cluster amplification. The free end of the tethered reverse complementary copy of the original template strand can anneal to the other type of flowcell primer, forming a bridge. The flowcell primer is extended by Bst polymerase, in an isothermal reaction, which generates a double-stranded product. Formamide is used to denature these strands, which can then anneal to other primers on the flowcell surface, which extend in the next cycle. In this way, repeated cycles of extension and denaturation result in a cluster of strands, all of which are derived from a single template strand.
    Phusion Dna Polymerase, supplied by BIOKE, used in various techniques. Bioz Stars score: 92/100, based on 10 PubMed citations. ZERO BIAS - scores, article reviews, protocol conditions and more
    https://www.bioz.com/result/phusion dna polymerase/product/BIOKE
    Average 92 stars, based on 10 article reviews
    Price from $9.99 to $1999.99
    phusion dna polymerase - by Bioz Stars, 2020-08
    92/100 stars
      Buy from Supplier

    92
    Horizon Discovery phusion dna polymerase
    ( A ) Template hybridization, extension, and denaturation on the flowcell surface. Templates are prepared so as to possess tails that are complementary to primers on the flowcell surface. This allows one end of a template strand to hybridize to a flowcell primer. Flowcell primers are extended by <t>Phusion</t> <t>DNA</t> polymerase (Thermo Scientific), resulting in a reverse complementary copy of the original template strand, which is covalently attached to the flowcell surface. The original template strand is then removed by flushing 0.1 M NaOH though the flowcell. ( B ) Cluster amplification. The free end of the tethered reverse complementary copy of the original template strand can anneal to the other type of flowcell primer, forming a bridge. The flowcell primer is extended by Bst polymerase, in an isothermal reaction, which generates a double-stranded product. Formamide is used to denature these strands, which can then anneal to other primers on the flowcell surface, which extend in the next cycle. In this way, repeated cycles of extension and denaturation result in a cluster of strands, all of which are derived from a single template strand.
    Phusion Dna Polymerase, supplied by Horizon Discovery, used in various techniques. Bioz Stars score: 92/100, based on 5 PubMed citations. ZERO BIAS - scores, article reviews, protocol conditions and more
    https://www.bioz.com/result/phusion dna polymerase/product/Horizon Discovery
    Average 92 stars, based on 5 article reviews
    Price from $9.99 to $1999.99
    phusion dna polymerase - by Bioz Stars, 2020-08
    92/100 stars
      Buy from Supplier

    92
    MJ Research phusion dna polymerase
    ( A ) Template hybridization, extension, and denaturation on the flowcell surface. Templates are prepared so as to possess tails that are complementary to primers on the flowcell surface. This allows one end of a template strand to hybridize to a flowcell primer. Flowcell primers are extended by <t>Phusion</t> <t>DNA</t> polymerase (Thermo Scientific), resulting in a reverse complementary copy of the original template strand, which is covalently attached to the flowcell surface. The original template strand is then removed by flushing 0.1 M NaOH though the flowcell. ( B ) Cluster amplification. The free end of the tethered reverse complementary copy of the original template strand can anneal to the other type of flowcell primer, forming a bridge. The flowcell primer is extended by Bst polymerase, in an isothermal reaction, which generates a double-stranded product. Formamide is used to denature these strands, which can then anneal to other primers on the flowcell surface, which extend in the next cycle. In this way, repeated cycles of extension and denaturation result in a cluster of strands, all of which are derived from a single template strand.
    Phusion Dna Polymerase, supplied by MJ Research, used in various techniques. Bioz Stars score: 92/100, based on 11 PubMed citations. ZERO BIAS - scores, article reviews, protocol conditions and more
    https://www.bioz.com/result/phusion dna polymerase/product/MJ Research
    Average 92 stars, based on 11 article reviews
    Price from $9.99 to $1999.99
    phusion dna polymerase - by Bioz Stars, 2020-08
    92/100 stars
      Buy from Supplier

