t4 rna ligase 2  (New England Biolabs)


Bioz Verified Symbol New England Biolabs is a verified supplier
Bioz Manufacturer Symbol New England Biolabs manufactures this product  
  • Logo
  • About
  • News
  • Press Release
  • Team
  • Advisors
  • Partners
  • Contact
  • Bioz Stars
  • Bioz vStars
  • 99
    Name:
    T4 RNA Ligase 2 truncated
    Description:
    T4 RNA Ligase 2 truncated 10 000 units
    Catalog Number:
    m0242l
    Price:
    283
    Size:
    10 000 units
    Category:
    RNA Ligases
    Buy from Supplier


    Structured Review

    New England Biolabs t4 rna ligase 2
    T4 RNA Ligase 2 truncated
    T4 RNA Ligase 2 truncated 10 000 units
    https://www.bioz.com/result/t4 rna ligase 2/product/New England Biolabs
    Average 99 stars, based on 366 article reviews
    Price from $9.99 to $1999.99
    t4 rna ligase 2 - by Bioz Stars, 2020-09
    99/100 stars

    Images

    1) Product Images from "Uridylation by TUT4/7 Restricts Retrotransposition of Human LINE-1s"

    Article Title: Uridylation by TUT4/7 Restricts Retrotransposition of Human LINE-1s

    Journal: Cell

    doi: 10.1016/j.cell.2018.07.022

    Graphical Visualization of the 3′ RACE-Seq Approach, Related to Figure 2 (A) Graphical representation of 3′ RACE-seq library preparation and the oligonucleotides used. First, the 3′ adaptor RA3_15N was joined to the 3′ end of RNA by enzymatic ligation. The adaptor has: (i) 5′ rApp modification for efficient and specific ligation by the truncated T4 RNA ligase 2, (ii) delimiter sequence to be used in bioinformatics analyses to exclude RT and PCR artifacts (CTGAC, highlighted in violet), (iii) unique 15N barcode for individual transcript barcoding (highlighted in green), (iv) anchor sequence to pair with the reverse transcription primer (underlined) and (v) dideoxyC on the 3′ end to prevent concatamer formation. The RNA ligated to the adaptor sequence was purified from excess adaptor and reverse transcription was performed with the RT primer, which is compatible with Illumina sequencing and has: (i) sequences to base-pair with the adaptor (underlined), (ii) 6-nucleotide barcode for sample barcoding (highlighted in red), (iii) sequences that base pair with the universal outer primer for nested PCR (blue). Libraries were generated by nested PCR with 2 outer forward primers (F1 and F2) and a single universal reverse primer (uni rev). PCR amplicons of first and second PCRs were purified from excess primers on AmPure beads (Agencourt) before beginning the next step. (B) Flowchart of the bioinformatics approach to 3′ RACE-seq data analysis. The procedure starts at the top. Datasets are shown in rectangles. Software used is depicted in hexagons.
    Figure Legend Snippet: Graphical Visualization of the 3′ RACE-Seq Approach, Related to Figure 2 (A) Graphical representation of 3′ RACE-seq library preparation and the oligonucleotides used. First, the 3′ adaptor RA3_15N was joined to the 3′ end of RNA by enzymatic ligation. The adaptor has: (i) 5′ rApp modification for efficient and specific ligation by the truncated T4 RNA ligase 2, (ii) delimiter sequence to be used in bioinformatics analyses to exclude RT and PCR artifacts (CTGAC, highlighted in violet), (iii) unique 15N barcode for individual transcript barcoding (highlighted in green), (iv) anchor sequence to pair with the reverse transcription primer (underlined) and (v) dideoxyC on the 3′ end to prevent concatamer formation. The RNA ligated to the adaptor sequence was purified from excess adaptor and reverse transcription was performed with the RT primer, which is compatible with Illumina sequencing and has: (i) sequences to base-pair with the adaptor (underlined), (ii) 6-nucleotide barcode for sample barcoding (highlighted in red), (iii) sequences that base pair with the universal outer primer for nested PCR (blue). Libraries were generated by nested PCR with 2 outer forward primers (F1 and F2) and a single universal reverse primer (uni rev). PCR amplicons of first and second PCRs were purified from excess primers on AmPure beads (Agencourt) before beginning the next step. (B) Flowchart of the bioinformatics approach to 3′ RACE-seq data analysis. The procedure starts at the top. Datasets are shown in rectangles. Software used is depicted in hexagons.

    Techniques Used: Ligation, Modification, Sequencing, Polymerase Chain Reaction, Purification, Nested PCR, Generated, Software

    2) Product Images from "Blocking of targeted microRNAs from next-generation sequencing libraries"

    Article Title: Blocking of targeted microRNAs from next-generation sequencing libraries

    Journal: Nucleic Acids Research

    doi: 10.1093/nar/gkv724

    Modification of miRNA sequencing library generation protocol to allow for blocking of targeted species. ( A ) In the standard protocol, a pre-adenylated adaptor is ligated to the 3′ end of a small RNA pool using T4 RNA Ligase 2, truncated. Subsequently, a second adaptor is added to the 5′ end of the miRNA with T4 RNA Ligase 1, followed by reverse transcription and PCR. ( B ) In our modification, a hairpin oligonucleotide with an overhang complementary to the 5′ end of the targeted miRNA is attached via ligation with T4 DNA Ligase to the 5′ end of the miRNA subsequent to the ligation of the adaptor to the 3′ end. This prevents the ligation of the second adaptor to the 5′ end of the miRNA, resulting in a product that does not amplify during PCR. ( C ) Sequencing libraries were generated from human heart total RNA using a titration of a blocking oligonucleotide targeting hsa-miR-16–5p. The fraction of hsa-miR-16–5p present in the blocked library compared to the unblocked library is shown on the y-axis.
    Figure Legend Snippet: Modification of miRNA sequencing library generation protocol to allow for blocking of targeted species. ( A ) In the standard protocol, a pre-adenylated adaptor is ligated to the 3′ end of a small RNA pool using T4 RNA Ligase 2, truncated. Subsequently, a second adaptor is added to the 5′ end of the miRNA with T4 RNA Ligase 1, followed by reverse transcription and PCR. ( B ) In our modification, a hairpin oligonucleotide with an overhang complementary to the 5′ end of the targeted miRNA is attached via ligation with T4 DNA Ligase to the 5′ end of the miRNA subsequent to the ligation of the adaptor to the 3′ end. This prevents the ligation of the second adaptor to the 5′ end of the miRNA, resulting in a product that does not amplify during PCR. ( C ) Sequencing libraries were generated from human heart total RNA using a titration of a blocking oligonucleotide targeting hsa-miR-16–5p. The fraction of hsa-miR-16–5p present in the blocked library compared to the unblocked library is shown on the y-axis.

    Techniques Used: Modification, Sequencing, Blocking Assay, Polymerase Chain Reaction, Ligation, Generated, Titration

    3) Product Images from "Structure-function analysis of Methanobacterium thermoautotrophicum RNA ligase - engineering a thermostable ATP independent enzyme"

    Article Title: Structure-function analysis of Methanobacterium thermoautotrophicum RNA ligase - engineering a thermostable ATP independent enzyme

