M0293 Search Results


  • Logo
  • About
  • News
  • Press Release
  • Team
  • Advisors
  • Partners
  • Contact
  • Bioz Stars
  • Bioz vStars
  • 99
    New England Biolabs exonucleasei
    Acceleration of daughter strand unwinding and degradation by GATC sites flanking the mismatch. ( A ) Agarose gel analysis of nicking and unwinding of 0.5 nM circular DNA containing a single G/T mismatch at different positions and one or two GATC sites by 10 nM MutS, 10 nM MutL, 5 nM MutH, 5 nM UvrD, 200 nM <t>Ssb</t> and 0.1 units of <t>ExoI.</t> Early time points (2 and 4 min) showed the conversion of the closed circular DNA (lower band) to open-circular DNA (upper band) due to nicking by MutH. Later time points showed unwinding of nicked daughter strand by UvrD and degradation by ExoI starting from the 3′ end as indicated in the schematic drawings above the gel panels. ( B ) Quantification of the fraction of unnicked and nicked DNA for GT#1, GT#1b, GT#2 and GT#2b (mean ± SD, n = 3) with fit according to the unwinding model. Kinetic parameters obtained from the fit are tabulated in Supplementary Table S4. ( C ) Unwinding and excision of GT#1b pre-nicked with MutH alone (left panel), with MutH and Cas9 at site CrB such that nicks were on the same side of the mismatch (middle panel), and with MutH and Cas9 at site CrA such that the nicks flank the mismatch (right panel). ( D ) Quantification of unwinding (mean ± SD, n = 3) and fit with a function describing a single exponential increase. Kinetic parameters obtained from the fits are tabulated in Supplementary Table S4.
    Exonucleasei, supplied by New England Biolabs, used in various techniques. Bioz Stars score: 99/100, based on 17069 PubMed citations. ZERO BIAS - scores, article reviews, protocol conditions and more
    https://www.bioz.com/result/exonucleasei/product/New England Biolabs
    Average 99 stars, based on 17069 article reviews
    Price from $9.99 to $1999.99
    exonucleasei - by Bioz Stars, 2020-07
    99/100 stars
      Buy from Supplier

    Image Search Results


    Acceleration of daughter strand unwinding and degradation by GATC sites flanking the mismatch. ( A ) Agarose gel analysis of nicking and unwinding of 0.5 nM circular DNA containing a single G/T mismatch at different positions and one or two GATC sites by 10 nM MutS, 10 nM MutL, 5 nM MutH, 5 nM UvrD, 200 nM Ssb and 0.1 units of ExoI. Early time points (2 and 4 min) showed the conversion of the closed circular DNA (lower band) to open-circular DNA (upper band) due to nicking by MutH. Later time points showed unwinding of nicked daughter strand by UvrD and degradation by ExoI starting from the 3′ end as indicated in the schematic drawings above the gel panels. ( B ) Quantification of the fraction of unnicked and nicked DNA for GT#1, GT#1b, GT#2 and GT#2b (mean ± SD, n = 3) with fit according to the unwinding model. Kinetic parameters obtained from the fit are tabulated in Supplementary Table S4. ( C ) Unwinding and excision of GT#1b pre-nicked with MutH alone (left panel), with MutH and Cas9 at site CrB such that nicks were on the same side of the mismatch (middle panel), and with MutH and Cas9 at site CrA such that the nicks flank the mismatch (right panel). ( D ) Quantification of unwinding (mean ± SD, n = 3) and fit with a function describing a single exponential increase. Kinetic parameters obtained from the fits are tabulated in Supplementary Table S4.

    Journal: Nucleic Acids Research

    Article Title: Dual daughter strand incision is processive and increases the efficiency of DNA mismatch repair

    doi: 10.1093/nar/gkw411

    Figure Lengend Snippet: Acceleration of daughter strand unwinding and degradation by GATC sites flanking the mismatch. ( A ) Agarose gel analysis of nicking and unwinding of 0.5 nM circular DNA containing a single G/T mismatch at different positions and one or two GATC sites by 10 nM MutS, 10 nM MutL, 5 nM MutH, 5 nM UvrD, 200 nM Ssb and 0.1 units of ExoI. Early time points (2 and 4 min) showed the conversion of the closed circular DNA (lower band) to open-circular DNA (upper band) due to nicking by MutH. Later time points showed unwinding of nicked daughter strand by UvrD and degradation by ExoI starting from the 3′ end as indicated in the schematic drawings above the gel panels. ( B ) Quantification of the fraction of unnicked and nicked DNA for GT#1, GT#1b, GT#2 and GT#2b (mean ± SD, n = 3) with fit according to the unwinding model. Kinetic parameters obtained from the fit are tabulated in Supplementary Table S4. ( C ) Unwinding and excision of GT#1b pre-nicked with MutH alone (left panel), with MutH and Cas9 at site CrB such that nicks were on the same side of the mismatch (middle panel), and with MutH and Cas9 at site CrA such that the nicks flank the mismatch (right panel). ( D ) Quantification of unwinding (mean ± SD, n = 3) and fit with a function describing a single exponential increase. Kinetic parameters obtained from the fits are tabulated in Supplementary Table S4.

    Article Snippet: ExoI and Ssb were purchased from New England Biolabs (Ipswich, USA) and Promega (Madison, USA), respectively.

    Techniques: Agarose Gel Electrophoresis

    Circularization of DNA templates (COLIGOs) for Rolling Circle Transcription. A . Synthetic 5′ phosphorylated linear DNA sequences were circularized using the thermostable TS2126 RNA ligase. B . Denaturing polyacrylamide gel electrophoresis (DPAGE) at four stages during miR-19am DNA circle synthesis. Lane 1, crude DNA IDT Ultramer synthesis of COLIGO 19am. Lane 2, after preparative DPAGE. Lane 3, crude circularization product. Lane 4, DNA circle template following Exonuclease I clean-up. Visualization using Stains-All. C . Verification of circular topology. Nicking of circular templates by S1 nuclease leads first to linear forms, which are then further digested to successively smaller linear forms.

    Journal: PLoS ONE

    Article Title: Circular Single-Stranded Synthetic DNA Delivery Vectors for MicroRNA

    doi: 10.1371/journal.pone.0016925

    Figure Lengend Snippet: Circularization of DNA templates (COLIGOs) for Rolling Circle Transcription. A . Synthetic 5′ phosphorylated linear DNA sequences were circularized using the thermostable TS2126 RNA ligase. B . Denaturing polyacrylamide gel electrophoresis (DPAGE) at four stages during miR-19am DNA circle synthesis. Lane 1, crude DNA IDT Ultramer synthesis of COLIGO 19am. Lane 2, after preparative DPAGE. Lane 3, crude circularization product. Lane 4, DNA circle template following Exonuclease I clean-up. Visualization using Stains-All. C . Verification of circular topology. Nicking of circular templates by S1 nuclease leads first to linear forms, which are then further digested to successively smaller linear forms.

    Article Snippet: In cases where the COLIGO was still contaminated by > 5% of the linear oligonucleotide after elution (as determined by gel staining), an Exonuclease I (NEB) digest was done.

    Techniques: Polyacrylamide Gel Electrophoresis