    92
    Roche phusion dna polymerase
    ( A ) Template hybridization, extension, and denaturation on the flowcell surface. Templates are prepared so as to possess tails that are complementary to primers on the flowcell surface. This allows one end of a template strand to hybridize to a flowcell primer. Flowcell primers are extended by <t>Phusion</t> <t>DNA</t> polymerase (Thermo Scientific), resulting in a reverse complementary copy of the original template strand, which is covalently attached to the flowcell surface. The original template strand is then removed by flushing 0.1 M NaOH though the flowcell. ( B ) Cluster amplification. The free end of the tethered reverse complementary copy of the original template strand can anneal to the other type of flowcell primer, forming a bridge. The flowcell primer is extended by Bst polymerase, in an isothermal reaction, which generates a double-stranded product. Formamide is used to denature these strands, which can then anneal to other primers on the flowcell surface, which extend in the next cycle. In this way, repeated cycles of extension and denaturation result in a cluster of strands, all of which are derived from a single template strand.
    Phusion Dna Polymerase, supplied by Roche, used in various techniques. Bioz Stars score: 92/100, based on 28 PubMed citations. ZERO BIAS - scores, article reviews, protocol conditions and more
    https://www.bioz.com/result/phusion dna polymerase/product/Roche
    Average 92 stars, based on 28 article reviews
    Price from $9.99 to $1999.99
    phusion dna polymerase - by Bioz Stars, 2020-08
    92/100 stars
      Buy from Supplier

    92
    Biometra phusion dna polymerase
    ( A ) Template hybridization, extension, and denaturation on the flowcell surface. Templates are prepared so as to possess tails that are complementary to primers on the flowcell surface. This allows one end of a template strand to hybridize to a flowcell primer. Flowcell primers are extended by <t>Phusion</t> <t>DNA</t> polymerase (Thermo Scientific), resulting in a reverse complementary copy of the original template strand, which is covalently attached to the flowcell surface. The original template strand is then removed by flushing 0.1 M NaOH though the flowcell. ( B ) Cluster amplification. The free end of the tethered reverse complementary copy of the original template strand can anneal to the other type of flowcell primer, forming a bridge. The flowcell primer is extended by Bst polymerase, in an isothermal reaction, which generates a double-stranded product. Formamide is used to denature these strands, which can then anneal to other primers on the flowcell surface, which extend in the next cycle. In this way, repeated cycles of extension and denaturation result in a cluster of strands, all of which are derived from a single template strand.
    Phusion Dna Polymerase, supplied by Biometra, used in various techniques. Bioz Stars score: 92/100, based on 8 PubMed citations. ZERO BIAS - scores, article reviews, protocol conditions and more
    https://www.bioz.com/result/phusion dna polymerase/product/Biometra
    Average 92 stars, based on 8 article reviews
    Price from $9.99 to $1999.99
    phusion dna polymerase - by Bioz Stars, 2020-08
    92/100 stars
      Buy from Supplier

    92
    Meridian Life Science phusion dna polymerase
    ( A ) Template hybridization, extension, and denaturation on the flowcell surface. Templates are prepared so as to possess tails that are complementary to primers on the flowcell surface. This allows one end of a template strand to hybridize to a flowcell primer. Flowcell primers are extended by <t>Phusion</t> <t>DNA</t> polymerase (Thermo Scientific), resulting in a reverse complementary copy of the original template strand, which is covalently attached to the flowcell surface. The original template strand is then removed by flushing 0.1 M NaOH though the flowcell. ( B ) Cluster amplification. The free end of the tethered reverse complementary copy of the original template strand can anneal to the other type of flowcell primer, forming a bridge. The flowcell primer is extended by Bst polymerase, in an isothermal reaction, which generates a double-stranded product. Formamide is used to denature these strands, which can then anneal to other primers on the flowcell surface, which extend in the next cycle. In this way, repeated cycles of extension and denaturation result in a cluster of strands, all of which are derived from a single template strand.
    Phusion Dna Polymerase, supplied by Meridian Life Science, used in various techniques. Bioz Stars score: 92/100, based on 11 PubMed citations. ZERO BIAS - scores, article reviews, protocol conditions and more
    https://www.bioz.com/result/phusion dna polymerase/product/Meridian Life Science
    Average 92 stars, based on 11 article reviews
    Price from $9.99 to $1999.99
    phusion dna polymerase - by Bioz Stars, 2020-08
    92/100 stars
      Buy from Supplier

