dna polymerase buffer Search Results


  • Logo
  • About
  • News
  • Press Release
  • Team
  • Advisors
  • Partners
  • Contact
  • Bioz Stars
  • Bioz vStars
  • 99
    New England Biolabs t4 dna polymerase buffer
    Test of QC cloning using Klenow DNA polymerase. (A) Test of Klenow exonuclease activity determined using the same assay used for <t>T4</t> DNA polymerase. (B) To test QC cloning using Klenow DNA polymerase, the PCR product T019 GC3F was cloned into pICH31477 (23 nucleotide catching sequence) and pICH31480 (52 nucleotide catching sequence). Incubation was performed at 37°C for 0, 30, 60, 90, and 120 minutes. ( C ) Eight randomly chosen clones from 120 min time points were analyzed by colony PCR using vector primers. The size of the expected full-length fragment is indicated by an arrow.
    T4 Dna Polymerase Buffer, supplied by New England Biolabs, used in various techniques. Bioz Stars score: 99/100, based on 398 PubMed citations. ZERO BIAS - scores, article reviews, protocol conditions and more
    https://www.bioz.com/result/t4 dna polymerase buffer/product/New England Biolabs
    Average 99 stars, based on 398 article reviews
    Price from $9.99 to $1999.99
    t4 dna polymerase buffer - by Bioz Stars, 2020-04
    99/100 stars
      Buy from Supplier

    99
    Thermo Fisher t4 dna polymerase buffer
    Single-stranded DNA ligation with <t>T4</t> DNA ligase and CircLigase. A pool of 60 nt acceptor oligonucleotides (‘60N’) were ligated to 10 pmol of a 3΄ biotinylated donor oligonucleotide (CL78) using either T4 DNA ligase in the presence of a splinter oligonucleotide (TL38) or CircLigase. Ligation products were visualized on a 10% denaturing polyacrylamide gel stained with SybrGold. Band shifts from 60 nt to 80 nt indicate successful ligation. Schematic overviews of the reaction schemes are shown on top. The scheme developed by Kwok et al . ( 19 ) is shown for comparison. M: Single-stranded DNA size marker.
    T4 Dna Polymerase Buffer, supplied by Thermo Fisher, used in various techniques. Bioz Stars score: 99/100, based on 38 PubMed citations. ZERO BIAS - scores, article reviews, protocol conditions and more
    https://www.bioz.com/result/t4 dna polymerase buffer/product/Thermo Fisher
    Average 99 stars, based on 38 article reviews
    Price from $9.99 to $1999.99
    t4 dna polymerase buffer - by Bioz Stars, 2020-04
    99/100 stars
      Buy from Supplier

    92
    Promega dna polymerase buffer
    Single-stranded DNA ligation with <t>T4</t> DNA ligase and CircLigase. A pool of 60 nt acceptor oligonucleotides (‘60N’) were ligated to 10 pmol of a 3΄ biotinylated donor oligonucleotide (CL78) using either T4 DNA ligase in the presence of a splinter oligonucleotide (TL38) or CircLigase. Ligation products were visualized on a 10% denaturing polyacrylamide gel stained with SybrGold. Band shifts from 60 nt to 80 nt indicate successful ligation. Schematic overviews of the reaction schemes are shown on top. The scheme developed by Kwok et al . ( 19 ) is shown for comparison. M: Single-stranded DNA size marker.
    Dna Polymerase Buffer, supplied by Promega, used in various techniques. Bioz Stars score: 92/100, based on 56 PubMed citations. ZERO BIAS - scores, article reviews, protocol conditions and more
    https://www.bioz.com/result/dna polymerase buffer/product/Promega
    Average 92 stars, based on 56 article reviews
    Price from $9.99 to $1999.99
    dna polymerase buffer - by Bioz Stars, 2020-04
    92/100 stars
      Buy from Supplier

    87
    Meridian Life Science dna polymerase buffer
    Single-stranded DNA ligation with <t>T4</t> DNA ligase and CircLigase. A pool of 60 nt acceptor oligonucleotides (‘60N’) were ligated to 10 pmol of a 3΄ biotinylated donor oligonucleotide (CL78) using either T4 DNA ligase in the presence of a splinter oligonucleotide (TL38) or CircLigase. Ligation products were visualized on a 10% denaturing polyacrylamide gel stained with SybrGold. Band shifts from 60 nt to 80 nt indicate successful ligation. Schematic overviews of the reaction schemes are shown on top. The scheme developed by Kwok et al . ( 19 ) is shown for comparison. M: Single-stranded DNA size marker.
    Dna Polymerase Buffer, supplied by Meridian Life Science, used in various techniques. Bioz Stars score: 87/100, based on 14 PubMed citations. ZERO BIAS - scores, article reviews, protocol conditions and more
    https://www.bioz.com/result/dna polymerase buffer/product/Meridian Life Science
    Average 87 stars, based on 14 article reviews
    Price from $9.99 to $1999.99
    dna polymerase buffer - by Bioz Stars, 2020-04
    87/100 stars
      Buy from Supplier

    90
    Qiagen dna polymerase buffer
    Single-stranded DNA ligation with <t>T4</t> DNA ligase and CircLigase. A pool of 60 nt acceptor oligonucleotides (‘60N’) were ligated to 10 pmol of a 3΄ biotinylated donor oligonucleotide (CL78) using either T4 DNA ligase in the presence of a splinter oligonucleotide (TL38) or CircLigase. Ligation products were visualized on a 10% denaturing polyacrylamide gel stained with SybrGold. Band shifts from 60 nt to 80 nt indicate successful ligation. Schematic overviews of the reaction schemes are shown on top. The scheme developed by Kwok et al . ( 19 ) is shown for comparison. M: Single-stranded DNA size marker.
    Dna Polymerase Buffer, supplied by Qiagen, used in various techniques. Bioz Stars score: 90/100, based on 1024 PubMed citations. ZERO BIAS - scores, article reviews, protocol conditions and more
    https://www.bioz.com/result/dna polymerase buffer/product/Qiagen
    Average 90 stars, based on 1024 article reviews
    Price from $9.99 to $1999.99
    dna polymerase buffer - by Bioz Stars, 2020-04
    90/100 stars
      Buy from Supplier

    99
    Millipore dna polymerase
    Single-stranded DNA ligation with <t>T4</t> DNA ligase and CircLigase. A pool of 60 nt acceptor oligonucleotides (‘60N’) were ligated to 10 pmol of a 3΄ biotinylated donor oligonucleotide (CL78) using either T4 DNA ligase in the presence of a splinter oligonucleotide (TL38) or CircLigase. Ligation products were visualized on a 10% denaturing polyacrylamide gel stained with SybrGold. Band shifts from 60 nt to 80 nt indicate successful ligation. Schematic overviews of the reaction schemes are shown on top. The scheme developed by Kwok et al . ( 19 ) is shown for comparison. M: Single-stranded DNA size marker.
    Dna Polymerase, supplied by Millipore, used in various techniques. Bioz Stars score: 99/100, based on 257 PubMed citations. ZERO BIAS - scores, article reviews, protocol conditions and more
    https://www.bioz.com/result/dna polymerase/product/Millipore
    Average 99 stars, based on 257 article reviews
    Price from $9.99 to $1999.99
    dna polymerase - by Bioz Stars, 2020-04
    99/100 stars
      Buy from Supplier

    86
    Stratagene dna polymerase buffer
    Single-stranded DNA ligation with <t>T4</t> DNA ligase and CircLigase. A pool of 60 nt acceptor oligonucleotides (‘60N’) were ligated to 10 pmol of a 3΄ biotinylated donor oligonucleotide (CL78) using either T4 DNA ligase in the presence of a splinter oligonucleotide (TL38) or CircLigase. Ligation products were visualized on a 10% denaturing polyacrylamide gel stained with SybrGold. Band shifts from 60 nt to 80 nt indicate successful ligation. Schematic overviews of the reaction schemes are shown on top. The scheme developed by Kwok et al . ( 19 ) is shown for comparison. M: Single-stranded DNA size marker.
    Dna Polymerase Buffer, supplied by Stratagene, used in various techniques. Bioz Stars score: 86/100, based on 14 PubMed citations. ZERO BIAS - scores, article reviews, protocol conditions and more
    https://www.bioz.com/result/dna polymerase buffer/product/Stratagene
    Average 86 stars, based on 14 article reviews
    Price from $9.99 to $1999.99
    dna polymerase buffer - by Bioz Stars, 2020-04
    86/100 stars
      Buy from Supplier

    99
    Promega gotaq dna polymerase buffer
    Single-stranded DNA ligation with <t>T4</t> DNA ligase and CircLigase. A pool of 60 nt acceptor oligonucleotides (‘60N’) were ligated to 10 pmol of a 3΄ biotinylated donor oligonucleotide (CL78) using either T4 DNA ligase in the presence of a splinter oligonucleotide (TL38) or CircLigase. Ligation products were visualized on a 10% denaturing polyacrylamide gel stained with SybrGold. Band shifts from 60 nt to 80 nt indicate successful ligation. Schematic overviews of the reaction schemes are shown on top. The scheme developed by Kwok et al . ( 19 ) is shown for comparison. M: Single-stranded DNA size marker.
    Gotaq Dna Polymerase Buffer, supplied by Promega, used in various techniques. Bioz Stars score: 99/100, based on 1502 PubMed citations. ZERO BIAS - scores, article reviews, protocol conditions and more
    https://www.bioz.com/result/gotaq dna polymerase buffer/product/Promega
    Average 99 stars, based on 1502 article reviews
    Price from $9.99 to $1999.99
    gotaq dna polymerase buffer - by Bioz Stars, 2020-04
    99/100 stars
      Buy from Supplier

