low input dna Search Results


  • Logo
  • About
  • News
  • Press Release
  • Team
  • Advisors
  • Partners
  • Contact
  • Bioz Stars
  • Bioz vStars
  • 99
    New England Biolabs dna template amplification
    Dna Template Amplification, supplied by New England Biolabs, used in various techniques. Bioz Stars score: 99/100, based on 2 PubMed citations. ZERO BIAS - scores, article reviews, protocol conditions and more
    https://www.bioz.com/result/dna template amplification/product/New England Biolabs
    Average 99 stars, based on 2 article reviews
    Price from $9.99 to $1999.99
    dna template amplification - by Bioz Stars, 2020-12
    99/100 stars
      Buy from Supplier

    98
    Thermo Fisher low input ribominus eukaryote system v2
    Low Input Ribominus Eukaryote System V2, supplied by Thermo Fisher, used in various techniques. Bioz Stars score: 98/100, based on 76 PubMed citations. ZERO BIAS - scores, article reviews, protocol conditions and more
    https://www.bioz.com/result/low input ribominus eukaryote system v2/product/Thermo Fisher
    Average 98 stars, based on 76 article reviews
    Price from $9.99 to $1999.99
    low input ribominus eukaryote system v2 - by Bioz Stars, 2020-12
    98/100 stars
      Buy from Supplier

    90
    Pacific Biosciences low dna input protocol
    Low Dna Input Protocol, supplied by Pacific Biosciences, used in various techniques. Bioz Stars score: 90/100, based on 9 PubMed citations. ZERO BIAS - scores, article reviews, protocol conditions and more
    https://www.bioz.com/result/low dna input protocol/product/Pacific Biosciences
    Average 90 stars, based on 9 article reviews
    Price from $9.99 to $1999.99
    low dna input protocol - by Bioz Stars, 2020-12
    90/100 stars
      Buy from Supplier

    90
    Illumina Inc low input dna templates
    Bottleneck sequencing methodology. Each color at the top of the figure represents double-stranded <t>DNA</t> from a genome of one cell within a population. Random, nonclonal point mutations (red) are private to individual cells. In contrast, clonal reference changes (A in black) are present in all genomes within the cell population. (step 1) Random shearing generates variably sized DNA molecules. (step 2) Noncomplementary single-stranded regions of the <t>Illumina</t> Y-adapters (P5 in gray and P7 in black) are represented as forked structures ligated to both ends of each DNA molecule. (step 3) Dilution decreases the number of DNA molecules (five are shown) from the original population in a random manner. Ends of the DNA molecules align uniquely to the reference genome. Mapping coordinates are used as unique molecule “barcodes” during data processing. (step 4) PCR primer (black arrowhead) anneals and primer extends (hashed lines) the Watson and Crick template of the original DNA molecule independently. The red asterisk represents an error generated during PCR of the library. (step 5) Watson and Crick templates generate two families of PCR duplicates. Orientation of P5 (gray) and P7 (black) containing adapters to the DNA molecule (insert) distinguishes the two families. P5 and P7 sequences dictate which end will be sequenced in read 1 vs. read 2, respectively, on the Illumina flow cell. Red asterisks represent the PCR error propagated in the Watson but not the Crick family members. In contrast to artifacts, real mutations (C:G mutation in red) will be present in both the Watson and Crick family members. (step 6) The BotSeqS pipeline identifies and quantifies the number of unique DNA molecules and point mutations (C:G in red) in the sequencing data by eliminating artifacts and clonal changes (A:T in black).
    Low Input Dna Templates, supplied by Illumina Inc, used in various techniques. Bioz Stars score: 90/100, based on 4 PubMed citations. ZERO BIAS - scores, article reviews, protocol conditions and more
    https://www.bioz.com/result/low input dna templates/product/Illumina Inc
    Average 90 stars, based on 4 article reviews
    Price from $9.99 to $1999.99
    low input dna templates - by Bioz Stars, 2020-12
    90/100 stars
      Buy from Supplier