    99
    Thermo Fisher phusion hotstart dna polymerase
    ( A ) Template hybridization, extension, and denaturation on the flowcell surface. Templates are prepared so as to possess tails that are complementary to primers on the flowcell surface. This allows one end of a template strand to hybridize to a flowcell primer. Flowcell primers are extended by <t>Phusion</t> <t>DNA</t> polymerase (Thermo Scientific), resulting in a reverse complementary copy of the original template strand, which is covalently attached to the flowcell surface. The original template strand is then removed by flushing 0.1 M NaOH though the flowcell. ( B ) Cluster amplification. The free end of the tethered reverse complementary copy of the original template strand can anneal to the other type of flowcell primer, forming a bridge. The flowcell primer is extended by Bst polymerase, in an isothermal reaction, which generates a double-stranded product. Formamide is used to denature these strands, which can then anneal to other primers on the flowcell surface, which extend in the next cycle. In this way, repeated cycles of extension and denaturation result in a cluster of strands, all of which are derived from a single template strand.
    Phusion Hotstart Dna Polymerase, supplied by Thermo Fisher, used in various techniques. Bioz Stars score: 99/100, based on 178 PubMed citations. ZERO BIAS - scores, article reviews, protocol conditions and more
    https://www.bioz.com/result/phusion hotstart dna polymerase/product/Thermo Fisher
    Average 99 stars, based on 178 article reviews
    Price from $9.99 to $1999.99
    phusion hotstart dna polymerase - by Bioz Stars, 2020-08
    99/100 stars
      Buy from Supplier

    Image Search Results


    Polyacrylamide gel electrophoresis (PAGE) electrophoresis of the polymerase–endonuclease amplification reaction (PEAR) products. Lowercase letters (agct) represents unmodified dNTPs; uppercase letters (AGCT) represent modified dNTPs (2′-F-dNTPs or dNTPαSs). (A) PEAR by Phusion DNA polymerase using unmodified dNTPs, 2′-F-modified dATP and dGTP, respectively. Lane 1: 10-bp DNA ladder; lane 2: normal dNTPs; lane 3: 2′-F-dATP modified PEAR products; lane 4: control without PspGI; lane 5: control without Phusion DNA polymerase; lane 6: control without dATP; lane 7: 10-bp DNA ladder; lane 8: 2′-F-dGTP modified PEAR products; lane 9: control without PspGI; lane 10 : control without Phusion DNA polymerase; lane 11: control without dGTP. (B) PEAR by Phusion DNA polymerase using 2′-F-dCTP and 2′-F-dUTP. Lane 1: 2′-F-dCTP modified PEAR products; lane 2: control without PspGI; lane 3: control without Phusion DNA polymerase; lane 4: control without dCTP; lane 5: 10-bp DNA ladder; lane 6: 2′-F-dUTP modified PEAR products; lane 7: control without PspGI; lane 8: control without Phusion DNA polymerase; lane 9: control without dUTP; lane 10: 10-bp DNA ladder. (C) 2′-F-dATP and 2′-F-dGTP modified PEAR products as “seeds” for PEAR. Lane 1: 10-bp DNA ladder; lane 2: control without PspGI; lane 3: using 2′-F-dATP modified PEAR products as “seeds” for PEAR; lane 4: control without PspGI; lane 5: using 2′-F-dGTP modified PEAR products as seeds for PEAR. (D) 2′-F-dATP and 2′-F-dGTP modified PEAR products using KOD DNA polymerase. Lane 1: 2′-F-dATP modified PEAR products; lane 2: control without PspGI; lane 3: control without KOD DNA polymerase; lane 4: control without 2′-F-dATP; lane 5: 10-bp DNA ladder; lane 6: 2′-F-dGTP modified PEAR products; lane 7: control without PspGI; lane 8: control without KOD DNA polymerase ; lane 9: control without 2′-F-dGTP; lane 10: 10-bp DNA ladder. (E) PEAR amplification of 2′-F-dCTP and 2′-F-dUTP modified products using KOD DNA polymerase. Lane 1: 2′-F-dCTP modified PEAR products; lane 2: control without PspGI; lane 3: control without KOD DNA polymerase; lane 4: control without dCTP; lane 5: 10-bp DNA ladder; lane 6: 2′-F-dUTP modified PEAR products; lane 7: control without PspGI; lane 8: control without KOD DNA polymerase; lane 9: control without dUTP; lane 10: 10-bp DNA ladder. (F) PEAR amplification of dTTPαS modified and 2′-F-dATP+dGTPαS double modified PEAR products using KOD DNA polymerase. Lane 1: dTTPαS modified PEAR products; lane 2: control without PspGI; lane 3: control without KOD DNA polymerase; lane 4: control without dTTPαS; lane 5: 20 bp DNA ladder; lane 6: 2′-F-dATP and dGTPαS double modified PEAR amplified products; lane 7: control without PspGI; lane 8: control without KOD DNA polymerase; lane 9: control without 2′-F-dATP and dGTPαS; lane 10: 20-bp DNA ladder. (G) PEAR amplification of 2′-F-dATP+dCTPαS double modified and 2′-F-dATP+dTTPαS double modified PEAR products using KOD DNA polymerase. Lane 1: 2′-F-dATP+dCTPαS double modified PEAR products; lane 2: control without PspGI; lane 3: control without KOD DNA polymerase; lane 4: control without 2′-F-dATP and dCTPαS; lane 5: 20-bp DNA ladder; lane 6: 2′-F-dATP+dTTPαS double modified PEAR amplified products; lane 7: control without PspGI; lane 8: control without KOD DNA polymerase; lane 9: control without 2′-F-dGTP and dTTPαS; lane 10: 20-bp DNA ladder.