    99
    New England Biolabs vent dna polymerase buffer
    In vivo <t>DMS</t> footprinting of the lower strand of the TRE-1s. DNAs from in vivo DMS-treated MT-2 and MT-4 cells were piperidine cleaved and subjected to LMPCR as described in Materials and Methods. The reaction products were separated on polyacrylamide gels and exposed to film. Autoradiograms corresponding to the three TRE-1s are shown. (A) Promoter-distal TRE-1. A band is missing in the 5′ GC-rich flank most likely because the proviral <t>DNA</t> contains a base other than the predicted guanine residue at that position. (B) Promoter-central TRE-1. (C) Promoter-proximal TRE-1. Arrowheads pointing toward bands indicate hypersensitive residues; arrowheads pointing away from bands indicate protected residues. Larger arrowheads indicate major protections or hypersensitive sites.
    Vent Dna Polymerase Buffer, supplied by New England Biolabs, used in various techniques. Bioz Stars score: 99/100, based on 286 PubMed citations. ZERO BIAS - scores, article reviews, protocol conditions and more
    https://www.bioz.com/result/vent dna polymerase buffer/product/New England Biolabs
    Average 99 stars, based on 286 article reviews
    Price from $9.99 to $1999.99
    vent dna polymerase buffer - by Bioz Stars, 2020-04
    99/100 stars
      Buy from Supplier

    99
    New England Biolabs phi29 dna polymerase buffer
    Effect of RNA substitutions in circular templates on rolling circle amplification with <t>phi29</t> <t>DNA</t> polymerase. ( A ) Total amount of RCA products (y-axis) generated for padlock probes with/without a terminal 3′ RNA and in the absence of synthetic RNA ligation template (template -). ( B ) Circles with 0–7 RNA substitutions in the backbone were amplified and digitally counted. The y-axis shows the number of rolling circle products (RCPs); error bars ± S.D.; n = 2. The same RCA reactions with chimeric circles were also monitored in real-time by measuring SYBR Gold incorporation on qPCR instrument ( C and E ). (C) RCA reaction curves of circles with 0, 1 and 2 RNA substitutions. ( D ) RCPs from C were imaged on microscope slides and size and intensity of individual RCPs were quantified. Black line, median; upper whisker, highest value that is within 1.5 the interquartile range of the hinge; lower whisker, lowest value within 1.5 the interquartile range of the hinge. (E) Real-time data of the same RCA reactions as in B with 0–7 RNA substitutes are displayed. Representative samples are presented from a duplicated experiment. To highlight the initial stages of RCA and to show the difference between the samples with low RCA efficiency, fluorescence intensity readout between 3000 and 6000 is presented.
    Phi29 Dna Polymerase Buffer, supplied by New England Biolabs, used in various techniques. Bioz Stars score: 99/100, based on 63 PubMed citations. ZERO BIAS - scores, article reviews, protocol conditions and more
    https://www.bioz.com/result/phi29 dna polymerase buffer/product/New England Biolabs
    Average 99 stars, based on 63 article reviews
    Price from $9.99 to $1999.99
    phi29 dna polymerase buffer - by Bioz Stars, 2020-04
    99/100 stars
      Buy from Supplier

    99
    Thermo Fisher amplitaq dna polymerase buffer
    Effect of RNA substitutions in circular templates on rolling circle amplification with <t>phi29</t> <t>DNA</t> polymerase. ( A ) Total amount of RCA products (y-axis) generated for padlock probes with/without a terminal 3′ RNA and in the absence of synthetic RNA ligation template (template -). ( B ) Circles with 0–7 RNA substitutions in the backbone were amplified and digitally counted. The y-axis shows the number of rolling circle products (RCPs); error bars ± S.D.; n = 2. The same RCA reactions with chimeric circles were also monitored in real-time by measuring SYBR Gold incorporation on qPCR instrument ( C and E ). (C) RCA reaction curves of circles with 0, 1 and 2 RNA substitutions. ( D ) RCPs from C were imaged on microscope slides and size and intensity of individual RCPs were quantified. Black line, median; upper whisker, highest value that is within 1.5 the interquartile range of the hinge; lower whisker, lowest value within 1.5 the interquartile range of the hinge. (E) Real-time data of the same RCA reactions as in B with 0–7 RNA substitutes are displayed. Representative samples are presented from a duplicated experiment. To highlight the initial stages of RCA and to show the difference between the samples with low RCA efficiency, fluorescence intensity readout between 3000 and 6000 is presented.
    Amplitaq Dna Polymerase Buffer, supplied by Thermo Fisher, used in various techniques. Bioz Stars score: 99/100, based on 709 PubMed citations. ZERO BIAS - scores, article reviews, protocol conditions and more
    https://www.bioz.com/result/amplitaq dna polymerase buffer/product/Thermo Fisher
    Average 99 stars, based on 709 article reviews
    Price from $9.99 to $1999.99
    amplitaq dna polymerase buffer - by Bioz Stars, 2020-04
    99/100 stars
      Buy from Supplier

    99
    Millipore redtaq dna polymerase buffer
    Effect of RNA substitutions in circular templates on rolling circle amplification with <t>phi29</t> <t>DNA</t> polymerase. ( A ) Total amount of RCA products (y-axis) generated for padlock probes with/without a terminal 3′ RNA and in the absence of synthetic RNA ligation template (template -). ( B ) Circles with 0–7 RNA substitutions in the backbone were amplified and digitally counted. The y-axis shows the number of rolling circle products (RCPs); error bars ± S.D.; n = 2. The same RCA reactions with chimeric circles were also monitored in real-time by measuring SYBR Gold incorporation on qPCR instrument ( C and E ). (C) RCA reaction curves of circles with 0, 1 and 2 RNA substitutions. ( D ) RCPs from C were imaged on microscope slides and size and intensity of individual RCPs were quantified. Black line, median; upper whisker, highest value that is within 1.5 the interquartile range of the hinge; lower whisker, lowest value within 1.5 the interquartile range of the hinge. (E) Real-time data of the same RCA reactions as in B with 0–7 RNA substitutes are displayed. Representative samples are presented from a duplicated experiment. To highlight the initial stages of RCA and to show the difference between the samples with low RCA efficiency, fluorescence intensity readout between 3000 and 6000 is presented.
    Redtaq Dna Polymerase Buffer, supplied by Millipore, used in various techniques. Bioz Stars score: 99/100, based on 6 PubMed citations. ZERO BIAS - scores, article reviews, protocol conditions and more
    https://www.bioz.com/result/redtaq dna polymerase buffer/product/Millipore
    Average 99 stars, based on 6 article reviews
    Price from $9.99 to $1999.99
    redtaq dna polymerase buffer - by Bioz Stars, 2020-04
    99/100 stars
      Buy from Supplier

    99
    Qiagen toptaq dna polymerase amplification buffer
    Effect of RNA substitutions in circular templates on rolling circle amplification with <t>phi29</t> <t>DNA</t> polymerase. ( A ) Total amount of RCA products (y-axis) generated for padlock probes with/without a terminal 3′ RNA and in the absence of synthetic RNA ligation template (template -). ( B ) Circles with 0–7 RNA substitutions in the backbone were amplified and digitally counted. The y-axis shows the number of rolling circle products (RCPs); error bars ± S.D.; n = 2. The same RCA reactions with chimeric circles were also monitored in real-time by measuring SYBR Gold incorporation on qPCR instrument ( C and E ). (C) RCA reaction curves of circles with 0, 1 and 2 RNA substitutions. ( D ) RCPs from C were imaged on microscope slides and size and intensity of individual RCPs were quantified. Black line, median; upper whisker, highest value that is within 1.5 the interquartile range of the hinge; lower whisker, lowest value within 1.5 the interquartile range of the hinge. (E) Real-time data of the same RCA reactions as in B with 0–7 RNA substitutes are displayed. Representative samples are presented from a duplicated experiment. To highlight the initial stages of RCA and to show the difference between the samples with low RCA efficiency, fluorescence intensity readout between 3000 and 6000 is presented.
    Toptaq Dna Polymerase Amplification Buffer, supplied by Qiagen, used in various techniques. Bioz Stars score: 99/100, based on 4 PubMed citations. ZERO BIAS - scores, article reviews, protocol conditions and more
    https://www.bioz.com/result/toptaq dna polymerase amplification buffer/product/Qiagen
    Average 99 stars, based on 4 article reviews
    Price from $9.99 to $1999.99
    toptaq dna polymerase amplification buffer - by Bioz Stars, 2020-04
    99/100 stars
      Buy from Supplier

    99
    Millipore t4 dna polymerase buffer
    Effect of RNA substitutions in circular templates on rolling circle amplification with <t>phi29</t> <t>DNA</t> polymerase. ( A ) Total amount of RCA products (y-axis) generated for padlock probes with/without a terminal 3′ RNA and in the absence of synthetic RNA ligation template (template -). ( B ) Circles with 0–7 RNA substitutions in the backbone were amplified and digitally counted. The y-axis shows the number of rolling circle products (RCPs); error bars ± S.D.; n = 2. The same RCA reactions with chimeric circles were also monitored in real-time by measuring SYBR Gold incorporation on qPCR instrument ( C and E ). (C) RCA reaction curves of circles with 0, 1 and 2 RNA substitutions. ( D ) RCPs from C were imaged on microscope slides and size and intensity of individual RCPs were quantified. Black line, median; upper whisker, highest value that is within 1.5 the interquartile range of the hinge; lower whisker, lowest value within 1.5 the interquartile range of the hinge. (E) Real-time data of the same RCA reactions as in B with 0–7 RNA substitutes are displayed. Representative samples are presented from a duplicated experiment. To highlight the initial stages of RCA and to show the difference between the samples with low RCA efficiency, fluorescence intensity readout between 3000 and 6000 is presented.
    T4 Dna Polymerase Buffer, supplied by Millipore, used in various techniques. Bioz Stars score: 99/100, based on 7 PubMed citations. ZERO BIAS - scores, article reviews, protocol conditions and more
    https://www.bioz.com/result/t4 dna polymerase buffer/product/Millipore
    Average 99 stars, based on 7 article reviews
    Price from $9.99 to $1999.99
    t4 dna polymerase buffer - by Bioz Stars, 2020-04
    99/100 stars
      Buy from Supplier