    92
    Rubicon Genomics low input dna library preparation kit
    Bottleneck sequencing methodology. Each color at the top of the figure represents double-stranded <t>DNA</t> from a genome of one cell within a population. Random, nonclonal point mutations (red) are private to individual cells. In contrast, clonal reference changes (A in black) are present in all genomes within the cell population. (step 1) Random shearing generates variably sized DNA molecules. (step 2) Noncomplementary single-stranded regions of the <t>Illumina</t> Y-adapters (P5 in gray and P7 in black) are represented as forked structures ligated to both ends of each DNA molecule. (step 3) Dilution decreases the number of DNA molecules (five are shown) from the original population in a random manner. Ends of the DNA molecules align uniquely to the reference genome. Mapping coordinates are used as unique molecule “barcodes” during data processing. (step 4) PCR primer (black arrowhead) anneals and primer extends (hashed lines) the Watson and Crick template of the original DNA molecule independently. The red asterisk represents an error generated during PCR of the library. (step 5) Watson and Crick templates generate two families of PCR duplicates. Orientation of P5 (gray) and P7 (black) containing adapters to the DNA molecule (insert) distinguishes the two families. P5 and P7 sequences dictate which end will be sequenced in read 1 vs. read 2, respectively, on the Illumina flow cell. Red asterisks represent the PCR error propagated in the Watson but not the Crick family members. In contrast to artifacts, real mutations (C:G mutation in red) will be present in both the Watson and Crick family members. (step 6) The BotSeqS pipeline identifies and quantifies the number of unique DNA molecules and point mutations (C:G in red) in the sequencing data by eliminating artifacts and clonal changes (A:T in black).
    Low Input Dna Library Preparation Kit, supplied by Rubicon Genomics, used in various techniques. Bioz Stars score: 92/100, based on 10 PubMed citations. ZERO BIAS - scores, article reviews, protocol conditions and more
    https://www.bioz.com/result/low input dna library preparation kit/product/Rubicon Genomics
    Average 92 stars, based on 10 article reviews
    Price from $9.99 to $1999.99
    low input dna library preparation kit - by Bioz Stars, 2020-12
    92/100 stars
      Buy from Supplier

    99
    TaKaRa smarter universal low input dna seq kit
    Bottleneck sequencing methodology. Each color at the top of the figure represents double-stranded <t>DNA</t> from a genome of one cell within a population. Random, nonclonal point mutations (red) are private to individual cells. In contrast, clonal reference changes (A in black) are present in all genomes within the cell population. (step 1) Random shearing generates variably sized DNA molecules. (step 2) Noncomplementary single-stranded regions of the <t>Illumina</t> Y-adapters (P5 in gray and P7 in black) are represented as forked structures ligated to both ends of each DNA molecule. (step 3) Dilution decreases the number of DNA molecules (five are shown) from the original population in a random manner. Ends of the DNA molecules align uniquely to the reference genome. Mapping coordinates are used as unique molecule “barcodes” during data processing. (step 4) PCR primer (black arrowhead) anneals and primer extends (hashed lines) the Watson and Crick template of the original DNA molecule independently. The red asterisk represents an error generated during PCR of the library. (step 5) Watson and Crick templates generate two families of PCR duplicates. Orientation of P5 (gray) and P7 (black) containing adapters to the DNA molecule (insert) distinguishes the two families. P5 and P7 sequences dictate which end will be sequenced in read 1 vs. read 2, respectively, on the Illumina flow cell. Red asterisks represent the PCR error propagated in the Watson but not the Crick family members. In contrast to artifacts, real mutations (C:G mutation in red) will be present in both the Watson and Crick family members. (step 6) The BotSeqS pipeline identifies and quantifies the number of unique DNA molecules and point mutations (C:G in red) in the sequencing data by eliminating artifacts and clonal changes (A:T in black).
    Smarter Universal Low Input Dna Seq Kit, supplied by TaKaRa, used in various techniques. Bioz Stars score: 99/100, based on 11 PubMed citations. ZERO BIAS - scores, article reviews, protocol conditions and more
    https://www.bioz.com/result/smarter universal low input dna seq kit/product/TaKaRa
    Average 99 stars, based on 11 article reviews
    Price from $9.99 to $1999.99
    smarter universal low input dna seq kit - by Bioz Stars, 2020-12
    99/100 stars
      Buy from Supplier