    Journal: Nucleic Acid Therapeutics

    Article Title: Enzymatic Synthesis of Modified Oligonucleotides by PEAR Using Phusion and KOD DNA Polymerases

    doi: 10.1089/nat.2014.0513

    Figure Lengend Snippet: Polyacrylamide gel electrophoresis (PAGE) electrophoresis of the polymerase–endonuclease amplification reaction (PEAR) products. Lowercase letters (agct) represents unmodified dNTPs; uppercase letters (AGCT) represent modified dNTPs (2′-F-dNTPs or dNTPαSs). (A) PEAR by Phusion DNA polymerase using unmodified dNTPs, 2′-F-modified dATP and dGTP, respectively. Lane 1: 10-bp DNA ladder; lane 2: normal dNTPs; lane 3: 2′-F-dATP modified PEAR products; lane 4: control without PspGI; lane 5: control without Phusion DNA polymerase; lane 6: control without dATP; lane 7: 10-bp DNA ladder; lane 8: 2′-F-dGTP modified PEAR products; lane 9: control without PspGI; lane 10 : control without Phusion DNA polymerase; lane 11: control without dGTP. (B) PEAR by Phusion DNA polymerase using 2′-F-dCTP and 2′-F-dUTP. Lane 1: 2′-F-dCTP modified PEAR products; lane 2: control without PspGI; lane 3: control without Phusion DNA polymerase; lane 4: control without dCTP; lane 5: 10-bp DNA ladder; lane 6: 2′-F-dUTP modified PEAR products; lane 7: control without PspGI; lane 8: control without Phusion DNA polymerase; lane 9: control without dUTP; lane 10: 10-bp DNA ladder. (C) 2′-F-dATP and 2′-F-dGTP modified PEAR products as “seeds” for PEAR. Lane 1: 10-bp DNA ladder; lane 2: control without PspGI; lane 3: using 2′-F-dATP modified PEAR products as “seeds” for PEAR; lane 4: control without PspGI; lane 5: using 2′-F-dGTP modified PEAR products as seeds for PEAR. (D) 2′-F-dATP and 2′-F-dGTP modified PEAR products using KOD DNA polymerase. Lane 1: 2′-F-dATP modified PEAR products; lane 2: control without PspGI; lane 3: control without KOD DNA polymerase; lane 4: control without 2′-F-dATP; lane 5: 10-bp DNA ladder; lane 6: 2′-F-dGTP modified PEAR products; lane 7: control without PspGI; lane 8: control without KOD DNA polymerase ; lane 9: control without 2′-F-dGTP; lane 10: 10-bp DNA ladder. (E) PEAR amplification of 2′-F-dCTP and 2′-F-dUTP modified products using KOD DNA polymerase. Lane 1: 2′-F-dCTP modified PEAR products; lane 2: control without PspGI; lane 3: control without KOD DNA polymerase; lane 4: control without dCTP; lane 5: 10-bp DNA ladder; lane 6: 2′-F-dUTP modified PEAR products; lane 7: control without PspGI; lane 8: control without KOD DNA polymerase; lane 9: control without dUTP; lane 10: 10-bp DNA ladder. (F) PEAR amplification of dTTPαS modified and 2′-F-dATP+dGTPαS double modified PEAR products using KOD DNA polymerase. Lane 1: dTTPαS modified PEAR products; lane 2: control without PspGI; lane 3: control without KOD DNA polymerase; lane 4: control without dTTPαS; lane 5: 20 bp DNA ladder; lane 6: 2′-F-dATP and dGTPαS double modified PEAR amplified products; lane 7: control without PspGI; lane 8: control without KOD DNA polymerase; lane 9: control without 2′-F-dATP and dGTPαS; lane 10: 20-bp DNA ladder. (G) PEAR amplification of 2′-F-dATP+dCTPαS double modified and 2′-F-dATP+dTTPαS double modified PEAR products using KOD DNA polymerase. Lane 1: 2′-F-dATP+dCTPαS double modified PEAR products; lane 2: control without PspGI; lane 3: control without KOD DNA polymerase; lane 4: control without 2′-F-dATP and dCTPαS; lane 5: 20-bp DNA ladder; lane 6: 2′-F-dATP+dTTPαS double modified PEAR amplified products; lane 7: control without PspGI; lane 8: control without KOD DNA polymerase; lane 9: control without 2′-F-dGTP and dTTPαS; lane 10: 20-bp DNA ladder.