    Journal: BMC Molecular Biology

    doi: 10.1186/1471-2199-13-24

    (A) Structural comparison of T4 RNA ligase 2 and archaeal RNA ligase PAB1020 active sites. Two structures were superimposed based on coordinates of pre-bound AMP and ATP homolog (AMPPNP) as well as known conserved amino acids of the ligase active sites. The T4Rnl2 structure is represented in grey and PAB1020 in yellow. The numbers of amino acids in the conserved motifs I-V (in parenthesis) are for T4Rnl2 and PAB1020 ortholog MthRnl, which were determined after sequence alignment of two archaeal enzymes. (B) The sequences of the conserved motifs I and V of MthRnl compared to corresponding motifs in the RNA and DNA ligases as discussed in the text. The listed RNA ligases are from: MthRnl ( Methanobacterium thermoautotrophicum ), PAB1020 ( Pyrococcus abyssi ), TS2126 (bacteriophage Thermus scotoductus ), RM378 (bacteriophage Rhodothermus marinus ), T4Rnl1 and T4Rnl2 (bacteriophage T4), AcNPV ( Autographa californica nucleopolyhedrovirus). And DNA ligases are from: PBCV1 ( Chlorella virus), MthDnl ( Methanobacterium thermoautotrophicum ), VacDnl (Vaccinia virus). The conserved lysines are shown in bold.
    Figure Legend Snippet: (A) Structural comparison of T4 RNA ligase 2 and archaeal RNA ligase PAB1020 active sites. Two structures were superimposed based on coordinates of pre-bound AMP and ATP homolog (AMPPNP) as well as known conserved amino acids of the ligase active sites. The T4Rnl2 structure is represented in grey and PAB1020 in yellow. The numbers of amino acids in the conserved motifs I-V (in parenthesis) are for T4Rnl2 and PAB1020 ortholog MthRnl, which were determined after sequence alignment of two archaeal enzymes. (B) The sequences of the conserved motifs I and V of MthRnl compared to corresponding motifs in the RNA and DNA ligases as discussed in the text. The listed RNA ligases are from: MthRnl ( Methanobacterium thermoautotrophicum ), PAB1020 ( Pyrococcus abyssi ), TS2126 (bacteriophage Thermus scotoductus ), RM378 (bacteriophage Rhodothermus marinus ), T4Rnl1 and T4Rnl2 (bacteriophage T4), AcNPV ( Autographa californica nucleopolyhedrovirus). And DNA ligases are from: PBCV1 ( Chlorella virus), MthDnl ( Methanobacterium thermoautotrophicum ), VacDnl (Vaccinia virus). The conserved lysines are shown in bold.

    Techniques Used: Sequencing

    4) Product Images from "Simple and efficient synthesis of 5? pre-adenylated DNA using thermostable RNA ligase"

    Article Title: Simple and efficient synthesis of 5? pre-adenylated DNA using thermostable RNA ligase

    Journal: Nucleic Acids Research

    doi: 10.1093/nar/gkr544

    Ligation of adenylated DNA linker made with MthRnl to RNA. AppDNA17c-NH 2 was ligated to RNA22 (lane 2) and FAM-RNA23 (lane 4) using T4 RNA ligase 2 truncated without ATP as described in ‘Materials and Methods’ section. Lanes 1 and 3 are controls without ligase. Single-stranded RNA size markers (Mr) are included for reference. The products were analyzed by a 15% urea–PAGE.
    Figure Legend Snippet: Ligation of adenylated DNA linker made with MthRnl to RNA. AppDNA17c-NH 2 was ligated to RNA22 (lane 2) and FAM-RNA23 (lane 4) using T4 RNA ligase 2 truncated without ATP as described in ‘Materials and Methods’ section. Lanes 1 and 3 are controls without ligase. Single-stranded RNA size markers (Mr) are included for reference. The products were analyzed by a 15% urea–PAGE.

    Techniques Used: Ligation, Polyacrylamide Gel Electrophoresis

    5) Product Images from "Small RNA Library Preparation Method for Next-Generation Sequencing Using Chemical Modifications to Prevent Adapter Dimer Formation"

    Article Title: Small RNA Library Preparation Method for Next-Generation Sequencing Using Chemical Modifications to Prevent Adapter Dimer Formation

    Journal: PLoS ONE

    doi: 10.1371/journal.pone.0167009

    Optimization of the 3´ adapter ligation step. Synthetic Let-7d-5p (NNN) miRNA was ligated to the 3´ adapter using the same ligation conditions as the CleanTag library prep workflow step 1. A) Yield increase with addition of PEG 8000 using T4 RNA Ligase 2, truncated KQ and modified 3´ adapter (MP (n-1)). B) Specificity comparison between ligases used in 3´ ligation step: 1) T4 RNA Ligase 2, truncated; 2) T4 RNA Ligase 2, truncated KQ; 3) T4 RNA Ligase 1; 4) No Ligase. Both unmodified and modified (MP (n-1)) 3´ adapters were tested. Side products indicated with red arrows.
    Figure Legend Snippet: Optimization of the 3´ adapter ligation step. Synthetic Let-7d-5p (NNN) miRNA was ligated to the 3´ adapter using the same ligation conditions as the CleanTag library prep workflow step 1. A) Yield increase with addition of PEG 8000 using T4 RNA Ligase 2, truncated KQ and modified 3´ adapter (MP (n-1)). B) Specificity comparison between ligases used in 3´ ligation step: 1) T4 RNA Ligase 2, truncated; 2) T4 RNA Ligase 2, truncated KQ; 3) T4 RNA Ligase 1; 4) No Ligase. Both unmodified and modified (MP (n-1)) 3´ adapters were tested. Side products indicated with red arrows.

    Techniques Used: Ligation, Modification

    6) Product Images from "Decreasing miRNA sequencing bias using a single adapter and circularization approach"

    Article Title: Decreasing miRNA sequencing bias using a single adapter and circularization approach

    Journal: Genome Biology

    doi: 10.1186/s13059-018-1488-z

    Bias in miRNA detection using various small-RNA library preparation kits. For each kit, sequencing libraries were prepared from the miRXplore™ pool and sequenced; the sequence data were then used to calculate fold-deviations from the equimolar input and plotted as log 2 values. Densities of miRNAs within a two-fold deviation from the expected values (between vertical lines ]. Under-represented, over-represented, and accurately quantified percentages of miRNAs are shown in red font . Results for two-adapter schemes are a TruSeq® Small RNA, b NEBNext®, and c QIAseq. d NEXTFlex™, a scheme using two adapters with randomized sequences. e SMARTer, which uses template switching. f RealSeq®-AC, which uses a single-adapter and circularization (* p value vs other kits
    Figure Legend Snippet: Bias in miRNA detection using various small-RNA library preparation kits. For each kit, sequencing libraries were prepared from the miRXplore™ pool and sequenced; the sequence data were then used to calculate fold-deviations from the equimolar input and plotted as log 2 values. Densities of miRNAs within a two-fold deviation from the expected values (between vertical lines ]. Under-represented, over-represented, and accurately quantified percentages of miRNAs are shown in red font . Results for two-adapter schemes are a TruSeq® Small RNA, b NEBNext®, and c QIAseq. d NEXTFlex™, a scheme using two adapters with randomized sequences. e SMARTer, which uses template switching. f RealSeq®-AC, which uses a single-adapter and circularization (* p value vs other kits

    Techniques Used: Sequencing

    Correlation of miRNA reads between libraries created with 100 ng, 10 ng, or 1 ng inputs of Human Reference RNA (Agilent). Raw reads mapping to miRNAs were used to calculate the Pearson correlation between libraries
    Figure Legend Snippet: Correlation of miRNA reads between libraries created with 100 ng, 10 ng, or 1 ng inputs of Human Reference RNA (Agilent). Raw reads mapping to miRNAs were used to calculate the Pearson correlation between libraries

    Techniques Used:

    7) Product Images from "Reducing ligation bias of small RNAs in libraries for next generation sequencing"

    Article Title: Reducing ligation bias of small RNAs in libraries for next generation sequencing