    92
    Oxford Nanopore 2d low input genomic dna protocol
    Bottleneck sequencing methodology. Each color at the top of the figure represents double-stranded <t>DNA</t> from a genome of one cell within a population. Random, nonclonal point mutations (red) are private to individual cells. In contrast, clonal reference changes (A in black) are present in all genomes within the cell population. (step 1) Random shearing generates variably sized DNA molecules. (step 2) Noncomplementary single-stranded regions of the <t>Illumina</t> Y-adapters (P5 in gray and P7 in black) are represented as forked structures ligated to both ends of each DNA molecule. (step 3) Dilution decreases the number of DNA molecules (five are shown) from the original population in a random manner. Ends of the DNA molecules align uniquely to the reference genome. Mapping coordinates are used as unique molecule “barcodes” during data processing. (step 4) PCR primer (black arrowhead) anneals and primer extends (hashed lines) the Watson and Crick template of the original DNA molecule independently. The red asterisk represents an error generated during PCR of the library. (step 5) Watson and Crick templates generate two families of PCR duplicates. Orientation of P5 (gray) and P7 (black) containing adapters to the DNA molecule (insert) distinguishes the two families. P5 and P7 sequences dictate which end will be sequenced in read 1 vs. read 2, respectively, on the Illumina flow cell. Red asterisks represent the PCR error propagated in the Watson but not the Crick family members. In contrast to artifacts, real mutations (C:G mutation in red) will be present in both the Watson and Crick family members. (step 6) The BotSeqS pipeline identifies and quantifies the number of unique DNA molecules and point mutations (C:G in red) in the sequencing data by eliminating artifacts and clonal changes (A:T in black).
    2d Low Input Genomic Dna Protocol, supplied by Oxford Nanopore, used in various techniques. Bioz Stars score: 92/100, based on 3 PubMed citations. ZERO BIAS - scores, article reviews, protocol conditions and more
    https://www.bioz.com/result/2d low input genomic dna protocol/product/Oxford Nanopore
    Average 92 stars, based on 3 article reviews
    Price from $9.99 to $1999.99
    2d low input genomic dna protocol - by Bioz Stars, 2020-12
    92/100 stars
      Buy from Supplier

    85
    Agilent technologies dna microarray low input quick amp labeling kit
    Bottleneck sequencing methodology. Each color at the top of the figure represents double-stranded <t>DNA</t> from a genome of one cell within a population. Random, nonclonal point mutations (red) are private to individual cells. In contrast, clonal reference changes (A in black) are present in all genomes within the cell population. (step 1) Random shearing generates variably sized DNA molecules. (step 2) Noncomplementary single-stranded regions of the <t>Illumina</t> Y-adapters (P5 in gray and P7 in black) are represented as forked structures ligated to both ends of each DNA molecule. (step 3) Dilution decreases the number of DNA molecules (five are shown) from the original population in a random manner. Ends of the DNA molecules align uniquely to the reference genome. Mapping coordinates are used as unique molecule “barcodes” during data processing. (step 4) PCR primer (black arrowhead) anneals and primer extends (hashed lines) the Watson and Crick template of the original DNA molecule independently. The red asterisk represents an error generated during PCR of the library. (step 5) Watson and Crick templates generate two families of PCR duplicates. Orientation of P5 (gray) and P7 (black) containing adapters to the DNA molecule (insert) distinguishes the two families. P5 and P7 sequences dictate which end will be sequenced in read 1 vs. read 2, respectively, on the Illumina flow cell. Red asterisks represent the PCR error propagated in the Watson but not the Crick family members. In contrast to artifacts, real mutations (C:G mutation in red) will be present in both the Watson and Crick family members. (step 6) The BotSeqS pipeline identifies and quantifies the number of unique DNA molecules and point mutations (C:G in red) in the sequencing data by eliminating artifacts and clonal changes (A:T in black).
    Dna Microarray Low Input Quick Amp Labeling Kit, supplied by Agilent technologies, used in various techniques. Bioz Stars score: 85/100, based on 5 PubMed citations. ZERO BIAS - scores, article reviews, protocol conditions and more
    https://www.bioz.com/result/dna microarray low input quick amp labeling kit/product/Agilent technologies
    Average 85 stars, based on 5 article reviews
    Price from $9.99 to $1999.99
    dna microarray low input quick amp labeling kit - by Bioz Stars, 2020-12
    85/100 stars
      Buy from Supplier