    Article Snippet: Four 2′-fluoro-2′-deoxyribinucleoside-5′-triphosphates (2′-F-dNTPs), including 2′-F-dATP, 2′-F-dCTP, 2′-F-dGTP, 2′-F-dUTP and four 2′-deoxyribonucleotides-5′-O-(1-thiotriphosphate) (dNTPαSs), including dATPαS, dGTPαS, dCTPαS, and dTTPαS, whose structural formula are shown in , were purchased from Trilink BioTechnologies, Inc. KOD DNA polymerase was purchased from TOYOBO (Shanghai) Biotech Co., Ltd. Phusion DNA polymerase, highly thermostable restriction enzyme PspGI, and dNTPs were purchased from New England Biolabs, Inc. UNIQ-10 Spin Column Oligo DNA Purification Kit was purchased from Sangon Biotech (Shanghai) Co., Ltd.

    Techniques: Polyacrylamide Gel Electrophoresis, Electrophoresis, Amplification, Modification

    The median CEL intensities for each amplicon obtained by using Stoffel DNA polymerase and Phusion DNA polymerase in the gap-fill reaction are plotted against each other. The CEL intensities that were

    Journal: Proceedings of the National Academy of Sciences of the United States of America

    Article Title: A comprehensive assay for targeted multiplex amplification of human DNA sequences

    doi: 10.1073/pnas.0803240105

    Figure Lengend Snippet: The median CEL intensities for each amplicon obtained by using Stoffel DNA polymerase and Phusion DNA polymerase in the gap-fill reaction are plotted against each other. The CEL intensities that were

    Article Snippet: The extension was performed by addition of 0.4 units of Phusion High-Fidelity DNA Polymerase (New England Biolabs), 3 μl 1.0 mM dNTP, 5 units Ampligase (Epicenter Biotechnologies) in a 15-μl volume at 60°C for 15 min followed by 72°C for 15 min.

    Techniques: Amplification

    PAGE electrophoresis of PEAR products. For dNTPs, lowercase letters (agct) represents natural dNTPs, and uppercase letters (AGCT) represents dNTPαSs. (A) PEAR products incorporating natural or dATPαS, dGTPαS, dCTPαS, dTTPαS: Lane 1: natural dNTPs; Lane 2: dATPαSs; Lane 3: No PspGI control; Lane 4: No Phusion DNA polymerase control; Lane 5: No dATP control; Lane 6∶10bp DNA ladder; Lane 7: dGTPαS; Lane 8: No PspGI control; Lane 9: No Phusion DNA polymerase control; Lane 10: No dCTP control; Lane 11: dCTPαSs; Lane 12: No PspGI control; Lane 13: No Phusion DNA polymerase control; Lane 14: No dCTP control; Lane 15: dTTPαSs; Lane 16: No PspGI control; Lane 17: No Phusion DNA polymerase control; Lane 18: No dTTP control; Lane 19∶10bp DNA ladder. (B) PEAR products incorporating one or two kind of dNTPαSs: Lane 1: natural dNTPs; Lane 2–5: one kind of dNTPαSs; Lane 6–8: two kind of dNTPαSs; Lane 9: No dNTPs control; Lane 10∶10bp DNA ladder; (C) Full digestion of PEAR products incorporating different dNTPs or dNTPαSs.