    Journal: Silence

    doi: 10.1186/1758-907X-3-4

    Sequencing cDNA generated from N21 RNA libraries . a Number of reads for the 100 most abundant sequences in the N21 libraries, prepared with Illumina ( red ) or HD adapters ( blue ). b-d Frequencies of predicted nucleotide base-pairing per position for N21 insert ( b ), N21 insert and 3’ adapter ( c ) and 5’ adapter, insert and 3’ adapter ( d ). In ( c ) and ( d ) vertical dotted line indicates ligation point. Red line denotes data obtained with Illumina protocol, blue line with HD protocol and grey line randomly generated sets of 21nt sequences. Bars indicate minimum and maximum values in all replicates. Horizontal bars at bottom indicate sequence region: green , insert; red , 3’ adapter; blue , 5’ adapter. For insert folding frequencies obtained with random sequences are more closely matched by HD data (R 2 = 0.83) than by Illumina data (R 2 = 0.60). e Comparison of T4 Rnl2 ligase activity on substrates with ss flaps of differing nucleotide lengths upstream or downstream of ligation site. In vitro ligation assay of RNA-DNA duplexes with either a nick (0NT) or ss flaps up- or downstream from the ligation site was carried out at 25°C for 30 min. Substrates with ss flaps > 2nt in length upstream from the ligation site are inefficiently ligated. The diagram illustrates the position of the flaps, the fluorescein reporter group ( star ) and the backbone oligonucleotide ( black ). If ligation occurs the size of the nucleic acid attached to the fluorescein increases as visualised by 15% PAGE.
    Figure Legend Snippet: Sequencing cDNA generated from N21 RNA libraries . a Number of reads for the 100 most abundant sequences in the N21 libraries, prepared with Illumina ( red ) or HD adapters ( blue ). b-d Frequencies of predicted nucleotide base-pairing per position for N21 insert ( b ), N21 insert and 3’ adapter ( c ) and 5’ adapter, insert and 3’ adapter ( d ). In ( c ) and ( d ) vertical dotted line indicates ligation point. Red line denotes data obtained with Illumina protocol, blue line with HD protocol and grey line randomly generated sets of 21nt sequences. Bars indicate minimum and maximum values in all replicates. Horizontal bars at bottom indicate sequence region: green , insert; red , 3’ adapter; blue , 5’ adapter. For insert folding frequencies obtained with random sequences are more closely matched by HD data (R 2 = 0.83) than by Illumina data (R 2 = 0.60). e Comparison of T4 Rnl2 ligase activity on substrates with ss flaps of differing nucleotide lengths upstream or downstream of ligation site. In vitro ligation assay of RNA-DNA duplexes with either a nick (0NT) or ss flaps up- or downstream from the ligation site was carried out at 25°C for 30 min. Substrates with ss flaps > 2nt in length upstream from the ligation site are inefficiently ligated. The diagram illustrates the position of the flaps, the fluorescein reporter group ( star ) and the backbone oligonucleotide ( black ). If ligation occurs the size of the nucleic acid attached to the fluorescein increases as visualised by 15% PAGE.

    Techniques Used: Sequencing, Generated, Ligation, Activity Assay, In Vitro, Polyacrylamide Gel Electrophoresis

    Scheme depicting the experimental approach and HD adapters . a Data were generated to analyse the sequence preferences of T4 Rnl1 and T4 Rnl2 using a degenerate RNA library (N21 RNA). b HD adapters include degenerate tags at the end of the adapters that allow the formation of stable secondary structures for more sequences and reduce RNA ligase-dependent sequence bias. Panel ( c ) shows the structure of miR-29b with the Illumina adapters ( top ) and some of the structures formed by HD adapters ( bottom ). We found 1,031 distinct structures originating from 12,479 tag combinations.
    Figure Legend Snippet: Scheme depicting the experimental approach and HD adapters . a Data were generated to analyse the sequence preferences of T4 Rnl1 and T4 Rnl2 using a degenerate RNA library (N21 RNA). b HD adapters include degenerate tags at the end of the adapters that allow the formation of stable secondary structures for more sequences and reduce RNA ligase-dependent sequence bias. Panel ( c ) shows the structure of miR-29b with the Illumina adapters ( top ) and some of the structures formed by HD adapters ( bottom ). We found 1,031 distinct structures originating from 12,479 tag combinations.

    Techniques Used: Generated, Sequencing

    8) Product Images from "Elimination of Ligation Dependent Artifacts in T4 RNA Ligase to Achieve High Efficiency and Low Bias MicroRNA Capture"

    Article Title: Elimination of Ligation Dependent Artifacts in T4 RNA Ligase to Achieve High Efficiency and Low Bias MicroRNA Capture

    Journal: PLoS ONE

    doi: 10.1371/journal.pone.0094619

    MicroRNA capture was performed with 4 different ligases using the vendor recommended protocols to compare capture efficiency across 20 different microRNA. The ligation products were analyzed by 15% denaturing urea-PAGE. Capture efficiency was determined by performing a Cy3 scan and comparing the intensities of the ∼40 nt captured microRNA band versus the ∼20 nt free microRNA band. T4 RNA Ligase 2 truncated (T4 Rnl2 T) had high average capture efficiency and low bias but many randomly sized background products. The point mutant enzymes T4 RNA Ligase 2 truncated K227Q (T4 Rnl2 TK) and T4 RNA Ligase 2 truncated KQ (T4 Rnl2 TKQ) had decreased side product formation but also lower average capture efficiency and higher bias. Thermostable 5′ App DNA/RNA Ligase (Mth Rnl), which was performed at 65°C instead of 25°C, had similar average capture efficiency and bias but with distinct ligation efficiency pattern.
    Figure Legend Snippet: MicroRNA capture was performed with 4 different ligases using the vendor recommended protocols to compare capture efficiency across 20 different microRNA. The ligation products were analyzed by 15% denaturing urea-PAGE. Capture efficiency was determined by performing a Cy3 scan and comparing the intensities of the ∼40 nt captured microRNA band versus the ∼20 nt free microRNA band. T4 RNA Ligase 2 truncated (T4 Rnl2 T) had high average capture efficiency and low bias but many randomly sized background products. The point mutant enzymes T4 RNA Ligase 2 truncated K227Q (T4 Rnl2 TK) and T4 RNA Ligase 2 truncated KQ (T4 Rnl2 TKQ) had decreased side product formation but also lower average capture efficiency and higher bias. Thermostable 5′ App DNA/RNA Ligase (Mth Rnl), which was performed at 65°C instead of 25°C, had similar average capture efficiency and bias but with distinct ligation efficiency pattern.

    Techniques Used: Ligation, Polyacrylamide Gel Electrophoresis, Mutagenesis

    Schematic illustration of microRNA capture by 3′ adapter ligation. The 19 nt, enzymatically pre-adenlyated adapter is ligated to the 3′ OH of microRNA using T4 RNA ligase 2. The reaction is run at 25°C for 4 hours in the absence of ATP. In order to characterize capture efficiency, the microRNA is end labeled with Cy3. The 3′ end of the adapter is blocked by –ddC, a fluorophore, or other moiety to prevent the formation of concatemers and circularized products.
    Figure Legend Snippet: Schematic illustration of microRNA capture by 3′ adapter ligation. The 19 nt, enzymatically pre-adenlyated adapter is ligated to the 3′ OH of microRNA using T4 RNA ligase 2. The reaction is run at 25°C for 4 hours in the absence of ATP. In order to characterize capture efficiency, the microRNA is end labeled with Cy3. The 3′ end of the adapter is blocked by –ddC, a fluorophore, or other moiety to prevent the formation of concatemers and circularized products.

    Techniques Used: Ligation, Labeling

    9) Product Images from "Simple and efficient synthesis of 5? pre-adenylated DNA using thermostable RNA ligase"

    Article Title: Simple and efficient synthesis of 5? pre-adenylated DNA using thermostable RNA ligase

    Journal: Nucleic Acids Research

    doi: 10.1093/nar/gkr544

    Ligation of adenylated DNA linker made with MthRnl to RNA. AppDNA17c-NH 2 was ligated to RNA22 (lane 2) and FAM-RNA23 (lane 4) using T4 RNA ligase 2 truncated without ATP as described in ‘Materials and Methods’ section. Lanes 1 and 3 are controls without ligase. Single-stranded RNA size markers (Mr) are included for reference. The products were analyzed by a 15% urea–PAGE.
    Figure Legend Snippet: Ligation of adenylated DNA linker made with MthRnl to RNA. AppDNA17c-NH 2 was ligated to RNA22 (lane 2) and FAM-RNA23 (lane 4) using T4 RNA ligase 2 truncated without ATP as described in ‘Materials and Methods’ section. Lanes 1 and 3 are controls without ligase. Single-stranded RNA size markers (Mr) are included for reference. The products were analyzed by a 15% urea–PAGE.