    85
    Agilent technologies low dna input fluorescent linear amplification kit
    Bottleneck sequencing methodology. Each color at the top of the figure represents double-stranded <t>DNA</t> from a genome of one cell within a population. Random, nonclonal point mutations (red) are private to individual cells. In contrast, clonal reference changes (A in black) are present in all genomes within the cell population. (step 1) Random shearing generates variably sized DNA molecules. (step 2) Noncomplementary single-stranded regions of the <t>Illumina</t> Y-adapters (P5 in gray and P7 in black) are represented as forked structures ligated to both ends of each DNA molecule. (step 3) Dilution decreases the number of DNA molecules (five are shown) from the original population in a random manner. Ends of the DNA molecules align uniquely to the reference genome. Mapping coordinates are used as unique molecule “barcodes” during data processing. (step 4) PCR primer (black arrowhead) anneals and primer extends (hashed lines) the Watson and Crick template of the original DNA molecule independently. The red asterisk represents an error generated during PCR of the library. (step 5) Watson and Crick templates generate two families of PCR duplicates. Orientation of P5 (gray) and P7 (black) containing adapters to the DNA molecule (insert) distinguishes the two families. P5 and P7 sequences dictate which end will be sequenced in read 1 vs. read 2, respectively, on the Illumina flow cell. Red asterisks represent the PCR error propagated in the Watson but not the Crick family members. In contrast to artifacts, real mutations (C:G mutation in red) will be present in both the Watson and Crick family members. (step 6) The BotSeqS pipeline identifies and quantifies the number of unique DNA molecules and point mutations (C:G in red) in the sequencing data by eliminating artifacts and clonal changes (A:T in black).
    Low Dna Input Fluorescent Linear Amplification Kit, supplied by Agilent technologies, used in various techniques. Bioz Stars score: 85/100, based on 3 PubMed citations. ZERO BIAS - scores, article reviews, protocol conditions and more
    https://www.bioz.com/result/low dna input fluorescent linear amplification kit/product/Agilent technologies
    Average 85 stars, based on 3 article reviews
    Price from $9.99 to $1999.99
    low dna input fluorescent linear amplification kit - by Bioz Stars, 2020-12
    85/100 stars
      Buy from Supplier

    90
    Nugen low input dna library preparation kits
    Bottleneck sequencing methodology. Each color at the top of the figure represents double-stranded <t>DNA</t> from a genome of one cell within a population. Random, nonclonal point mutations (red) are private to individual cells. In contrast, clonal reference changes (A in black) are present in all genomes within the cell population. (step 1) Random shearing generates variably sized DNA molecules. (step 2) Noncomplementary single-stranded regions of the <t>Illumina</t> Y-adapters (P5 in gray and P7 in black) are represented as forked structures ligated to both ends of each DNA molecule. (step 3) Dilution decreases the number of DNA molecules (five are shown) from the original population in a random manner. Ends of the DNA molecules align uniquely to the reference genome. Mapping coordinates are used as unique molecule “barcodes” during data processing. (step 4) PCR primer (black arrowhead) anneals and primer extends (hashed lines) the Watson and Crick template of the original DNA molecule independently. The red asterisk represents an error generated during PCR of the library. (step 5) Watson and Crick templates generate two families of PCR duplicates. Orientation of P5 (gray) and P7 (black) containing adapters to the DNA molecule (insert) distinguishes the two families. P5 and P7 sequences dictate which end will be sequenced in read 1 vs. read 2, respectively, on the Illumina flow cell. Red asterisks represent the PCR error propagated in the Watson but not the Crick family members. In contrast to artifacts, real mutations (C:G mutation in red) will be present in both the Watson and Crick family members. (step 6) The BotSeqS pipeline identifies and quantifies the number of unique DNA molecules and point mutations (C:G in red) in the sequencing data by eliminating artifacts and clonal changes (A:T in black).
    Low Input Dna Library Preparation Kits, supplied by Nugen, used in various techniques. Bioz Stars score: 90/100, based on 2 PubMed citations. ZERO BIAS - scores, article reviews, protocol conditions and more
    https://www.bioz.com/result/low input dna library preparation kits/product/Nugen
    Average 90 stars, based on 2 article reviews
    Price from $9.99 to $1999.99
    low input dna library preparation kits - by Bioz Stars, 2020-12
    90/100 stars
      Buy from Supplier