    Journal: PLoS ONE

    Article Title: Preparation of 5?-O-(1-Thiotriphosphate)-Modified Oligonucleotides Using Polymerase-Endonuclease Amplification Reaction (PEAR)

    doi: 10.1371/journal.pone.0067558

    Figure Lengend Snippet: PAGE electrophoresis of PEAR products. For dNTPs, lowercase letters (agct) represents natural dNTPs, and uppercase letters (AGCT) represents dNTPαSs. (A) PEAR products incorporating natural or dATPαS, dGTPαS, dCTPαS, dTTPαS: Lane 1: natural dNTPs; Lane 2: dATPαSs; Lane 3: No PspGI control; Lane 4: No Phusion DNA polymerase control; Lane 5: No dATP control; Lane 6∶10bp DNA ladder; Lane 7: dGTPαS; Lane 8: No PspGI control; Lane 9: No Phusion DNA polymerase control; Lane 10: No dCTP control; Lane 11: dCTPαSs; Lane 12: No PspGI control; Lane 13: No Phusion DNA polymerase control; Lane 14: No dCTP control; Lane 15: dTTPαSs; Lane 16: No PspGI control; Lane 17: No Phusion DNA polymerase control; Lane 18: No dTTP control; Lane 19∶10bp DNA ladder. (B) PEAR products incorporating one or two kind of dNTPαSs: Lane 1: natural dNTPs; Lane 2–5: one kind of dNTPαSs; Lane 6–8: two kind of dNTPαSs; Lane 9: No dNTPs control; Lane 10∶10bp DNA ladder; (C) Full digestion of PEAR products incorporating different dNTPs or dNTPαSs.

    Article Snippet: Materials Phusion high fidelity DNA polymerase, highly thermostable restriction enzyme PspGI and dNTPs are purchased from New England Biolabs , Inc .

    Techniques: Polyacrylamide Gel Electrophoresis, Electrophoresis

    ( A ) Template hybridization, extension, and denaturation on the flowcell surface. Templates are prepared so as to possess tails that are complementary to primers on the flowcell surface. This allows one end of a template strand to hybridize to a flowcell primer. Flowcell primers are extended by Phusion DNA polymerase (Thermo Scientific), resulting in a reverse complementary copy of the original template strand, which is covalently attached to the flowcell surface. The original template strand is then removed by flushing 0.1 M NaOH though the flowcell. ( B ) Cluster amplification. The free end of the tethered reverse complementary copy of the original template strand can anneal to the other type of flowcell primer, forming a bridge. The flowcell primer is extended by Bst polymerase, in an isothermal reaction, which generates a double-stranded product. Formamide is used to denature these strands, which can then anneal to other primers on the flowcell surface, which extend in the next cycle. In this way, repeated cycles of extension and denaturation result in a cluster of strands, all of which are derived from a single template strand.

    Journal: Current protocols in human genetics / editorial board, Jonathan L. Haines ... [et al.]

    Article Title: Improved Protocols for Illumina Sequencing

    doi: 10.1002/0471142905.hg1802s62

    Figure Lengend Snippet: ( A ) Template hybridization, extension, and denaturation on the flowcell surface. Templates are prepared so as to possess tails that are complementary to primers on the flowcell surface. This allows one end of a template strand to hybridize to a flowcell primer. Flowcell primers are extended by Phusion DNA polymerase (Thermo Scientific), resulting in a reverse complementary copy of the original template strand, which is covalently attached to the flowcell surface. The original template strand is then removed by flushing 0.1 M NaOH though the flowcell. ( B ) Cluster amplification. The free end of the tethered reverse complementary copy of the original template strand can anneal to the other type of flowcell primer, forming a bridge. The flowcell primer is extended by Bst polymerase, in an isothermal reaction, which generates a double-stranded product. Formamide is used to denature these strands, which can then anneal to other primers on the flowcell surface, which extend in the next cycle. In this way, repeated cycles of extension and denaturation result in a cluster of strands, all of which are derived from a single template strand.

    Article Snippet: Flowcell primers are extended, by Phusion DNA polymerase (Thermo Scientific), generating a reverse complementary copy of the original template strand that is tethered to the flowcell surface.

    Techniques: Hybridization, Amplification, Derivative Assay