    87
    Promega thermophilic dna polymerase buffer
    Effect of RNA substitutions in circular templates on rolling circle amplification with <t>phi29</t> <t>DNA</t> polymerase. ( A ) Total amount of RCA products (y-axis) generated for padlock probes with/without a terminal 3′ RNA and in the absence of synthetic RNA ligation template (template -). ( B ) Circles with 0–7 RNA substitutions in the backbone were amplified and digitally counted. The y-axis shows the number of rolling circle products (RCPs); error bars ± S.D.; n = 2. The same RCA reactions with chimeric circles were also monitored in real-time by measuring SYBR Gold incorporation on qPCR instrument ( C and E ). (C) RCA reaction curves of circles with 0, 1 and 2 RNA substitutions. ( D ) RCPs from C were imaged on microscope slides and size and intensity of individual RCPs were quantified. Black line, median; upper whisker, highest value that is within 1.5 the interquartile range of the hinge; lower whisker, lowest value within 1.5 the interquartile range of the hinge. (E) Real-time data of the same RCA reactions as in B with 0–7 RNA substitutes are displayed. Representative samples are presented from a duplicated experiment. To highlight the initial stages of RCA and to show the difference between the samples with low RCA efficiency, fluorescence intensity readout between 3000 and 6000 is presented.
    Thermophilic Dna Polymerase Buffer, supplied by Promega, used in various techniques. Bioz Stars score: 87/100, based on 43 PubMed citations. ZERO BIAS - scores, article reviews, protocol conditions and more
    https://www.bioz.com/result/thermophilic dna polymerase buffer/product/Promega
    Average 87 stars, based on 43 article reviews
    Price from $9.99 to $1999.99
    thermophilic dna polymerase buffer - by Bioz Stars, 2020-04
    87/100 stars
      Buy from Supplier

    91
    Meridian Life Science myfitm dna polymerase buffer
    Effect of RNA substitutions in circular templates on rolling circle amplification with <t>phi29</t> <t>DNA</t> polymerase. ( A ) Total amount of RCA products (y-axis) generated for padlock probes with/without a terminal 3′ RNA and in the absence of synthetic RNA ligation template (template -). ( B ) Circles with 0–7 RNA substitutions in the backbone were amplified and digitally counted. The y-axis shows the number of rolling circle products (RCPs); error bars ± S.D.; n = 2. The same RCA reactions with chimeric circles were also monitored in real-time by measuring SYBR Gold incorporation on qPCR instrument ( C and E ). (C) RCA reaction curves of circles with 0, 1 and 2 RNA substitutions. ( D ) RCPs from C were imaged on microscope slides and size and intensity of individual RCPs were quantified. Black line, median; upper whisker, highest value that is within 1.5 the interquartile range of the hinge; lower whisker, lowest value within 1.5 the interquartile range of the hinge. (E) Real-time data of the same RCA reactions as in B with 0–7 RNA substitutes are displayed. Representative samples are presented from a duplicated experiment. To highlight the initial stages of RCA and to show the difference between the samples with low RCA efficiency, fluorescence intensity readout between 3000 and 6000 is presented.
    Myfitm Dna Polymerase Buffer, supplied by Meridian Life Science, used in various techniques. Bioz Stars score: 91/100, based on 3 PubMed citations. ZERO BIAS - scores, article reviews, protocol conditions and more
    https://www.bioz.com/result/myfitm dna polymerase buffer/product/Meridian Life Science
    Average 91 stars, based on 3 article reviews
    Price from $9.99 to $1999.99
    myfitm dna polymerase buffer - by Bioz Stars, 2020-04
    91/100 stars
      Buy from Supplier

    86
    Roche tth dna polymerase buffer
    Effect of RNA substitutions in circular templates on rolling circle amplification with <t>phi29</t> <t>DNA</t> polymerase. ( A ) Total amount of RCA products (y-axis) generated for padlock probes with/without a terminal 3′ RNA and in the absence of synthetic RNA ligation template (template -). ( B ) Circles with 0–7 RNA substitutions in the backbone were amplified and digitally counted. The y-axis shows the number of rolling circle products (RCPs); error bars ± S.D.; n = 2. The same RCA reactions with chimeric circles were also monitored in real-time by measuring SYBR Gold incorporation on qPCR instrument ( C and E ). (C) RCA reaction curves of circles with 0, 1 and 2 RNA substitutions. ( D ) RCPs from C were imaged on microscope slides and size and intensity of individual RCPs were quantified. Black line, median; upper whisker, highest value that is within 1.5 the interquartile range of the hinge; lower whisker, lowest value within 1.5 the interquartile range of the hinge. (E) Real-time data of the same RCA reactions as in B with 0–7 RNA substitutes are displayed. Representative samples are presented from a duplicated experiment. To highlight the initial stages of RCA and to show the difference between the samples with low RCA efficiency, fluorescence intensity readout between 3000 and 6000 is presented.
    Tth Dna Polymerase Buffer, supplied by Roche, used in various techniques. Bioz Stars score: 86/100, based on 7 PubMed citations. ZERO BIAS - scores, article reviews, protocol conditions and more
    https://www.bioz.com/result/tth dna polymerase buffer/product/Roche
    Average 86 stars, based on 7 article reviews
    Price from $9.99 to $1999.99
    tth dna polymerase buffer - by Bioz Stars, 2020-04
    86/100 stars
      Buy from Supplier

    85
    Roche mgcl dna polymerase buffer
    Effect of RNA substitutions in circular templates on rolling circle amplification with <t>phi29</t> <t>DNA</t> polymerase. ( A ) Total amount of RCA products (y-axis) generated for padlock probes with/without a terminal 3′ RNA and in the absence of synthetic RNA ligation template (template -). ( B ) Circles with 0–7 RNA substitutions in the backbone were amplified and digitally counted. The y-axis shows the number of rolling circle products (RCPs); error bars ± S.D.; n = 2. The same RCA reactions with chimeric circles were also monitored in real-time by measuring SYBR Gold incorporation on qPCR instrument ( C and E ). (C) RCA reaction curves of circles with 0, 1 and 2 RNA substitutions. ( D ) RCPs from C were imaged on microscope slides and size and intensity of individual RCPs were quantified. Black line, median; upper whisker, highest value that is within 1.5 the interquartile range of the hinge; lower whisker, lowest value within 1.5 the interquartile range of the hinge. (E) Real-time data of the same RCA reactions as in B with 0–7 RNA substitutes are displayed. Representative samples are presented from a duplicated experiment. To highlight the initial stages of RCA and to show the difference between the samples with low RCA efficiency, fluorescence intensity readout between 3000 and 6000 is presented.
    Mgcl Dna Polymerase Buffer, supplied by Roche, used in various techniques. Bioz Stars score: 85/100, based on 6 PubMed citations. ZERO BIAS - scores, article reviews, protocol conditions and more
    https://www.bioz.com/result/mgcl dna polymerase buffer/product/Roche
    Average 85 stars, based on 6 article reviews
    Price from $9.99 to $1999.99
    mgcl dna polymerase buffer - by Bioz Stars, 2020-04
    85/100 stars
      Buy from Supplier

    99
    TaKaRa dna polymerase buffer
    Effect of RNA substitutions in circular templates on rolling circle amplification with <t>phi29</t> <t>DNA</t> polymerase. ( A ) Total amount of RCA products (y-axis) generated for padlock probes with/without a terminal 3′ RNA and in the absence of synthetic RNA ligation template (template -). ( B ) Circles with 0–7 RNA substitutions in the backbone were amplified and digitally counted. The y-axis shows the number of rolling circle products (RCPs); error bars ± S.D.; n = 2. The same RCA reactions with chimeric circles were also monitored in real-time by measuring SYBR Gold incorporation on qPCR instrument ( C and E ). (C) RCA reaction curves of circles with 0, 1 and 2 RNA substitutions. ( D ) RCPs from C were imaged on microscope slides and size and intensity of individual RCPs were quantified. Black line, median; upper whisker, highest value that is within 1.5 the interquartile range of the hinge; lower whisker, lowest value within 1.5 the interquartile range of the hinge. (E) Real-time data of the same RCA reactions as in B with 0–7 RNA substitutes are displayed. Representative samples are presented from a duplicated experiment. To highlight the initial stages of RCA and to show the difference between the samples with low RCA efficiency, fluorescence intensity readout between 3000 and 6000 is presented.
    Dna Polymerase Buffer, supplied by TaKaRa, used in various techniques. Bioz Stars score: 99/100, based on 21 PubMed citations. ZERO BIAS - scores, article reviews, protocol conditions and more
    https://www.bioz.com/result/dna polymerase buffer/product/TaKaRa
    Average 99 stars, based on 21 article reviews
    Price from $9.99 to $1999.99
    dna polymerase buffer - by Bioz Stars, 2020-04
    99/100 stars
      Buy from Supplier

    85
    Agilent technologies paq5000 dna polymerase buffer
    Effect of RNA substitutions in circular templates on rolling circle amplification with <t>phi29</t> <t>DNA</t> polymerase. ( A ) Total amount of RCA products (y-axis) generated for padlock probes with/without a terminal 3′ RNA and in the absence of synthetic RNA ligation template (template -). ( B ) Circles with 0–7 RNA substitutions in the backbone were amplified and digitally counted. The y-axis shows the number of rolling circle products (RCPs); error bars ± S.D.; n = 2. The same RCA reactions with chimeric circles were also monitored in real-time by measuring SYBR Gold incorporation on qPCR instrument ( C and E ). (C) RCA reaction curves of circles with 0, 1 and 2 RNA substitutions. ( D ) RCPs from C were imaged on microscope slides and size and intensity of individual RCPs were quantified. Black line, median; upper whisker, highest value that is within 1.5 the interquartile range of the hinge; lower whisker, lowest value within 1.5 the interquartile range of the hinge. (E) Real-time data of the same RCA reactions as in B with 0–7 RNA substitutes are displayed. Representative samples are presented from a duplicated experiment. To highlight the initial stages of RCA and to show the difference between the samples with low RCA efficiency, fluorescence intensity readout between 3000 and 6000 is presented.
    Paq5000 Dna Polymerase Buffer, supplied by Agilent technologies, used in various techniques. Bioz Stars score: 85/100, based on 5 PubMed citations. ZERO BIAS - scores, article reviews, protocol conditions and more
    https://www.bioz.com/result/paq5000 dna polymerase buffer/product/Agilent technologies
    Average 85 stars, based on 5 article reviews
    Price from $9.99 to $1999.99
    paq5000 dna polymerase buffer - by Bioz Stars, 2020-04
    85/100 stars
      Buy from Supplier