    Techniques Used: Ligation, Polyacrylamide Gel Electrophoresis

    10) Product Images from "Blocking of targeted microRNAs from next-generation sequencing libraries"

    Article Title: Blocking of targeted microRNAs from next-generation sequencing libraries

    Journal: Nucleic Acids Research

    doi: 10.1093/nar/gkv724

    Modification of miRNA sequencing library generation protocol to allow for blocking of targeted species. ( A ) In the standard protocol, a pre-adenylated adaptor is ligated to the 3′ end of a small RNA pool using T4 RNA Ligase 2, truncated. Subsequently, a second adaptor is added to the 5′ end of the miRNA with T4 RNA Ligase 1, followed by reverse transcription and PCR. ( B ) In our modification, a hairpin oligonucleotide with an overhang complementary to the 5′ end of the targeted miRNA is attached via ligation with T4 DNA Ligase to the 5′ end of the miRNA subsequent to the ligation of the adaptor to the 3′ end. This prevents the ligation of the second adaptor to the 5′ end of the miRNA, resulting in a product that does not amplify during PCR. ( C ) Sequencing libraries were generated from human heart total RNA using a titration of a blocking oligonucleotide targeting hsa-miR-16–5p. The fraction of hsa-miR-16–5p present in the blocked library compared to the unblocked library is shown on the y-axis.
    Figure Legend Snippet: Modification of miRNA sequencing library generation protocol to allow for blocking of targeted species. ( A ) In the standard protocol, a pre-adenylated adaptor is ligated to the 3′ end of a small RNA pool using T4 RNA Ligase 2, truncated. Subsequently, a second adaptor is added to the 5′ end of the miRNA with T4 RNA Ligase 1, followed by reverse transcription and PCR. ( B ) In our modification, a hairpin oligonucleotide with an overhang complementary to the 5′ end of the targeted miRNA is attached via ligation with T4 DNA Ligase to the 5′ end of the miRNA subsequent to the ligation of the adaptor to the 3′ end. This prevents the ligation of the second adaptor to the 5′ end of the miRNA, resulting in a product that does not amplify during PCR. ( C ) Sequencing libraries were generated from human heart total RNA using a titration of a blocking oligonucleotide targeting hsa-miR-16–5p. The fraction of hsa-miR-16–5p present in the blocked library compared to the unblocked library is shown on the y-axis.

    Techniques Used: Modification, Sequencing, Blocking Assay, Polymerase Chain Reaction, Ligation, Generated, Titration

    11) Product Images from "Blocking of targeted microRNAs from next-generation sequencing libraries"

    Article Title: Blocking of targeted microRNAs from next-generation sequencing libraries

    Journal: Nucleic Acids Research

    doi: 10.1093/nar/gkv724

    Modification of miRNA sequencing library generation protocol to allow for blocking of targeted species. ( A ) In the standard protocol, a pre-adenylated adaptor is ligated to the 3′ end of a small RNA pool using T4 RNA Ligase 2, truncated. Subsequently, a second adaptor is added to the 5′ end of the miRNA with T4 RNA Ligase 1, followed by reverse transcription and PCR. ( B ) In our modification, a hairpin oligonucleotide with an overhang complementary to the 5′ end of the targeted miRNA is attached via ligation with T4 DNA Ligase to the 5′ end of the miRNA subsequent to the ligation of the adaptor to the 3′ end. This prevents the ligation of the second adaptor to the 5′ end of the miRNA, resulting in a product that does not amplify during PCR. ( C ) Sequencing libraries were generated from human heart total RNA using a titration of a blocking oligonucleotide targeting hsa-miR-16–5p. The fraction of hsa-miR-16–5p present in the blocked library compared to the unblocked library is shown on the y-axis.
    Figure Legend Snippet: Modification of miRNA sequencing library generation protocol to allow for blocking of targeted species. ( A ) In the standard protocol, a pre-adenylated adaptor is ligated to the 3′ end of a small RNA pool using T4 RNA Ligase 2, truncated. Subsequently, a second adaptor is added to the 5′ end of the miRNA with T4 RNA Ligase 1, followed by reverse transcription and PCR. ( B ) In our modification, a hairpin oligonucleotide with an overhang complementary to the 5′ end of the targeted miRNA is attached via ligation with T4 DNA Ligase to the 5′ end of the miRNA subsequent to the ligation of the adaptor to the 3′ end. This prevents the ligation of the second adaptor to the 5′ end of the miRNA, resulting in a product that does not amplify during PCR. ( C ) Sequencing libraries were generated from human heart total RNA using a titration of a blocking oligonucleotide targeting hsa-miR-16–5p. The fraction of hsa-miR-16–5p present in the blocked library compared to the unblocked library is shown on the y-axis.

    Techniques Used: Modification, Sequencing, Blocking Assay, Polymerase Chain Reaction, Ligation, Generated, Titration

    12) Product Images from "Blocking of targeted microRNAs from next-generation sequencing libraries"

    Article Title: Blocking of targeted microRNAs from next-generation sequencing libraries

    Journal: Nucleic Acids Research

    doi: 10.1093/nar/gkv724

    Modification of miRNA sequencing library generation protocol to allow for blocking of targeted species. ( A ) In the standard protocol, a pre-adenylated adaptor is ligated to the 3′ end of a small RNA pool using T4 RNA Ligase 2, truncated. Subsequently, a second adaptor is added to the 5′ end of the miRNA with T4 RNA Ligase 1, followed by reverse transcription and PCR. ( B ) In our modification, a hairpin oligonucleotide with an overhang complementary to the 5′ end of the targeted miRNA is attached via ligation with T4 DNA Ligase to the 5′ end of the miRNA subsequent to the ligation of the adaptor to the 3′ end. This prevents the ligation of the second adaptor to the 5′ end of the miRNA, resulting in a product that does not amplify during PCR. ( C ) Sequencing libraries were generated from human heart total RNA using a titration of a blocking oligonucleotide targeting hsa-miR-16–5p. The fraction of hsa-miR-16–5p present in the blocked library compared to the unblocked library is shown on the y-axis.
    Figure Legend Snippet: Modification of miRNA sequencing library generation protocol to allow for blocking of targeted species. ( A ) In the standard protocol, a pre-adenylated adaptor is ligated to the 3′ end of a small RNA pool using T4 RNA Ligase 2, truncated. Subsequently, a second adaptor is added to the 5′ end of the miRNA with T4 RNA Ligase 1, followed by reverse transcription and PCR. ( B ) In our modification, a hairpin oligonucleotide with an overhang complementary to the 5′ end of the targeted miRNA is attached via ligation with T4 DNA Ligase to the 5′ end of the miRNA subsequent to the ligation of the adaptor to the 3′ end. This prevents the ligation of the second adaptor to the 5′ end of the miRNA, resulting in a product that does not amplify during PCR. ( C ) Sequencing libraries were generated from human heart total RNA using a titration of a blocking oligonucleotide targeting hsa-miR-16–5p. The fraction of hsa-miR-16–5p present in the blocked library compared to the unblocked library is shown on the y-axis.

    Techniques Used: Modification, Sequencing, Blocking Assay, Polymerase Chain Reaction, Ligation, Generated, Titration

    13) Product Images from "Small RNA Library Preparation Method for Next-Generation Sequencing Using Chemical Modifications to Prevent Adapter Dimer Formation"

    Article Title: Small RNA Library Preparation Method for Next-Generation Sequencing Using Chemical Modifications to Prevent Adapter Dimer Formation

    Journal: PLoS ONE

    doi: 10.1371/journal.pone.0167009

    Optimization of the 3´ adapter ligation step. Synthetic Let-7d-5p (NNN) miRNA was ligated to the 3´ adapter using the same ligation conditions as the CleanTag library prep workflow step 1. A) Yield increase with addition of PEG 8000 using T4 RNA Ligase 2, truncated KQ and modified 3´ adapter (MP (n-1)). B) Specificity comparison between ligases used in 3´ ligation step: 1) T4 RNA Ligase 2, truncated; 2) T4 RNA Ligase 2, truncated KQ; 3) T4 RNA Ligase 1; 4) No Ligase. Both unmodified and modified (MP (n-1)) 3´ adapters were tested. Side products indicated with red arrows.
    Figure Legend Snippet: Optimization of the 3´ adapter ligation step. Synthetic Let-7d-5p (NNN) miRNA was ligated to the 3´ adapter using the same ligation conditions as the CleanTag library prep workflow step 1. A) Yield increase with addition of PEG 8000 using T4 RNA Ligase 2, truncated KQ and modified 3´ adapter (MP (n-1)). B) Specificity comparison between ligases used in 3´ ligation step: 1) T4 RNA Ligase 2, truncated; 2) T4 RNA Ligase 2, truncated KQ; 3) T4 RNA Ligase 1; 4) No Ligase. Both unmodified and modified (MP (n-1)) 3´ adapters were tested. Side products indicated with red arrows.