    99
    Illumina Inc low input truseq library preparation protocol
    Bottleneck sequencing methodology. Each color at the top of the figure represents double-stranded <t>DNA</t> from a genome of one cell within a population. Random, nonclonal point mutations (red) are private to individual cells. In contrast, clonal reference changes (A in black) are present in all genomes within the cell population. (step 1) Random shearing generates variably sized DNA molecules. (step 2) Noncomplementary single-stranded regions of the <t>Illumina</t> Y-adapters (P5 in gray and P7 in black) are represented as forked structures ligated to both ends of each DNA molecule. (step 3) Dilution decreases the number of DNA molecules (five are shown) from the original population in a random manner. Ends of the DNA molecules align uniquely to the reference genome. Mapping coordinates are used as unique molecule “barcodes” during data processing. (step 4) PCR primer (black arrowhead) anneals and primer extends (hashed lines) the Watson and Crick template of the original DNA molecule independently. The red asterisk represents an error generated during PCR of the library. (step 5) Watson and Crick templates generate two families of PCR duplicates. Orientation of P5 (gray) and P7 (black) containing adapters to the DNA molecule (insert) distinguishes the two families. P5 and P7 sequences dictate which end will be sequenced in read 1 vs. read 2, respectively, on the Illumina flow cell. Red asterisks represent the PCR error propagated in the Watson but not the Crick family members. In contrast to artifacts, real mutations (C:G mutation in red) will be present in both the Watson and Crick family members. (step 6) The BotSeqS pipeline identifies and quantifies the number of unique DNA molecules and point mutations (C:G in red) in the sequencing data by eliminating artifacts and clonal changes (A:T in black).
    Low Input Truseq Library Preparation Protocol, supplied by Illumina Inc, used in various techniques. Bioz Stars score: 99/100, based on 5 PubMed citations. ZERO BIAS - scores, article reviews, protocol conditions and more
    https://www.bioz.com/result/low input truseq library preparation protocol/product/Illumina Inc
    Average 99 stars, based on 5 article reviews
    Price from $9.99 to $1999.99
    low input truseq library preparation protocol - by Bioz Stars, 2020-12
    99/100 stars
      Buy from Supplier

    99
    Thermo Fisher such low chip dna input amounts
    Bottleneck sequencing methodology. Each color at the top of the figure represents double-stranded <t>DNA</t> from a genome of one cell within a population. Random, nonclonal point mutations (red) are private to individual cells. In contrast, clonal reference changes (A in black) are present in all genomes within the cell population. (step 1) Random shearing generates variably sized DNA molecules. (step 2) Noncomplementary single-stranded regions of the <t>Illumina</t> Y-adapters (P5 in gray and P7 in black) are represented as forked structures ligated to both ends of each DNA molecule. (step 3) Dilution decreases the number of DNA molecules (five are shown) from the original population in a random manner. Ends of the DNA molecules align uniquely to the reference genome. Mapping coordinates are used as unique molecule “barcodes” during data processing. (step 4) PCR primer (black arrowhead) anneals and primer extends (hashed lines) the Watson and Crick template of the original DNA molecule independently. The red asterisk represents an error generated during PCR of the library. (step 5) Watson and Crick templates generate two families of PCR duplicates. Orientation of P5 (gray) and P7 (black) containing adapters to the DNA molecule (insert) distinguishes the two families. P5 and P7 sequences dictate which end will be sequenced in read 1 vs. read 2, respectively, on the Illumina flow cell. Red asterisks represent the PCR error propagated in the Watson but not the Crick family members. In contrast to artifacts, real mutations (C:G mutation in red) will be present in both the Watson and Crick family members. (step 6) The BotSeqS pipeline identifies and quantifies the number of unique DNA molecules and point mutations (C:G in red) in the sequencing data by eliminating artifacts and clonal changes (A:T in black).
    Such Low Chip Dna Input Amounts, supplied by Thermo Fisher, used in various techniques. Bioz Stars score: 99/100, based on 7 PubMed citations. ZERO BIAS - scores, article reviews, protocol conditions and more
    https://www.bioz.com/result/such low chip dna input amounts/product/Thermo Fisher
    Average 99 stars, based on 7 article reviews
    Price from $9.99 to $1999.99
    such low chip dna input amounts - by Bioz Stars, 2020-12
    99/100 stars
      Buy from Supplier