    99
    Thermo Fisher amplitaq gold dna polymerase buffer
    Effect of RNA substitutions in circular templates on rolling circle amplification with <t>phi29</t> <t>DNA</t> polymerase. ( A ) Total amount of RCA products (y-axis) generated for padlock probes with/without a terminal 3′ RNA and in the absence of synthetic RNA ligation template (template -). ( B ) Circles with 0–7 RNA substitutions in the backbone were amplified and digitally counted. The y-axis shows the number of rolling circle products (RCPs); error bars ± S.D.; n = 2. The same RCA reactions with chimeric circles were also monitored in real-time by measuring SYBR Gold incorporation on qPCR instrument ( C and E ). (C) RCA reaction curves of circles with 0, 1 and 2 RNA substitutions. ( D ) RCPs from C were imaged on microscope slides and size and intensity of individual RCPs were quantified. Black line, median; upper whisker, highest value that is within 1.5 the interquartile range of the hinge; lower whisker, lowest value within 1.5 the interquartile range of the hinge. (E) Real-time data of the same RCA reactions as in B with 0–7 RNA substitutes are displayed. Representative samples are presented from a duplicated experiment. To highlight the initial stages of RCA and to show the difference between the samples with low RCA efficiency, fluorescence intensity readout between 3000 and 6000 is presented.
    Amplitaq Gold Dna Polymerase Buffer, supplied by Thermo Fisher, used in various techniques. Bioz Stars score: 99/100, based on 1630 PubMed citations. ZERO BIAS - scores, article reviews, protocol conditions and more
    https://www.bioz.com/result/amplitaq gold dna polymerase buffer/product/Thermo Fisher
    Average 99 stars, based on 1630 article reviews
    Price from $9.99 to $1999.99
    amplitaq gold dna polymerase buffer - by Bioz Stars, 2020-04
    99/100 stars
      Buy from Supplier

    99
    Thermo Fisher phi29 dna polymerase reaction buffer
    Effect of RNA substitutions in circular templates on rolling circle amplification with <t>phi29</t> <t>DNA</t> polymerase. ( A ) Total amount of RCA products (y-axis) generated for padlock probes with/without a terminal 3′ RNA and in the absence of synthetic RNA ligation template (template -). ( B ) Circles with 0–7 RNA substitutions in the backbone were amplified and digitally counted. The y-axis shows the number of rolling circle products (RCPs); error bars ± S.D.; n = 2. The same RCA reactions with chimeric circles were also monitored in real-time by measuring SYBR Gold incorporation on qPCR instrument ( C and E ). (C) RCA reaction curves of circles with 0, 1 and 2 RNA substitutions. ( D ) RCPs from C were imaged on microscope slides and size and intensity of individual RCPs were quantified. Black line, median; upper whisker, highest value that is within 1.5 the interquartile range of the hinge; lower whisker, lowest value within 1.5 the interquartile range of the hinge. (E) Real-time data of the same RCA reactions as in B with 0–7 RNA substitutes are displayed. Representative samples are presented from a duplicated experiment. To highlight the initial stages of RCA and to show the difference between the samples with low RCA efficiency, fluorescence intensity readout between 3000 and 6000 is presented.
    Phi29 Dna Polymerase Reaction Buffer, supplied by Thermo Fisher, used in various techniques. Bioz Stars score: 99/100, based on 15 PubMed citations. ZERO BIAS - scores, article reviews, protocol conditions and more
    https://www.bioz.com/result/phi29 dna polymerase reaction buffer/product/Thermo Fisher
    Average 99 stars, based on 15 article reviews
    Price from $9.99 to $1999.99
    phi29 dna polymerase reaction buffer - by Bioz Stars, 2020-04
    99/100 stars
      Buy from Supplier

    99
    Thermo Fisher dynazyme dna polymerase buffer
    Effect of RNA substitutions in circular templates on rolling circle amplification with <t>phi29</t> <t>DNA</t> polymerase. ( A ) Total amount of RCA products (y-axis) generated for padlock probes with/without a terminal 3′ RNA and in the absence of synthetic RNA ligation template (template -). ( B ) Circles with 0–7 RNA substitutions in the backbone were amplified and digitally counted. The y-axis shows the number of rolling circle products (RCPs); error bars ± S.D.; n = 2. The same RCA reactions with chimeric circles were also monitored in real-time by measuring SYBR Gold incorporation on qPCR instrument ( C and E ). (C) RCA reaction curves of circles with 0, 1 and 2 RNA substitutions. ( D ) RCPs from C were imaged on microscope slides and size and intensity of individual RCPs were quantified. Black line, median; upper whisker, highest value that is within 1.5 the interquartile range of the hinge; lower whisker, lowest value within 1.5 the interquartile range of the hinge. (E) Real-time data of the same RCA reactions as in B with 0–7 RNA substitutes are displayed. Representative samples are presented from a duplicated experiment. To highlight the initial stages of RCA and to show the difference between the samples with low RCA efficiency, fluorescence intensity readout between 3000 and 6000 is presented.
    Dynazyme Dna Polymerase Buffer, supplied by Thermo Fisher, used in various techniques. Bioz Stars score: 99/100, based on 91 PubMed citations. ZERO BIAS - scores, article reviews, protocol conditions and more
    https://www.bioz.com/result/dynazyme dna polymerase buffer/product/Thermo Fisher
    Average 99 stars, based on 91 article reviews
    Price from $9.99 to $1999.99
    dynazyme dna polymerase buffer - by Bioz Stars, 2020-04
    99/100 stars
      Buy from Supplier

    99
    Millipore accutaq la dna polymerase buffer
    Effect of RNA substitutions in circular templates on rolling circle amplification with <t>phi29</t> <t>DNA</t> polymerase. ( A ) Total amount of RCA products (y-axis) generated for padlock probes with/without a terminal 3′ RNA and in the absence of synthetic RNA ligation template (template -). ( B ) Circles with 0–7 RNA substitutions in the backbone were amplified and digitally counted. The y-axis shows the number of rolling circle products (RCPs); error bars ± S.D.; n = 2. The same RCA reactions with chimeric circles were also monitored in real-time by measuring SYBR Gold incorporation on qPCR instrument ( C and E ). (C) RCA reaction curves of circles with 0, 1 and 2 RNA substitutions. ( D ) RCPs from C were imaged on microscope slides and size and intensity of individual RCPs were quantified. Black line, median; upper whisker, highest value that is within 1.5 the interquartile range of the hinge; lower whisker, lowest value within 1.5 the interquartile range of the hinge. (E) Real-time data of the same RCA reactions as in B with 0–7 RNA substitutes are displayed. Representative samples are presented from a duplicated experiment. To highlight the initial stages of RCA and to show the difference between the samples with low RCA efficiency, fluorescence intensity readout between 3000 and 6000 is presented.
    Accutaq La Dna Polymerase Buffer, supplied by Millipore, used in various techniques. Bioz Stars score: 99/100, based on 47 PubMed citations. ZERO BIAS - scores, article reviews, protocol conditions and more
    https://www.bioz.com/result/accutaq la dna polymerase buffer/product/Millipore
    Average 99 stars, based on 47 article reviews
    Price from $9.99 to $1999.99
    accutaq la dna polymerase buffer - by Bioz Stars, 2020-04
    99/100 stars
      Buy from Supplier

    99
    Zymo Research zymotaq dna polymerase
    Effect of RNA substitutions in circular templates on rolling circle amplification with <t>phi29</t> <t>DNA</t> polymerase. ( A ) Total amount of RCA products (y-axis) generated for padlock probes with/without a terminal 3′ RNA and in the absence of synthetic RNA ligation template (template -). ( B ) Circles with 0–7 RNA substitutions in the backbone were amplified and digitally counted. The y-axis shows the number of rolling circle products (RCPs); error bars ± S.D.; n = 2. The same RCA reactions with chimeric circles were also monitored in real-time by measuring SYBR Gold incorporation on qPCR instrument ( C and E ). (C) RCA reaction curves of circles with 0, 1 and 2 RNA substitutions. ( D ) RCPs from C were imaged on microscope slides and size and intensity of individual RCPs were quantified. Black line, median; upper whisker, highest value that is within 1.5 the interquartile range of the hinge; lower whisker, lowest value within 1.5 the interquartile range of the hinge. (E) Real-time data of the same RCA reactions as in B with 0–7 RNA substitutes are displayed. Representative samples are presented from a duplicated experiment. To highlight the initial stages of RCA and to show the difference between the samples with low RCA efficiency, fluorescence intensity readout between 3000 and 6000 is presented.
    Zymotaq Dna Polymerase, supplied by Zymo Research, used in various techniques. Bioz Stars score: 99/100, based on 4 PubMed citations. ZERO BIAS - scores, article reviews, protocol conditions and more
    https://www.bioz.com/result/zymotaq dna polymerase/product/Zymo Research
    Average 99 stars, based on 4 article reviews
    Price from $9.99 to $1999.99
    zymotaq dna polymerase - by Bioz Stars, 2020-04
    99/100 stars
      Buy from Supplier