    Techniques Used: Ligation, Modification

    14) Product Images from "Small RNA Library Preparation Method for Next-Generation Sequencing Using Chemical Modifications to Prevent Adapter Dimer Formation"

    Article Title: Small RNA Library Preparation Method for Next-Generation Sequencing Using Chemical Modifications to Prevent Adapter Dimer Formation

    Journal: PLoS ONE

    doi: 10.1371/journal.pone.0167009

    Optimization of the 3´ adapter ligation step. Synthetic Let-7d-5p (NNN) miRNA was ligated to the 3´ adapter using the same ligation conditions as the CleanTag library prep workflow step 1. A) Yield increase with addition of PEG 8000 using T4 RNA Ligase 2, truncated KQ and modified 3´ adapter (MP (n-1)). B) Specificity comparison between ligases used in 3´ ligation step: 1) T4 RNA Ligase 2, truncated; 2) T4 RNA Ligase 2, truncated KQ; 3) T4 RNA Ligase 1; 4) No Ligase. Both unmodified and modified (MP (n-1)) 3´ adapters were tested. Side products indicated with red arrows.
    Figure Legend Snippet: Optimization of the 3´ adapter ligation step. Synthetic Let-7d-5p (NNN) miRNA was ligated to the 3´ adapter using the same ligation conditions as the CleanTag library prep workflow step 1. A) Yield increase with addition of PEG 8000 using T4 RNA Ligase 2, truncated KQ and modified 3´ adapter (MP (n-1)). B) Specificity comparison between ligases used in 3´ ligation step: 1) T4 RNA Ligase 2, truncated; 2) T4 RNA Ligase 2, truncated KQ; 3) T4 RNA Ligase 1; 4) No Ligase. Both unmodified and modified (MP (n-1)) 3´ adapters were tested. Side products indicated with red arrows.

    Techniques Used: Ligation, Modification

    15) Product Images from "Small RNA Library Preparation Method for Next-Generation Sequencing Using Chemical Modifications to Prevent Adapter Dimer Formation"

    Article Title: Small RNA Library Preparation Method for Next-Generation Sequencing Using Chemical Modifications to Prevent Adapter Dimer Formation

    Journal: PLoS ONE

    doi: 10.1371/journal.pone.0167009

    Optimization of the 3´ adapter ligation step. Synthetic Let-7d-5p (NNN) miRNA was ligated to the 3´ adapter using the same ligation conditions as the CleanTag library prep workflow step 1. A) Yield increase with addition of PEG 8000 using T4 RNA Ligase 2, truncated KQ and modified 3´ adapter (MP (n-1)). B) Specificity comparison between ligases used in 3´ ligation step: 1) T4 RNA Ligase 2, truncated; 2) T4 RNA Ligase 2, truncated KQ; 3) T4 RNA Ligase 1; 4) No Ligase. Both unmodified and modified (MP (n-1)) 3´ adapters were tested. Side products indicated with red arrows.
    Figure Legend Snippet: Optimization of the 3´ adapter ligation step. Synthetic Let-7d-5p (NNN) miRNA was ligated to the 3´ adapter using the same ligation conditions as the CleanTag library prep workflow step 1. A) Yield increase with addition of PEG 8000 using T4 RNA Ligase 2, truncated KQ and modified 3´ adapter (MP (n-1)). B) Specificity comparison between ligases used in 3´ ligation step: 1) T4 RNA Ligase 2, truncated; 2) T4 RNA Ligase 2, truncated KQ; 3) T4 RNA Ligase 1; 4) No Ligase. Both unmodified and modified (MP (n-1)) 3´ adapters were tested. Side products indicated with red arrows.

    Techniques Used: Ligation, Modification

    16) Product Images from "Decreasing miRNA sequencing bias using a single adapter and circularization approach"

    Article Title: Decreasing miRNA sequencing bias using a single adapter and circularization approach

    Journal: Genome Biology

    doi: 10.1186/s13059-018-1488-z

    Bias in miRNA detection using various small-RNA library preparation kits. For each kit, sequencing libraries were prepared from the miRXplore™ pool and sequenced; the sequence data were then used to calculate fold-deviations from the equimolar input and plotted as log 2 values. Densities of miRNAs within a two-fold deviation from the expected values (between vertical lines ]. Under-represented, over-represented, and accurately quantified percentages of miRNAs are shown in red font . Results for two-adapter schemes are a TruSeq® Small RNA, b NEBNext®, and c QIAseq. d NEXTFlex™, a scheme using two adapters with randomized sequences. e SMARTer, which uses template switching. f RealSeq®-AC, which uses a single-adapter and circularization (* p value vs other kits
    Figure Legend Snippet: Bias in miRNA detection using various small-RNA library preparation kits. For each kit, sequencing libraries were prepared from the miRXplore™ pool and sequenced; the sequence data were then used to calculate fold-deviations from the equimolar input and plotted as log 2 values. Densities of miRNAs within a two-fold deviation from the expected values (between vertical lines ]. Under-represented, over-represented, and accurately quantified percentages of miRNAs are shown in red font . Results for two-adapter schemes are a TruSeq® Small RNA, b NEBNext®, and c QIAseq. d NEXTFlex™, a scheme using two adapters with randomized sequences. e SMARTer, which uses template switching. f RealSeq®-AC, which uses a single-adapter and circularization (* p value vs other kits

    Techniques Used: Sequencing

    Correlation of miRNA reads between libraries created with 100 ng, 10 ng, or 1 ng inputs of Human Reference RNA (Agilent). Raw reads mapping to miRNAs were used to calculate the Pearson correlation between libraries
    Figure Legend Snippet: Correlation of miRNA reads between libraries created with 100 ng, 10 ng, or 1 ng inputs of Human Reference RNA (Agilent). Raw reads mapping to miRNAs were used to calculate the Pearson correlation between libraries

    Techniques Used:

    17) Product Images from "T4 RNA Ligase 2 truncated active site mutants: improved tools for RNA analysis"

    Article Title: T4 RNA Ligase 2 truncated active site mutants: improved tools for RNA analysis

    Journal: BMC Biotechnology

    doi: 10.1186/1472-6750-11-72

    Effect of PEG 8000 on ligase intermolecular strand-joining activity . Strand-joining reactions were carried out with 10 pmol 5'-adenylated 17-mer DNA, 5 pmol 31-mer 5'-FAM-labeled RNA acceptor, ligase (13.8 pmol), and varying amounts of PEG 8000 for 1 hour at 25°C to assess the effect of PEG on ligation efficiency. Ligation efficiency was determined by resolving the material in the reactions on denaturing 15% acrylamide gels and quantifying the amount of ligation product versus input nucleic acid. Rnl2tr = T4 RNA ligase 2 truncated, Rnl2tr + MBP = T4 RNA ligase 2 truncated attached to an N-terminal maltose binding protein tag. All mutations indicated are substitutions in T4 Rnl2tr + MBP. Data are shown as the mean +/- SEM of at least three independent experiments.
    Figure Legend Snippet: Effect of PEG 8000 on ligase intermolecular strand-joining activity . Strand-joining reactions were carried out with 10 pmol 5'-adenylated 17-mer DNA, 5 pmol 31-mer 5'-FAM-labeled RNA acceptor, ligase (13.8 pmol), and varying amounts of PEG 8000 for 1 hour at 25°C to assess the effect of PEG on ligation efficiency. Ligation efficiency was determined by resolving the material in the reactions on denaturing 15% acrylamide gels and quantifying the amount of ligation product versus input nucleic acid. Rnl2tr = T4 RNA ligase 2 truncated, Rnl2tr + MBP = T4 RNA ligase 2 truncated attached to an N-terminal maltose binding protein tag. All mutations indicated are substitutions in T4 Rnl2tr + MBP. Data are shown as the mean +/- SEM of at least three independent experiments.