    Image Search Results


    Bottleneck sequencing methodology. Each color at the top of the figure represents double-stranded DNA from a genome of one cell within a population. Random, nonclonal point mutations (red) are private to individual cells. In contrast, clonal reference changes (A in black) are present in all genomes within the cell population. (step 1) Random shearing generates variably sized DNA molecules. (step 2) Noncomplementary single-stranded regions of the Illumina Y-adapters (P5 in gray and P7 in black) are represented as forked structures ligated to both ends of each DNA molecule. (step 3) Dilution decreases the number of DNA molecules (five are shown) from the original population in a random manner. Ends of the DNA molecules align uniquely to the reference genome. Mapping coordinates are used as unique molecule “barcodes” during data processing. (step 4) PCR primer (black arrowhead) anneals and primer extends (hashed lines) the Watson and Crick template of the original DNA molecule independently. The red asterisk represents an error generated during PCR of the library. (step 5) Watson and Crick templates generate two families of PCR duplicates. Orientation of P5 (gray) and P7 (black) containing adapters to the DNA molecule (insert) distinguishes the two families. P5 and P7 sequences dictate which end will be sequenced in read 1 vs. read 2, respectively, on the Illumina flow cell. Red asterisks represent the PCR error propagated in the Watson but not the Crick family members. In contrast to artifacts, real mutations (C:G mutation in red) will be present in both the Watson and Crick family members. (step 6) The BotSeqS pipeline identifies and quantifies the number of unique DNA molecules and point mutations (C:G in red) in the sequencing data by eliminating artifacts and clonal changes (A:T in black).

    Journal: Proceedings of the National Academy of Sciences of the United States of America

    Article Title: Genome-wide quantification of rare somatic mutations in normal human tissues using massively parallel sequencing

    doi: 10.1073/pnas.1607794113

    Figure Lengend Snippet: Bottleneck sequencing methodology. Each color at the top of the figure represents double-stranded DNA from a genome of one cell within a population. Random, nonclonal point mutations (red) are private to individual cells. In contrast, clonal reference changes (A in black) are present in all genomes within the cell population. (step 1) Random shearing generates variably sized DNA molecules. (step 2) Noncomplementary single-stranded regions of the Illumina Y-adapters (P5 in gray and P7 in black) are represented as forked structures ligated to both ends of each DNA molecule. (step 3) Dilution decreases the number of DNA molecules (five are shown) from the original population in a random manner. Ends of the DNA molecules align uniquely to the reference genome. Mapping coordinates are used as unique molecule “barcodes” during data processing. (step 4) PCR primer (black arrowhead) anneals and primer extends (hashed lines) the Watson and Crick template of the original DNA molecule independently. The red asterisk represents an error generated during PCR of the library. (step 5) Watson and Crick templates generate two families of PCR duplicates. Orientation of P5 (gray) and P7 (black) containing adapters to the DNA molecule (insert) distinguishes the two families. P5 and P7 sequences dictate which end will be sequenced in read 1 vs. read 2, respectively, on the Illumina flow cell. Red asterisks represent the PCR error propagated in the Watson but not the Crick family members. In contrast to artifacts, real mutations (C:G mutation in red) will be present in both the Watson and Crick family members. (step 6) The BotSeqS pipeline identifies and quantifies the number of unique DNA molecules and point mutations (C:G in red) in the sequencing data by eliminating artifacts and clonal changes (A:T in black).