    99
    New England Biolabs onetaq dna polymerase
    Effect of RNA substitutions in circular templates on rolling circle amplification with <t>phi29</t> <t>DNA</t> polymerase. ( A ) Total amount of RCA products (y-axis) generated for padlock probes with/without a terminal 3′ RNA and in the absence of synthetic RNA ligation template (template -). ( B ) Circles with 0–7 RNA substitutions in the backbone were amplified and digitally counted. The y-axis shows the number of rolling circle products (RCPs); error bars ± S.D.; n = 2. The same RCA reactions with chimeric circles were also monitored in real-time by measuring SYBR Gold incorporation on qPCR instrument ( C and E ). (C) RCA reaction curves of circles with 0, 1 and 2 RNA substitutions. ( D ) RCPs from C were imaged on microscope slides and size and intensity of individual RCPs were quantified. Black line, median; upper whisker, highest value that is within 1.5 the interquartile range of the hinge; lower whisker, lowest value within 1.5 the interquartile range of the hinge. (E) Real-time data of the same RCA reactions as in B with 0–7 RNA substitutes are displayed. Representative samples are presented from a duplicated experiment. To highlight the initial stages of RCA and to show the difference between the samples with low RCA efficiency, fluorescence intensity readout between 3000 and 6000 is presented.
    Onetaq Dna Polymerase, supplied by New England Biolabs, used in various techniques. Bioz Stars score: 99/100, based on 657 PubMed citations. ZERO BIAS - scores, article reviews, protocol conditions and more
    https://www.bioz.com/result/onetaq dna polymerase/product/New England Biolabs
    Average 99 stars, based on 657 article reviews
    Price from $9.99 to $1999.99
    onetaq dna polymerase - by Bioz Stars, 2020-04
    99/100 stars
      Buy from Supplier

    99
    TaKaRa extaq dna polymerase buffer
    Effect of RNA substitutions in circular templates on rolling circle amplification with <t>phi29</t> <t>DNA</t> polymerase. ( A ) Total amount of RCA products (y-axis) generated for padlock probes with/without a terminal 3′ RNA and in the absence of synthetic RNA ligation template (template -). ( B ) Circles with 0–7 RNA substitutions in the backbone were amplified and digitally counted. The y-axis shows the number of rolling circle products (RCPs); error bars ± S.D.; n = 2. The same RCA reactions with chimeric circles were also monitored in real-time by measuring SYBR Gold incorporation on qPCR instrument ( C and E ). (C) RCA reaction curves of circles with 0, 1 and 2 RNA substitutions. ( D ) RCPs from C were imaged on microscope slides and size and intensity of individual RCPs were quantified. Black line, median; upper whisker, highest value that is within 1.5 the interquartile range of the hinge; lower whisker, lowest value within 1.5 the interquartile range of the hinge. (E) Real-time data of the same RCA reactions as in B with 0–7 RNA substitutes are displayed. Representative samples are presented from a duplicated experiment. To highlight the initial stages of RCA and to show the difference between the samples with low RCA efficiency, fluorescence intensity readout between 3000 and 6000 is presented.
    Extaq Dna Polymerase Buffer, supplied by TaKaRa, used in various techniques. Bioz Stars score: 99/100, based on 14 PubMed citations. ZERO BIAS - scores, article reviews, protocol conditions and more
    https://www.bioz.com/result/extaq dna polymerase buffer/product/TaKaRa
    Average 99 stars, based on 14 article reviews
    Price from $9.99 to $1999.99
    extaq dna polymerase buffer - by Bioz Stars, 2020-04
    99/100 stars
      Buy from Supplier

    85
    Promega thermo dna polymerase reaction buffer
    Effect of RNA substitutions in circular templates on rolling circle amplification with <t>phi29</t> <t>DNA</t> polymerase. ( A ) Total amount of RCA products (y-axis) generated for padlock probes with/without a terminal 3′ RNA and in the absence of synthetic RNA ligation template (template -). ( B ) Circles with 0–7 RNA substitutions in the backbone were amplified and digitally counted. The y-axis shows the number of rolling circle products (RCPs); error bars ± S.D.; n = 2. The same RCA reactions with chimeric circles were also monitored in real-time by measuring SYBR Gold incorporation on qPCR instrument ( C and E ). (C) RCA reaction curves of circles with 0, 1 and 2 RNA substitutions. ( D ) RCPs from C were imaged on microscope slides and size and intensity of individual RCPs were quantified. Black line, median; upper whisker, highest value that is within 1.5 the interquartile range of the hinge; lower whisker, lowest value within 1.5 the interquartile range of the hinge. (E) Real-time data of the same RCA reactions as in B with 0–7 RNA substitutes are displayed. Representative samples are presented from a duplicated experiment. To highlight the initial stages of RCA and to show the difference between the samples with low RCA efficiency, fluorescence intensity readout between 3000 and 6000 is presented.
    Thermo Dna Polymerase Reaction Buffer, supplied by Promega, used in various techniques. Bioz Stars score: 85/100, based on 8 PubMed citations. ZERO BIAS - scores, article reviews, protocol conditions and more
    https://www.bioz.com/result/thermo dna polymerase reaction buffer/product/Promega
    Average 85 stars, based on 8 article reviews
    Price from $9.99 to $1999.99
    thermo dna polymerase reaction buffer - by Bioz Stars, 2020-04
    85/100 stars
      Buy from Supplier

    Image Search Results


    Test of QC cloning using Klenow DNA polymerase. (A) Test of Klenow exonuclease activity determined using the same assay used for T4 DNA polymerase. (B) To test QC cloning using Klenow DNA polymerase, the PCR product T019 GC3F was cloned into pICH31477 (23 nucleotide catching sequence) and pICH31480 (52 nucleotide catching sequence). Incubation was performed at 37°C for 0, 30, 60, 90, and 120 minutes. ( C ) Eight randomly chosen clones from 120 min time points were analyzed by colony PCR using vector primers. The size of the expected full-length fragment is indicated by an arrow.

    Journal: PLoS ONE

    Article Title: Quick and Clean Cloning: A Ligation-Independent Cloning Strategy for Selective Cloning of Specific PCR Products from Non-Specific Mixes

    doi: 10.1371/journal.pone.0020556

    Figure Lengend Snippet: Test of QC cloning using Klenow DNA polymerase. (A) Test of Klenow exonuclease activity determined using the same assay used for T4 DNA polymerase. (B) To test QC cloning using Klenow DNA polymerase, the PCR product T019 GC3F was cloned into pICH31477 (23 nucleotide catching sequence) and pICH31480 (52 nucleotide catching sequence). Incubation was performed at 37°C for 0, 30, 60, 90, and 120 minutes. ( C ) Eight randomly chosen clones from 120 min time points were analyzed by colony PCR using vector primers. The size of the expected full-length fragment is indicated by an arrow.

    Article Snippet: To perform the QC cloning 2 µl PCR product, 1 µl Bpi I-digested vector, 2 µl 10x T4 DNA polymerase buffer, 0.5 µl T4 DNA polymerase (New England Biolabs, Ipswich MA, USA; 3 units/ µl) and 14.5 µl water were mixed and incubated for 5 minutes at room temperature.

    Techniques: Clone Assay, Activity Assay, Polymerase Chain Reaction, Sequencing, Incubation, Plasmid Preparation

    Strategy for amplification and QC cloning of immunoglobulin fragments. ( A ) Amplification of immunoglobulin fragments from non-Hodgkin lymphoma samples. Total RNA extracted from biopsy samples (1) is reverse-transcribed into first strand cDNA using an oligo dT primer (2). The cDNA is column-purified to remove remaining dNTPs, and G-tailed using terminal transferase and dGTP (3). (4) The G-tailed cDNA is used as a template for PCR amplification using a G-tail adaptor primer (bap2 pc) and an immunoglobulin constant region-specific primer (gsp). The PCR product is column-purified to remove the remaining dNTPs (5). ( B ) Preparation of vector for QC cloning. The cloning vector is linearized using the enzyme Pst I. ( C ) The column-purified PCR product and the linearized vector are mixed and treated with T4 DNA polymerase to generate single-stranded ends that are complementary between the vector and insert (7). The mixture is directly transformed into chemo-competent E. coli DH10B cells where the annealed ends of the vector and insert complex are repaired and ligated (8). (9) After cloning, the plasmid is purified and the insert sequenced using a vector specific primer (seqpr).

    Journal: PLoS ONE

    Article Title: Quick and Clean Cloning: A Ligation-Independent Cloning Strategy for Selective Cloning of Specific PCR Products from Non-Specific Mixes

    doi: 10.1371/journal.pone.0020556

    Figure Lengend Snippet: Strategy for amplification and QC cloning of immunoglobulin fragments. ( A ) Amplification of immunoglobulin fragments from non-Hodgkin lymphoma samples. Total RNA extracted from biopsy samples (1) is reverse-transcribed into first strand cDNA using an oligo dT primer (2). The cDNA is column-purified to remove remaining dNTPs, and G-tailed using terminal transferase and dGTP (3). (4) The G-tailed cDNA is used as a template for PCR amplification using a G-tail adaptor primer (bap2 pc) and an immunoglobulin constant region-specific primer (gsp). The PCR product is column-purified to remove the remaining dNTPs (5). ( B ) Preparation of vector for QC cloning. The cloning vector is linearized using the enzyme Pst I. ( C ) The column-purified PCR product and the linearized vector are mixed and treated with T4 DNA polymerase to generate single-stranded ends that are complementary between the vector and insert (7). The mixture is directly transformed into chemo-competent E. coli DH10B cells where the annealed ends of the vector and insert complex are repaired and ligated (8). (9) After cloning, the plasmid is purified and the insert sequenced using a vector specific primer (seqpr).

    Article Snippet: To perform the QC cloning 2 µl PCR product, 1 µl Bpi I-digested vector, 2 µl 10x T4 DNA polymerase buffer, 0.5 µl T4 DNA polymerase (New England Biolabs, Ipswich MA, USA; 3 units/ µl) and 14.5 µl water were mixed and incubated for 5 minutes at room temperature.

    Techniques: Amplification, Clone Assay, Purification, Polymerase Chain Reaction, Plasmid Preparation, Transformation Assay

    Test of QC cloning performed with or without heat inactivation. ( A ) PCR product amplified from G-tailed cDNA prepared from biopsy sample T019 using primers bap2 pc and GC3F. ( B ) Structure of the vector and of the PCR product. ( C , D ) The PCR product was cloned into pICH31480 using T4 DNA polymerase treatment for 5 minutes at 25°C (A, adaptor; U, unknown sequence; K, known sequence; CS, catching sequence), followed by heat inactivation 20 min at 75°C ( C ) or incubation at 4°C ( D ). Eight randomly chosen clones were analyzed by colony PCR using vector primers. The products amplified by colony PCR were separated on a 1% agarose gel supplemented with ethidium bromide and visualized under UV light. The expected insert size is indicated by an arrow.