    Techniques Used: Activity Assay, Labeling, Ligation, Binding Assay

    Deadenylation activity of T4 RNA ligase 2 truncated mutants . 5'-adenylated DNA adapters were incubated with an excess of ligase (13.8 pmol), and 12.5% PEG 8000 at 16°C overnight. Oligonucleotide substrates are depicted schematically above the gel. The contents of each sample were resolved on denaturing 15% acrylamide gels and stained with SYBR Gold to visualize nucleic acid. Deadenylation of the DNA adapter (loss of 5'-App) is indicated by a band shift of ~1 nt towards the bottom of the gel. Rnl1 = T4 RNA ligase 1, Rnl2 = T4 RNA ligase 2, Rnl2tr = T4 RNA ligase 2 truncated, Rnl2 +MBP = T4 RNA ligase 2 truncated attached to an N-terminal maltose binding protein tag. All mutations indicated are substitutions in T4 Rnl2tr + MBP.
    Figure Legend Snippet: Deadenylation activity of T4 RNA ligase 2 truncated mutants . 5'-adenylated DNA adapters were incubated with an excess of ligase (13.8 pmol), and 12.5% PEG 8000 at 16°C overnight. Oligonucleotide substrates are depicted schematically above the gel. The contents of each sample were resolved on denaturing 15% acrylamide gels and stained with SYBR Gold to visualize nucleic acid. Deadenylation of the DNA adapter (loss of 5'-App) is indicated by a band shift of ~1 nt towards the bottom of the gel. Rnl1 = T4 RNA ligase 1, Rnl2 = T4 RNA ligase 2, Rnl2tr = T4 RNA ligase 2 truncated, Rnl2 +MBP = T4 RNA ligase 2 truncated attached to an N-terminal maltose binding protein tag. All mutations indicated are substitutions in T4 Rnl2tr + MBP.

    Techniques Used: Activity Assay, Incubation, Staining, Electrophoretic Mobility Shift Assay, Binding Assay

    Assaying the formation of side products by T4 RNA ligases . Intermolecular strand-joining reactions containing 5'-adenylated adapters, 21-mer 5'-PO 4 RNA acceptors, and ligase (1 pmol) were incubated at 16°C overnight in the presence of 12.5% PEG 8000. Oligonucleotide substrates are depicted schematically above the gel. Grey lines represent RNA and black lines represent DNA. Products of the reaction were resolved on denaturing 15% acrylamide gels and stained with SYBR Gold. The bands corresponding to the input nucleic acids, the DNA adapter/RNA acceptor ligation product (39 bases), and larger side products are indicated. Ladder = size standard ladder, Rnl1 = T4 RNA ligase 1, Rnl2 = T4 RNA ligase 2, Rnl2tr = T4 RNA ligase 2 truncated, Rnl2 +MBP = T4 RNA ligase 2 truncated attached to an N-terminal maltose binding protein tag. All mutations indicated are substitutions in T4 Rnl2tr + MBP.
    Figure Legend Snippet: Assaying the formation of side products by T4 RNA ligases . Intermolecular strand-joining reactions containing 5'-adenylated adapters, 21-mer 5'-PO 4 RNA acceptors, and ligase (1 pmol) were incubated at 16°C overnight in the presence of 12.5% PEG 8000. Oligonucleotide substrates are depicted schematically above the gel. Grey lines represent RNA and black lines represent DNA. Products of the reaction were resolved on denaturing 15% acrylamide gels and stained with SYBR Gold. The bands corresponding to the input nucleic acids, the DNA adapter/RNA acceptor ligation product (39 bases), and larger side products are indicated. Ladder = size standard ladder, Rnl1 = T4 RNA ligase 1, Rnl2 = T4 RNA ligase 2, Rnl2tr = T4 RNA ligase 2 truncated, Rnl2 +MBP = T4 RNA ligase 2 truncated attached to an N-terminal maltose binding protein tag. All mutations indicated are substitutions in T4 Rnl2tr + MBP.

    Techniques Used: Incubation, Staining, Ligation, Binding Assay

    Following AMP during ligation reactions with T4 RNA ligases . (A) 22-mer DNA adapters were 5'-adenylated with α- 32 P-labeled ATP (see materials and methods). Intermolecular strand-joining reactions containing 10 pmol radiolabeled DNA adapter, 5 pmol 21-mer 5'-PO 4 RNA acceptor, and ligase (1 pmol) were incubated overnight at 16°C in the presence of PEG 8000. Reaction products were resolved on a denaturing 15% acrylamide gel and radioactive molecules were visualized by exposure to Phosphor screens. The resulting products were either free AMP in solution (AMP*) or the adapter remaining adenylated (Ap*p-DNA). Oligonucleotide substrates are depicted schematically above the gel. Grey lines represent RNA and black lines represent DNA. P* denotes 32 P-phosphate. (B) Determining the fate of AMP upon T4 RNA ligase-dependent deadenylation. Reactions containing radiolabeled DNA adapter (10 pmol) and ligase (14 pmol) were incubated overnight at 16°C in the presence of 12.5% PEG 8000. Oligonucleotide substrates are depicted schematically above the gel. P* denotes 32 P-phosphate. Reaction products were resolved and visualized as in (A). The resulting products were either free AMP in solution (AMP*), the adapter remaining adenylated (Ap*p-DNA), or AMP covalently bound to the ligase (AMP*-ligase). The lane labeled input contains only Ap*p-DNA. (C) Reactions identical to those in (B) were treated with Proteinase K prior to gel electrophoresis and detection. (D) Reactions containing 10 pmol radiolabeled DNA adapter, 5 pmol 28-mer [5'-PO 4 , 3'-blocked] RNA acceptor, and ligase (1 pmol) were incubated, resolved and detected as in (A). The resulting products were either free AMP in solution (AMP*), adenylated adapter (Ap*p-DNA), or Ap*p-28-mer RNA. The lane labeled RNA size control contains 5'- 32 PO 4 RNA, and the lane labeled input contains only Ap*p-DNA. Oligonucleotide substrates are depicted schematically above the gel. Grey lines represent RNA and black lines represent DNA. P* denotes 32 P-phosphate. In all panels, Rnl1 = T4 RNA ligase 1, Rnl2 = T4 RNA ligase 2, Rnl2tr = T4 RNA ligase 2 truncated, Rnl2 +MBP = T4 RNA ligase 2 truncated attached to an N-terminal maltose binding protein tag. All mutations indicated are substitutions in T4 Rnl2tr + MBP.
    Figure Legend Snippet: Following AMP during ligation reactions with T4 RNA ligases . (A) 22-mer DNA adapters were 5'-adenylated with α- 32 P-labeled ATP (see materials and methods). Intermolecular strand-joining reactions containing 10 pmol radiolabeled DNA adapter, 5 pmol 21-mer 5'-PO 4 RNA acceptor, and ligase (1 pmol) were incubated overnight at 16°C in the presence of PEG 8000. Reaction products were resolved on a denaturing 15% acrylamide gel and radioactive molecules were visualized by exposure to Phosphor screens. The resulting products were either free AMP in solution (AMP*) or the adapter remaining adenylated (Ap*p-DNA). Oligonucleotide substrates are depicted schematically above the gel. Grey lines represent RNA and black lines represent DNA. P* denotes 32 P-phosphate. (B) Determining the fate of AMP upon T4 RNA ligase-dependent deadenylation. Reactions containing radiolabeled DNA adapter (10 pmol) and ligase (14 pmol) were incubated overnight at 16°C in the presence of 12.5% PEG 8000. Oligonucleotide substrates are depicted schematically above the gel. P* denotes 32 P-phosphate. Reaction products were resolved and visualized as in (A). The resulting products were either free AMP in solution (AMP*), the adapter remaining adenylated (Ap*p-DNA), or AMP covalently bound to the ligase (AMP*-ligase). The lane labeled input contains only Ap*p-DNA. (C) Reactions identical to those in (B) were treated with Proteinase K prior to gel electrophoresis and detection. (D) Reactions containing 10 pmol radiolabeled DNA adapter, 5 pmol 28-mer [5'-PO 4 , 3'-blocked] RNA acceptor, and ligase (1 pmol) were incubated, resolved and detected as in (A). The resulting products were either free AMP in solution (AMP*), adenylated adapter (Ap*p-DNA), or Ap*p-28-mer RNA. The lane labeled RNA size control contains 5'- 32 PO 4 RNA, and the lane labeled input contains only Ap*p-DNA. Oligonucleotide substrates are depicted schematically above the gel. Grey lines represent RNA and black lines represent DNA. P* denotes 32 P-phosphate. In all panels, Rnl1 = T4 RNA ligase 1, Rnl2 = T4 RNA ligase 2, Rnl2tr = T4 RNA ligase 2 truncated, Rnl2 +MBP = T4 RNA ligase 2 truncated attached to an N-terminal maltose binding protein tag. All mutations indicated are substitutions in T4 Rnl2tr + MBP.