    Article Snippet: After random fragmentation, Illumina Y-adapters were ligated to the DNA fragments using a TruSeq DNA PCR-Free kit (Illumina) according to a standard low DNA input Illumina protocol with selection for 350-bp insert sizes.

    Techniques: Sequencing, Polymerase Chain Reaction, Generated, Flow Cytometry, Mutagenesis

    %G + C and duplication plots for Experiment 1 metagenomes. Heatmap coloring indicates the relative pairwise correlations (Pearson’s r) in the %G + C distributions (red-to-yellow) and duplicates (blue-to-green) where red and blue colors indicate the lowest levels of correlation, while white represents highly correlated data. The %G + C distribution correlations were UPGMA clustered with 100 bootstrap runs to indicate statistical support (only > 60% support shown). Abbreviations are as follows: “Tech” is sequencing technology represented by 4 (454), T (Ion Torrent), I (Illumina), S (Sanger); “Pair” is the forward or reverse paired end sequence data; “Rep” is the arbitrarily labeled replicate ranging from two ( A and B ) to three ( A , B , or C ); “ng” is the nanograms of input DNA from which the viral metagenome was derived. The most reliable estimate of the true %G + C distribution is the unamplified 454 metagenomes. Relative to these, fosmid end sequences generated using Sanger sequencing were the most shifted toward high %G + C, while problematic

    Journal: BMC Genomics

    Article Title: Sequencing platform and library preparation choices impact viral metagenomes

    doi: 10.1186/1471-2164-14-320

    Figure Lengend Snippet: %G + C and duplication plots for Experiment 1 metagenomes. Heatmap coloring indicates the relative pairwise correlations (Pearson’s r) in the %G + C distributions (red-to-yellow) and duplicates (blue-to-green) where red and blue colors indicate the lowest levels of correlation, while white represents highly correlated data. The %G + C distribution correlations were UPGMA clustered with 100 bootstrap runs to indicate statistical support (only > 60% support shown). Abbreviations are as follows: “Tech” is sequencing technology represented by 4 (454), T (Ion Torrent), I (Illumina), S (Sanger); “Pair” is the forward or reverse paired end sequence data; “Rep” is the arbitrarily labeled replicate ranging from two ( A and B ) to three ( A , B , or C ); “ng” is the nanograms of input DNA from which the viral metagenome was derived. The most reliable estimate of the true %G + C distribution is the unamplified 454 metagenomes. Relative to these, fosmid end sequences generated using Sanger sequencing were the most shifted toward high %G + C, while problematic

    Article Snippet: These data were derived from DNA extracted from a 1,080L Biosphere 2 Ocean viral concentrate and included small-insert metagenomes prepared from varied low-input DNA amounts (10 pg—100 ng) and amplification conditions for commonly used sequencing platforms (Illumina HiSeq2000, herein ‘Illumina’ and Roche 454 Titanium, herein ‘454’).

    Techniques: Sequencing, Labeling, Derivative Assay, Generated

    Protein cluster functional analysis and assembly statistics for Illumina-sequenced Experiment 2 metagenomes. Note that one metagenome from Station 109 DNA yielded significantly fewer reads and thus had a lower total assembly size. Details as described in Figure 3 , including bootstrap analysis of statistical support for correlations across metagenomes.

    Journal: BMC Genomics

    Article Title: Sequencing platform and library preparation choices impact viral metagenomes

    doi: 10.1186/1471-2164-14-320

    Figure Lengend Snippet: Protein cluster functional analysis and assembly statistics for Illumina-sequenced Experiment 2 metagenomes. Note that one metagenome from Station 109 DNA yielded significantly fewer reads and thus had a lower total assembly size. Details as described in Figure 3 , including bootstrap analysis of statistical support for correlations across metagenomes.

    Article Snippet: These data were derived from DNA extracted from a 1,080L Biosphere 2 Ocean viral concentrate and included small-insert metagenomes prepared from varied low-input DNA amounts (10 pg—100 ng) and amplification conditions for commonly used sequencing platforms (Illumina HiSeq2000, herein ‘Illumina’ and Roche 454 Titanium, herein ‘454’).

    Techniques: Functional Assay