    Journal: PLoS ONE

    Article Title: Quick and Clean Cloning: A Ligation-Independent Cloning Strategy for Selective Cloning of Specific PCR Products from Non-Specific Mixes

    doi: 10.1371/journal.pone.0020556

    Figure Lengend Snippet: Test of QC cloning performed with or without heat inactivation. ( A ) PCR product amplified from G-tailed cDNA prepared from biopsy sample T019 using primers bap2 pc and GC3F. ( B ) Structure of the vector and of the PCR product. ( C , D ) The PCR product was cloned into pICH31480 using T4 DNA polymerase treatment for 5 minutes at 25°C (A, adaptor; U, unknown sequence; K, known sequence; CS, catching sequence), followed by heat inactivation 20 min at 75°C ( C ) or incubation at 4°C ( D ). Eight randomly chosen clones were analyzed by colony PCR using vector primers. The products amplified by colony PCR were separated on a 1% agarose gel supplemented with ethidium bromide and visualized under UV light. The expected insert size is indicated by an arrow.

    Article Snippet: To perform the QC cloning 2 µl PCR product, 1 µl Bpi I-digested vector, 2 µl 10x T4 DNA polymerase buffer, 0.5 µl T4 DNA polymerase (New England Biolabs, Ipswich MA, USA; 3 units/ µl) and 14.5 µl water were mixed and incubated for 5 minutes at room temperature.

    Techniques: Clone Assay, Polymerase Chain Reaction, Amplification, Plasmid Preparation, Sequencing, Incubation, Agarose Gel Electrophoresis

    Quantification of T4 DNA polymerase exonuclease activity. Sac II/ Nde I-digested plasmid DNA (3 fragments, lane C) was treated with T4 DNA polymerase for 10 minutes at 25°C, 20°C, 15°C and 10°C. The T4 DNA polymerase was then inactivated by incubation at 80°C for 5 min. The single-stranded ends generated by the 3′ to 5′ exonuclease activity T4 DNA polymerase were removed by using Mung Bean nuclease. The size of the resulting fragments was analyzed by agarose gel electrophoresis. As a control for the heat inactivation of T4 DNA polymerase, digested plasmid DNA was inactivated at 80°C for 5 minutes immediately after addition of T4 DNA polymerase (lane H).

    Journal: PLoS ONE

    Article Title: Quick and Clean Cloning: A Ligation-Independent Cloning Strategy for Selective Cloning of Specific PCR Products from Non-Specific Mixes

    doi: 10.1371/journal.pone.0020556

    Figure Lengend Snippet: Quantification of T4 DNA polymerase exonuclease activity. Sac II/ Nde I-digested plasmid DNA (3 fragments, lane C) was treated with T4 DNA polymerase for 10 minutes at 25°C, 20°C, 15°C and 10°C. The T4 DNA polymerase was then inactivated by incubation at 80°C for 5 min. The single-stranded ends generated by the 3′ to 5′ exonuclease activity T4 DNA polymerase were removed by using Mung Bean nuclease. The size of the resulting fragments was analyzed by agarose gel electrophoresis. As a control for the heat inactivation of T4 DNA polymerase, digested plasmid DNA was inactivated at 80°C for 5 minutes immediately after addition of T4 DNA polymerase (lane H).

    Article Snippet: To perform the QC cloning 2 µl PCR product, 1 µl Bpi I-digested vector, 2 µl 10x T4 DNA polymerase buffer, 0.5 µl T4 DNA polymerase (New England Biolabs, Ipswich MA, USA; 3 units/ µl) and 14.5 µl water were mixed and incubated for 5 minutes at room temperature.

    Techniques: Activity Assay, Plasmid Preparation, Incubation, Generated, Agarose Gel Electrophoresis

    Cloning strategy. The vector contains two appropriately oriented BsaI sites (A) upon digestion with BsaI linearized vector is obtained with ends having 4-base 5′-overhangs (B) shown in red. The recognition sequence of restriction enzyme BsaI are underlined and the cleavage site is marked. The Gene Of Interest (GOI) is amplified using two gene-specific primers with 7-base long additional sequence at the 5′ end (C) shown in bold. Treatment of PCR product with T4 DNA polymerase and dTTP produces two different four-base overhangs that are complementary to two ends of the linearized vector shown in red (D). The ligation results in direction cloning of the insert into the vector (E).

    Journal: PLoS ONE

    Article Title: Rapid Restriction Enzyme-Free Cloning of PCR Products: A High-Throughput Method Applicable for Library Construction

    doi: 10.1371/journal.pone.0111538

    Figure Lengend Snippet: Cloning strategy. The vector contains two appropriately oriented BsaI sites (A) upon digestion with BsaI linearized vector is obtained with ends having 4-base 5′-overhangs (B) shown in red. The recognition sequence of restriction enzyme BsaI are underlined and the cleavage site is marked. The Gene Of Interest (GOI) is amplified using two gene-specific primers with 7-base long additional sequence at the 5′ end (C) shown in bold. Treatment of PCR product with T4 DNA polymerase and dTTP produces two different four-base overhangs that are complementary to two ends of the linearized vector shown in red (D). The ligation results in direction cloning of the insert into the vector (E).

    Article Snippet: Both of these enzymes are then heat-inactivated in the same tube, followed by addition of dTTP and T4 DNA polymerase without the need for adding any buffer, as T4 DNA polymerase is compatible with most buffers used for PCR.

    Techniques: Clone Assay, Plasmid Preparation, Sequencing, Amplification, Polymerase Chain Reaction, Ligation

    Single-stranded DNA ligation with T4 DNA ligase and CircLigase. A pool of 60 nt acceptor oligonucleotides (‘60N’) were ligated to 10 pmol of a 3΄ biotinylated donor oligonucleotide (CL78) using either T4 DNA ligase in the presence of a splinter oligonucleotide (TL38) or CircLigase. Ligation products were visualized on a 10% denaturing polyacrylamide gel stained with SybrGold. Band shifts from 60 nt to 80 nt indicate successful ligation. Schematic overviews of the reaction schemes are shown on top. The scheme developed by Kwok et al . ( 19 ) is shown for comparison. M: Single-stranded DNA size marker.

    Journal: Nucleic Acids Research

    Article Title: Single-stranded DNA library preparation from highly degraded DNA using T4 DNA ligase

    doi: 10.1093/nar/gkx033

    Figure Lengend Snippet: Single-stranded DNA ligation with T4 DNA ligase and CircLigase. A pool of 60 nt acceptor oligonucleotides (‘60N’) were ligated to 10 pmol of a 3΄ biotinylated donor oligonucleotide (CL78) using either T4 DNA ligase in the presence of a splinter oligonucleotide (TL38) or CircLigase. Ligation products were visualized on a 10% denaturing polyacrylamide gel stained with SybrGold. Band shifts from 60 nt to 80 nt indicate successful ligation. Schematic overviews of the reaction schemes are shown on top. The scheme developed by Kwok et al . ( 19 ) is shown for comparison. M: Single-stranded DNA size marker.

    Article Snippet: For fill-in with T4 DNA polymerase a 50 μl reaction mix was prepared containing 1× T4 DNA polymerase buffer (ThermoFisher Scientific), 0.05% Tween-20, 100 μM each dNTP, 100 pmol primer CL130 and 2 μl 5 U/μl T4 DNA polymerase (ThermoFisher Scientific).

    Techniques: DNA Ligation, Ligation, Staining, Marker

    Library preparation methods for highly degraded DNA. ( A ) In the single-stranded library preparation method described here (ssDNA2.0), DNA fragments (black) are 5΄ and 3΄ dephosphorylated and separated into single strands by heat denaturation. 3΄ biotinylated adapter molecules (red) are attached to the 3΄ ends of the DNA fragments via hybridization to a stretch of six random nucleotides (marked as ‘N’) belonging to a splinter oligonucleotide complementary to the adapter and nick closure with T4 DNA ligase. Following the immobilization of the ligation products on streptavidin-coated beads, the splinter oligonucleotide is removed by bead wash at an elevated temperature. Synthesis of the second strand is carried out using the Klenow fragment of Escherichia coli DNA polymerase I and a primer with phosphorothioate backbone modifications (red stars) to prevent exonucleolytic degradation. Unincorporated primers are removed through a bead wash at an elevated temperature, preventing the formation of adapter dimers in the subsequent blunt-end ligation reaction, which is again catalyzed by T4 DNA ligase. Adapter self-ligation is prevented through a 3΄ dideoxy modification in the adapter. The final library strand is released from the beads by heat denaturation. ( B ) In the single-stranded library preparation method originally described in Gansauge and Meyer, ( 4 ), the first adapter was attached through true single-stranded DNA ligation using CircLigase. The large fragment of Bst DNA polymerase was used to copy the template strand, leaving overhanging 3΄ nucleotides, which had to be removed in a blunt-end repair reaction using T4 DNA polymerase. ( C ) The ‘454’ method of double-stranded library preparation in the implementation of Meyer and Kircher, ( 23 ), is based on non-directional blunt-end ligation of a mixture of two adapters to blunt-end repaired DNA fragments using T4 DNA ligase. To prevent adapter self-ligation, no phosphate groups are present at the 5΄ ends of the adapters, resulting in the ligation of the adapter strands only and necessitating subsequent nick fill-in with a strand-displacing polymerase. Intermittent DNA purification steps are required in-between enzymatic reactions. ( D ) The ‘Illumina’ method of double-stranded library preparation, shown here as implemented in New England Biolabs’ NEBNext Ultra II kit, requires the addition of A-overhangs (marked as ‘A’) to blunt-end repaired DNA fragments using a 3΄-5΄ exonuclease deletion mutant of the Klenow fragment of E. coli DNA polymerase I. Both adapter sequences are combined into one bell-shaped structure, which carries a 3΄ T overhang to allow sticky end ligation with T4 DNA ligase. Following ligation, adapter strands are separated by excision of uracil. Excess adapters and adapter dimers are removed through size-selective purification.