    Techniques Used: Ligation, Labeling, Incubation, Acrylamide Gel Assay, Nucleic Acid Electrophoresis, Binding Assay

    Production of ligation side products by T4 RNA ligases . Intermolecular ligation reactions containing 5'-adenylated DNA adapters, 21-mer 5'-PO 4 RNA acceptors and ligase (1 pmol) were incubated at 16°C overnight with 12.5% PEG 8000. Products of the reactions were resolved on denaturing 15% acrylamide gels and stained with SYBR Gold. The bands corresponding to the input nucleic acids, the DNA adapter/RNA acceptor ligation product (39 bases), and larger side products are indicated. Rnl1 = T4 RNA ligase 1, Rnl2 = T4 RNA ligase 2, Rnl2tr = T4 RNA ligase 2 truncated, Rnl2tr + MBP = T4 RNA ligase 2 truncated attached to an N-terminal maltose binding protein tag. Oligonucleotide substrates are depicted schematically above the gel. Grey lines represent RNA and black lines represent DNA.
    Figure Legend Snippet: Production of ligation side products by T4 RNA ligases . Intermolecular ligation reactions containing 5'-adenylated DNA adapters, 21-mer 5'-PO 4 RNA acceptors and ligase (1 pmol) were incubated at 16°C overnight with 12.5% PEG 8000. Products of the reactions were resolved on denaturing 15% acrylamide gels and stained with SYBR Gold. The bands corresponding to the input nucleic acids, the DNA adapter/RNA acceptor ligation product (39 bases), and larger side products are indicated. Rnl1 = T4 RNA ligase 1, Rnl2 = T4 RNA ligase 2, Rnl2tr = T4 RNA ligase 2 truncated, Rnl2tr + MBP = T4 RNA ligase 2 truncated attached to an N-terminal maltose binding protein tag. Oligonucleotide substrates are depicted schematically above the gel. Grey lines represent RNA and black lines represent DNA.

    Techniques Used: Ligation, Incubation, Staining, Binding Assay

    Purification and activity of T4 RNA Ligase 2 truncated mutants . (A) Aliquots of T4 RNA ligase 2 truncated and mutants were separated on 10-20% Tris-glycine SDS polyacrylamide gels and stained with Coomassie blue. The size (in kDa) of marker polypeptides are indicated on the left. (B) Intermolecular strand-joining activity of T4 RNA ligase 2 truncated mutants under multiple turnover conditions. 10 pmol 5'-adenylated 17-mer DNA was incubated for one hour at 25°C with 5 pmol 5'- FAM-labeled 31-mer RNA. 1 pmol of each ligase was added into reaction mixture. The reaction products were resolved on denaturing 15% acrylamide gels, scanned and quantified as described in the methods section. Rnl2tr = T4 RNA ligase 2 truncated, Rnl2tr + MBP = T4 RNA ligase 2 truncated attached to an N-terminal maltose binding protein tag. All mutations indicated are substitutions in T4 Rnl2tr + MBP. Data are shown as the mean +/- SEM of at least three independent experiments. * denotes difference in means p
    Figure Legend Snippet: Purification and activity of T4 RNA Ligase 2 truncated mutants . (A) Aliquots of T4 RNA ligase 2 truncated and mutants were separated on 10-20% Tris-glycine SDS polyacrylamide gels and stained with Coomassie blue. The size (in kDa) of marker polypeptides are indicated on the left. (B) Intermolecular strand-joining activity of T4 RNA ligase 2 truncated mutants under multiple turnover conditions. 10 pmol 5'-adenylated 17-mer DNA was incubated for one hour at 25°C with 5 pmol 5'- FAM-labeled 31-mer RNA. 1 pmol of each ligase was added into reaction mixture. The reaction products were resolved on denaturing 15% acrylamide gels, scanned and quantified as described in the methods section. Rnl2tr = T4 RNA ligase 2 truncated, Rnl2tr + MBP = T4 RNA ligase 2 truncated attached to an N-terminal maltose binding protein tag. All mutations indicated are substitutions in T4 Rnl2tr + MBP. Data are shown as the mean +/- SEM of at least three independent experiments. * denotes difference in means p

    Techniques Used: Purification, Activity Assay, Staining, Marker, Incubation, Labeling, Binding Assay

    Effect of pH on ligase intermolecular strand-joining activity . (A-D) Intermolecular strand-joining reactions were carried out with 10 pmol 5'-adenylated 17mer DNA, 5 pmol 31-mer 5'-FAM-labeled RNA acceptor, and ligase (1 pmol) for 1 hour at 25°C to assess the effect of pH on ligation efficiency. Ligation efficiency was determined by resolving the material in the reactions on denaturing 15% acrylamide gels and quantifying the amount of ligation product versus input nucleic acid. (E-H) Intermolecular strand-joining reactions were carried out with 10 pmol 5'-adenylated 17-mer DNA, 5 pmol 31-mer 5'-FAM-labeled RNA acceptor, and ligase (13.8 pmol) for 1 hour at 25°C to assess the effect of pH on ligation efficiency. Rnl2tr = T4 RNA ligase 2 truncated, Rnl2tr + MBP = T4 RNA ligase 2 truncated attached to an N-terminal maltose binding protein tag. All mutations indicated are substitutions in T4 Rnl2tr + MBP. Data are shown as the mean +/- SEM of at least three independent experiments.
    Figure Legend Snippet: Effect of pH on ligase intermolecular strand-joining activity . (A-D) Intermolecular strand-joining reactions were carried out with 10 pmol 5'-adenylated 17mer DNA, 5 pmol 31-mer 5'-FAM-labeled RNA acceptor, and ligase (1 pmol) for 1 hour at 25°C to assess the effect of pH on ligation efficiency. Ligation efficiency was determined by resolving the material in the reactions on denaturing 15% acrylamide gels and quantifying the amount of ligation product versus input nucleic acid. (E-H) Intermolecular strand-joining reactions were carried out with 10 pmol 5'-adenylated 17-mer DNA, 5 pmol 31-mer 5'-FAM-labeled RNA acceptor, and ligase (13.8 pmol) for 1 hour at 25°C to assess the effect of pH on ligation efficiency. Rnl2tr = T4 RNA ligase 2 truncated, Rnl2tr + MBP = T4 RNA ligase 2 truncated attached to an N-terminal maltose binding protein tag. All mutations indicated are substitutions in T4 Rnl2tr + MBP. Data are shown as the mean +/- SEM of at least three independent experiments.