    Journal: Nucleic Acids Research

    Article Title: Single-stranded DNA library preparation from highly degraded DNA using T4 DNA ligase

    doi: 10.1093/nar/gkx033

    Figure Lengend Snippet: Library preparation methods for highly degraded DNA. ( A ) In the single-stranded library preparation method described here (ssDNA2.0), DNA fragments (black) are 5΄ and 3΄ dephosphorylated and separated into single strands by heat denaturation. 3΄ biotinylated adapter molecules (red) are attached to the 3΄ ends of the DNA fragments via hybridization to a stretch of six random nucleotides (marked as ‘N’) belonging to a splinter oligonucleotide complementary to the adapter and nick closure with T4 DNA ligase. Following the immobilization of the ligation products on streptavidin-coated beads, the splinter oligonucleotide is removed by bead wash at an elevated temperature. Synthesis of the second strand is carried out using the Klenow fragment of Escherichia coli DNA polymerase I and a primer with phosphorothioate backbone modifications (red stars) to prevent exonucleolytic degradation. Unincorporated primers are removed through a bead wash at an elevated temperature, preventing the formation of adapter dimers in the subsequent blunt-end ligation reaction, which is again catalyzed by T4 DNA ligase. Adapter self-ligation is prevented through a 3΄ dideoxy modification in the adapter. The final library strand is released from the beads by heat denaturation. ( B ) In the single-stranded library preparation method originally described in Gansauge and Meyer, ( 4 ), the first adapter was attached through true single-stranded DNA ligation using CircLigase. The large fragment of Bst DNA polymerase was used to copy the template strand, leaving overhanging 3΄ nucleotides, which had to be removed in a blunt-end repair reaction using T4 DNA polymerase. ( C ) The ‘454’ method of double-stranded library preparation in the implementation of Meyer and Kircher, ( 23 ), is based on non-directional blunt-end ligation of a mixture of two adapters to blunt-end repaired DNA fragments using T4 DNA ligase. To prevent adapter self-ligation, no phosphate groups are present at the 5΄ ends of the adapters, resulting in the ligation of the adapter strands only and necessitating subsequent nick fill-in with a strand-displacing polymerase. Intermittent DNA purification steps are required in-between enzymatic reactions. ( D ) The ‘Illumina’ method of double-stranded library preparation, shown here as implemented in New England Biolabs’ NEBNext Ultra II kit, requires the addition of A-overhangs (marked as ‘A’) to blunt-end repaired DNA fragments using a 3΄-5΄ exonuclease deletion mutant of the Klenow fragment of E. coli DNA polymerase I. Both adapter sequences are combined into one bell-shaped structure, which carries a 3΄ T overhang to allow sticky end ligation with T4 DNA ligase. Following ligation, adapter strands are separated by excision of uracil. Excess adapters and adapter dimers are removed through size-selective purification.

    Article Snippet: For fill-in with T4 DNA polymerase a 50 μl reaction mix was prepared containing 1× T4 DNA polymerase buffer (ThermoFisher Scientific), 0.05% Tween-20, 100 μM each dNTP, 100 pmol primer CL130 and 2 μl 5 U/μl T4 DNA polymerase (ThermoFisher Scientific).

    Techniques: Hybridization, Ligation, Modification, DNA Ligation, DNA Purification, Mutagenesis, Purification

    Effects of single-stranded ligation schemes on library characteristics. ( A ) Informative sequence content of libraries prepared with CircLigase and T4 DNA ligase as a function of the input volume of ancient DNA extract used for library preparation. ( B ) Average GC content of the sequences obtained with the two ligation schemes. Note that the average GC content exceeds that of a typical mammalian genome because most sequences derive from microbial DNA, which is the dominant source of DNA in most ancient bones. ( C ) Fragment size distribution in the libraries as inferred from overlap-merged paired-end reads. Short artifacts in the library prepared from extremely little input DNA (corresponding to ∼1 mg bone) are mainly due to the incorporation of splinter fragments. ( D ) Frequencies of damage-induced C to T substitutions near the 5΄ and 3΄ ends of sequences.

    Journal: Nucleic Acids Research

    Article Title: Single-stranded DNA library preparation from highly degraded DNA using T4 DNA ligase

    doi: 10.1093/nar/gkx033

    Figure Lengend Snippet: Effects of single-stranded ligation schemes on library characteristics. ( A ) Informative sequence content of libraries prepared with CircLigase and T4 DNA ligase as a function of the input volume of ancient DNA extract used for library preparation. ( B ) Average GC content of the sequences obtained with the two ligation schemes. Note that the average GC content exceeds that of a typical mammalian genome because most sequences derive from microbial DNA, which is the dominant source of DNA in most ancient bones. ( C ) Fragment size distribution in the libraries as inferred from overlap-merged paired-end reads. Short artifacts in the library prepared from extremely little input DNA (corresponding to ∼1 mg bone) are mainly due to the incorporation of splinter fragments. ( D ) Frequencies of damage-induced C to T substitutions near the 5΄ and 3΄ ends of sequences.

    Article Snippet: For fill-in with T4 DNA polymerase a 50 μl reaction mix was prepared containing 1× T4 DNA polymerase buffer (ThermoFisher Scientific), 0.05% Tween-20, 100 μM each dNTP, 100 pmol primer CL130 and 2 μl 5 U/μl T4 DNA polymerase (ThermoFisher Scientific).

    Techniques: Ligation, Sequencing, Ancient DNA Assay

    In vivo DMS footprinting of the lower strand of the TRE-1s. DNAs from in vivo DMS-treated MT-2 and MT-4 cells were piperidine cleaved and subjected to LMPCR as described in Materials and Methods. The reaction products were separated on polyacrylamide gels and exposed to film. Autoradiograms corresponding to the three TRE-1s are shown. (A) Promoter-distal TRE-1. A band is missing in the 5′ GC-rich flank most likely because the proviral DNA contains a base other than the predicted guanine residue at that position. (B) Promoter-central TRE-1. (C) Promoter-proximal TRE-1. Arrowheads pointing toward bands indicate hypersensitive residues; arrowheads pointing away from bands indicate protected residues. Larger arrowheads indicate major protections or hypersensitive sites.

    Journal: Journal of Virology

    Article Title: In Vivo Genomic Footprinting of the Human T-Cell Leukemia Virus Type 1 (HTLV-1) Long Terminal Repeat Enhancer Sequences in HTLV-1-Infected Human T-Cell Lines with Different Levels of Tax I Activity

    doi:

    Figure Lengend Snippet: In vivo DMS footprinting of the lower strand of the TRE-1s. DNAs from in vivo DMS-treated MT-2 and MT-4 cells were piperidine cleaved and subjected to LMPCR as described in Materials and Methods. The reaction products were separated on polyacrylamide gels and exposed to film. Autoradiograms corresponding to the three TRE-1s are shown. (A) Promoter-distal TRE-1. A band is missing in the 5′ GC-rich flank most likely because the proviral DNA contains a base other than the predicted guanine residue at that position. (B) Promoter-central TRE-1. (C) Promoter-proximal TRE-1. Arrowheads pointing toward bands indicate hypersensitive residues; arrowheads pointing away from bands indicate protected residues. Larger arrowheads indicate major protections or hypersensitive sites.

    Article Snippet: This first-strand primer extension was accomplished by incubation of 2 μg of DMS-treated, piperidine-cleaved DNA with 0.3 pmol of oligo 1, 1× Vent DNA polymerase buffer (New England Biolabs), 4 mM MgSO4 , 0.25 mM deoxynucleoside triphosphates (dNTPs), and 0.5 U of Vent DNA polymerase (New England Biolabs) in a total volume of 30 μl.

    Techniques: In Vivo, Footprinting

    Effect of RNA substitutions in circular templates on rolling circle amplification with phi29 DNA polymerase. ( A ) Total amount of RCA products (y-axis) generated for padlock probes with/without a terminal 3′ RNA and in the absence of synthetic RNA ligation template (template -). ( B ) Circles with 0–7 RNA substitutions in the backbone were amplified and digitally counted. The y-axis shows the number of rolling circle products (RCPs); error bars ± S.D.; n = 2. The same RCA reactions with chimeric circles were also monitored in real-time by measuring SYBR Gold incorporation on qPCR instrument ( C and E ). (C) RCA reaction curves of circles with 0, 1 and 2 RNA substitutions. ( D ) RCPs from C were imaged on microscope slides and size and intensity of individual RCPs were quantified. Black line, median; upper whisker, highest value that is within 1.5 the interquartile range of the hinge; lower whisker, lowest value within 1.5 the interquartile range of the hinge. (E) Real-time data of the same RCA reactions as in B with 0–7 RNA substitutes are displayed. Representative samples are presented from a duplicated experiment. To highlight the initial stages of RCA and to show the difference between the samples with low RCA efficiency, fluorescence intensity readout between 3000 and 6000 is presented.

    Journal: Nucleic Acids Research

    Article Title: Limited reverse transcriptase activity of phi29 DNA polymerase

    doi: 10.1093/nar/gky190

    Figure Lengend Snippet: Effect of RNA substitutions in circular templates on rolling circle amplification with phi29 DNA polymerase. ( A ) Total amount of RCA products (y-axis) generated for padlock probes with/without a terminal 3′ RNA and in the absence of synthetic RNA ligation template (template -). ( B ) Circles with 0–7 RNA substitutions in the backbone were amplified and digitally counted. The y-axis shows the number of rolling circle products (RCPs); error bars ± S.D.; n = 2. The same RCA reactions with chimeric circles were also monitored in real-time by measuring SYBR Gold incorporation on qPCR instrument ( C and E ). (C) RCA reaction curves of circles with 0, 1 and 2 RNA substitutions. ( D ) RCPs from C were imaged on microscope slides and size and intensity of individual RCPs were quantified. Black line, median; upper whisker, highest value that is within 1.5 the interquartile range of the hinge; lower whisker, lowest value within 1.5 the interquartile range of the hinge. (E) Real-time data of the same RCA reactions as in B with 0–7 RNA substitutes are displayed. Representative samples are presented from a duplicated experiment. To highlight the initial stages of RCA and to show the difference between the samples with low RCA efficiency, fluorescence intensity readout between 3000 and 6000 is presented.

    Article Snippet: Next, RCA products were digested with AluI restriction enzyme in a reaction mixture containing 1 × phi29 DNA polymerase buffer, 0.2 μg/μl BSA, 100 nM restriction oligonucleotide , 120 mU/μl AluI (NEB) and RCA products at a final concentration of 10 pM during 10 min incubation at 37°C.

    Techniques: Amplification, Generated, Ligation, Real-time Polymerase Chain Reaction, Microscopy, Whisker Assay, Fluorescence

    Phi29 DNA polymerase exhibits higher RCA rate with circles containing pyrimidine RNA substitutions. ( A ) Real-time RCA curves of circles containing 1, 2, 3 or 4 consecutive RNA substations of rG, rU, rA, rC RNA bases are displayed (number of consecutive substitutions is indicated above plots). Rate of RCA was monitored by measuring fluorescence build-up (y-axis) resulted from SYBR Gold incorporation into RCPs. Averaged fluorescence intensity for each RCA time point was calculated from a duplicated experiment. RCA was conducted in the presence of Mg 2+ and Mn 2+ (solid and dashed lines respectively). ( B ) Linear, early stage RCA velocity (y-axis) is presented for PLPs from (A) in the presence of Mg 2+ (solid lines) and Mn 2+ (dashed lines). ( C ) RCA for the control PLP (non-chimeric DNA circle, with Mg 2+ (solid) and Mn 2+ (dashed line) are displayed.

    Journal: Nucleic Acids Research

    Article Title: Limited reverse transcriptase activity of phi29 DNA polymerase

    doi: 10.1093/nar/gky190

    Figure Lengend Snippet: Phi29 DNA polymerase exhibits higher RCA rate with circles containing pyrimidine RNA substitutions. ( A ) Real-time RCA curves of circles containing 1, 2, 3 or 4 consecutive RNA substations of rG, rU, rA, rC RNA bases are displayed (number of consecutive substitutions is indicated above plots). Rate of RCA was monitored by measuring fluorescence build-up (y-axis) resulted from SYBR Gold incorporation into RCPs. Averaged fluorescence intensity for each RCA time point was calculated from a duplicated experiment. RCA was conducted in the presence of Mg 2+ and Mn 2+ (solid and dashed lines respectively). ( B ) Linear, early stage RCA velocity (y-axis) is presented for PLPs from (A) in the presence of Mg 2+ (solid lines) and Mn 2+ (dashed lines). ( C ) RCA for the control PLP (non-chimeric DNA circle, with Mg 2+ (solid) and Mn 2+ (dashed line) are displayed.

    Article Snippet: Next, RCA products were digested with AluI restriction enzyme in a reaction mixture containing 1 × phi29 DNA polymerase buffer, 0.2 μg/μl BSA, 100 nM restriction oligonucleotide , 120 mU/μl AluI (NEB) and RCA products at a final concentration of 10 pM during 10 min incubation at 37°C.

    Techniques: Fluorescence, Plasmid Purification

    DNA sequencing-based analysis of rolling circle products reveals reverse transcription activity of phi29 DNA polymerase. ( A ) After RCA, short DNA oligonucleotides were hybridized to an AluI restriction site in the RCA products and RCPs were digested with AluI restriction enzyme, resulting in RCA monomers. Following digestion, monomers were PCR-amplified using primers containing Ilumina adapter sequences. PCR products were extended using IIlumina indexed primers. Finally, sequencing library was prepared using indexed primers-specific P5/7 PCR primers. The region of interest containing RNA substitutions in the original padlock probe sequence is indicated with green boxes. ( B ) Logos showing sequencing frequencies for each position within RCA monomers generated from the control DNA circle (P1 = dG), and circles containing single rG, rU, rA and rC substitutions at the RNA position (P1). Positions P1 and P2 are indicated and position P1 was additionally highlighted with the red box. ( C ) Incorporation of incorrect nucleotides for every position in the sequenced monomers from (B). Error rates, calculated as Incorporation error [%] = 1 – number of reads with expected nucleotide/total number of reads, is presented for padlock probes with single- (upper plot) and double-RNA substitutions (lower plots). P1 position for the first RNA substitution is indicated with the box.

    Journal: Nucleic Acids Research

    Article Title: Limited reverse transcriptase activity of phi29 DNA polymerase

    doi: 10.1093/nar/gky190

    Figure Lengend Snippet: DNA sequencing-based analysis of rolling circle products reveals reverse transcription activity of phi29 DNA polymerase. ( A ) After RCA, short DNA oligonucleotides were hybridized to an AluI restriction site in the RCA products and RCPs were digested with AluI restriction enzyme, resulting in RCA monomers. Following digestion, monomers were PCR-amplified using primers containing Ilumina adapter sequences. PCR products were extended using IIlumina indexed primers. Finally, sequencing library was prepared using indexed primers-specific P5/7 PCR primers. The region of interest containing RNA substitutions in the original padlock probe sequence is indicated with green boxes. ( B ) Logos showing sequencing frequencies for each position within RCA monomers generated from the control DNA circle (P1 = dG), and circles containing single rG, rU, rA and rC substitutions at the RNA position (P1). Positions P1 and P2 are indicated and position P1 was additionally highlighted with the red box. ( C ) Incorporation of incorrect nucleotides for every position in the sequenced monomers from (B). Error rates, calculated as Incorporation error [%] = 1 – number of reads with expected nucleotide/total number of reads, is presented for padlock probes with single- (upper plot) and double-RNA substitutions (lower plots). P1 position for the first RNA substitution is indicated with the box.

    Article Snippet: Next, RCA products were digested with AluI restriction enzyme in a reaction mixture containing 1 × phi29 DNA polymerase buffer, 0.2 μg/μl BSA, 100 nM restriction oligonucleotide , 120 mU/μl AluI (NEB) and RCA products at a final concentration of 10 pM during 10 min incubation at 37°C.

    Techniques: DNA Sequencing, Activity Assay, Polymerase Chain Reaction, Amplification, Sequencing, Generated

    Assembly of low-complexity ssDNA curtains. (A) A phosphorylated template (black) and a biotinylated primer (green) are annealed and treated with T4 DNA ligase to make minicircles. Low-complexity ssDNA composed solely of thymidine and cytidine is synthesized via rolling circle replication by phi29 DNAP. (B) Low-complexity ssDNA curtains with fluorescent end labeling. The 3′ end of the ssDNA was labeled with a fluorescent antibody. (C) RPA-GFP (green)-coated ssDNA with fluorescent end labeling (magenta). (D) Kymograph of a representative ssDNA in panel (C) with buffer flow on and off, indicating that the ssDNA is anchored to the surface via the 5′-biotin tether.

    Journal: Langmuir : the ACS journal of surfaces and colloids

    Article Title: Assessing Protein Dynamics on Low-Complexity Single-Stranded DNA Curtains

    doi: 10.1021/acs.langmuir.8b01812

    Figure Lengend Snippet: Assembly of low-complexity ssDNA curtains. (A) A phosphorylated template (black) and a biotinylated primer (green) are annealed and treated with T4 DNA ligase to make minicircles. Low-complexity ssDNA composed solely of thymidine and cytidine is synthesized via rolling circle replication by phi29 DNAP. (B) Low-complexity ssDNA curtains with fluorescent end labeling. The 3′ end of the ssDNA was labeled with a fluorescent antibody. (C) RPA-GFP (green)-coated ssDNA with fluorescent end labeling (magenta). (D) Kymograph of a representative ssDNA in panel (C) with buffer flow on and off, indicating that the ssDNA is anchored to the surface via the 5′-biotin tether.

    Article Snippet: Low-complexity ssDNA was synthesized in 1× phi29 DNA polymerase reaction buffer (NEB M0269S), 500 μ M dCTP and dTTP (NEB N0446S), 0.2 mg mL−1 BSA (NEB B9000S), 10 nM annealed circles, and 100 nM phi29 DNAP (purified in-house).

    Techniques: Synthesized, End Labeling, Labeling, Recombinase Polymerase Amplification, Flow Cytometry

    SNES method and WGA quality control. (a) Nuclear suspensions were prepared from tissues, stained with DAPI and flow-sorted. Single nuclei were isolated by gating the G1/0 or G2/M ploidy distributions and deposited nuclei singly into a 96-well plate. Multiple-displacement-amplification is performed using Φ29 to perform WGA. (b) Time-course of WGA showing total DNA yield from single nuclei. (c) Quality control assay using a panel of 22 chromosome-specific qPCR primers to determine the WGA amplification efficiency of each single nucleus.

    Journal: Genome Biology

    Article Title: SNES: single nucleus exome sequencing

    doi: 10.1186/s13059-015-0616-2

    Figure Lengend Snippet: SNES method and WGA quality control. (a) Nuclear suspensions were prepared from tissues, stained with DAPI and flow-sorted. Single nuclei were isolated by gating the G1/0 or G2/M ploidy distributions and deposited nuclei singly into a 96-well plate. Multiple-displacement-amplification is performed using Φ29 to perform WGA. (b) Time-course of WGA showing total DNA yield from single nuclei. (c) Quality control assay using a panel of 22 chromosome-specific qPCR primers to determine the WGA amplification efficiency of each single nucleus.

    Article Snippet: Whole-genome amplification by time-limited multiple-displacement amplification Whole-genome amplification was performed on single flow-sorted nuclei using 10 units of Φ29 polymerase and 10× Φ29 buffer (NEB cat#M0269L), 1 mM dNTP (GE Healthcare, cat#28-4065-51), and 50 μM random hexamer (phosphorothioate modification on the two 3’-terminal nucleotide - NNNN*N*N - synthesized by Sigma Aldrich) to each well.

    Techniques: Whole Genome Amplification, Staining, Flow Cytometry, Isolation, Multiple Displacement Amplification, Control Assay, Real-time Polymerase Chain Reaction, Amplification