    Techniques Used: Activity Assay, Labeling, Ligation, Binding Assay

    Analysis of intermolecular strand-joining over time . Strand-joining reactions were carried out with 10 pmol 5'-adenylated adapter, 5 pmol 31-mer 5'-FAM-labeled RNA acceptor, and ligase (1 pmol) over a span of 24 hours at 25°C to assess the progress of ligation reactions. Ligation efficiency was determined by resolving the material in the reactions on denaturing 15% acrylamide gels and quantifying the amount of ligation product versus input nucleic acid. Rnl2tr = T4 RNA ligase 2 truncated, Rnl2tr + MBP = T4 RNA ligase 2 truncated attached to an N-terminal maltose binding protein tag. All mutations indicated are substitutions in T4 Rnl2tr + MBP. Data are shown as the mean +/- SEM of at least three independent experiments.
    Figure Legend Snippet: Analysis of intermolecular strand-joining over time . Strand-joining reactions were carried out with 10 pmol 5'-adenylated adapter, 5 pmol 31-mer 5'-FAM-labeled RNA acceptor, and ligase (1 pmol) over a span of 24 hours at 25°C to assess the progress of ligation reactions. Ligation efficiency was determined by resolving the material in the reactions on denaturing 15% acrylamide gels and quantifying the amount of ligation product versus input nucleic acid. Rnl2tr = T4 RNA ligase 2 truncated, Rnl2tr + MBP = T4 RNA ligase 2 truncated attached to an N-terminal maltose binding protein tag. All mutations indicated are substitutions in T4 Rnl2tr + MBP. Data are shown as the mean +/- SEM of at least three independent experiments.

    Techniques Used: Labeling, Ligation, Binding Assay

    18) Product Images from "Small RNA Library Preparation Method for Next-Generation Sequencing Using Chemical Modifications to Prevent Adapter Dimer Formation"

    Article Title: Small RNA Library Preparation Method for Next-Generation Sequencing Using Chemical Modifications to Prevent Adapter Dimer Formation

    Journal: PLoS ONE

    doi: 10.1371/journal.pone.0167009

    Optimization of the 3´ adapter ligation step. Synthetic Let-7d-5p (NNN) miRNA was ligated to the 3´ adapter using the same ligation conditions as the CleanTag library prep workflow step 1. A) Yield increase with addition of PEG 8000 using T4 RNA Ligase 2, truncated KQ and modified 3´ adapter (MP (n-1)). B) Specificity comparison between ligases used in 3´ ligation step: 1) T4 RNA Ligase 2, truncated; 2) T4 RNA Ligase 2, truncated KQ; 3) T4 RNA Ligase 1; 4) No Ligase. Both unmodified and modified (MP (n-1)) 3´ adapters were tested. Side products indicated with red arrows.
    Figure Legend Snippet: Optimization of the 3´ adapter ligation step. Synthetic Let-7d-5p (NNN) miRNA was ligated to the 3´ adapter using the same ligation conditions as the CleanTag library prep workflow step 1. A) Yield increase with addition of PEG 8000 using T4 RNA Ligase 2, truncated KQ and modified 3´ adapter (MP (n-1)). B) Specificity comparison between ligases used in 3´ ligation step: 1) T4 RNA Ligase 2, truncated; 2) T4 RNA Ligase 2, truncated KQ; 3) T4 RNA Ligase 1; 4) No Ligase. Both unmodified and modified (MP (n-1)) 3´ adapters were tested. Side products indicated with red arrows.

    Techniques Used: Ligation, Modification

    19) Product Images from "T4 RNA Ligase 2 truncated active site mutants: improved tools for RNA analysis"

    Article Title: T4 RNA Ligase 2 truncated active site mutants: improved tools for RNA analysis

    Journal: BMC Biotechnology

    doi: 10.1186/1472-6750-11-72

    Effect of PEG 8000 on ligase intermolecular strand-joining activity . Strand-joining reactions were carried out with 10 pmol 5'-adenylated 17-mer DNA, 5 pmol 31-mer 5'-FAM-labeled RNA acceptor, ligase (13.8 pmol), and varying amounts of PEG 8000 for 1 hour at 25°C to assess the effect of PEG on ligation efficiency. Ligation efficiency was determined by resolving the material in the reactions on denaturing 15% acrylamide gels and quantifying the amount of ligation product versus input nucleic acid. Rnl2tr = T4 RNA ligase 2 truncated, Rnl2tr + MBP = T4 RNA ligase 2 truncated attached to an N-terminal maltose binding protein tag. All mutations indicated are substitutions in T4 Rnl2tr + MBP. Data are shown as the mean +/- SEM of at least three independent experiments.
    Figure Legend Snippet: Effect of PEG 8000 on ligase intermolecular strand-joining activity . Strand-joining reactions were carried out with 10 pmol 5'-adenylated 17-mer DNA, 5 pmol 31-mer 5'-FAM-labeled RNA acceptor, ligase (13.8 pmol), and varying amounts of PEG 8000 for 1 hour at 25°C to assess the effect of PEG on ligation efficiency. Ligation efficiency was determined by resolving the material in the reactions on denaturing 15% acrylamide gels and quantifying the amount of ligation product versus input nucleic acid. Rnl2tr = T4 RNA ligase 2 truncated, Rnl2tr + MBP = T4 RNA ligase 2 truncated attached to an N-terminal maltose binding protein tag. All mutations indicated are substitutions in T4 Rnl2tr + MBP. Data are shown as the mean +/- SEM of at least three independent experiments.

    Techniques Used: Activity Assay, Labeling, Ligation, Binding Assay

    Deadenylation activity of T4 RNA ligase 2 truncated mutants . 5'-adenylated DNA adapters were incubated with an excess of ligase (13.8 pmol), and 12.5% PEG 8000 at 16°C overnight. Oligonucleotide substrates are depicted schematically above the gel. The contents of each sample were resolved on denaturing 15% acrylamide gels and stained with SYBR Gold to visualize nucleic acid. Deadenylation of the DNA adapter (loss of 5'-App) is indicated by a band shift of ~1 nt towards the bottom of the gel. Rnl1 = T4 RNA ligase 1, Rnl2 = T4 RNA ligase 2, Rnl2tr = T4 RNA ligase 2 truncated, Rnl2 +MBP = T4 RNA ligase 2 truncated attached to an N-terminal maltose binding protein tag. All mutations indicated are substitutions in T4 Rnl2tr + MBP.
    Figure Legend Snippet: Deadenylation activity of T4 RNA ligase 2 truncated mutants . 5'-adenylated DNA adapters were incubated with an excess of ligase (13.8 pmol), and 12.5% PEG 8000 at 16°C overnight. Oligonucleotide substrates are depicted schematically above the gel. The contents of each sample were resolved on denaturing 15% acrylamide gels and stained with SYBR Gold to visualize nucleic acid. Deadenylation of the DNA adapter (loss of 5'-App) is indicated by a band shift of ~1 nt towards the bottom of the gel. Rnl1 = T4 RNA ligase 1, Rnl2 = T4 RNA ligase 2, Rnl2tr = T4 RNA ligase 2 truncated, Rnl2 +MBP = T4 RNA ligase 2 truncated attached to an N-terminal maltose binding protein tag. All mutations indicated are substitutions in T4 Rnl2tr + MBP.

    Techniques Used: Activity Assay, Incubation, Staining, Electrophoretic Mobility Shift Assay, Binding Assay

    Assaying the formation of side products by T4 RNA ligases . Intermolecular strand-joining reactions containing 5'-adenylated adapters, 21-mer 5'-PO 4 RNA acceptors, and ligase (1 pmol) were incubated at 16°C overnight in the presence of 12.5% PEG 8000. Oligonucleotide substrates are depicted schematically above the gel. Grey lines represent RNA and black lines represent DNA. Products of the reaction were resolved on denaturing 15% acrylamide gels and stained with SYBR Gold. The bands corresponding to the input nucleic acids, the DNA adapter/RNA acceptor ligation product (39 bases), and larger side products are indicated. Ladder = size standard ladder, Rnl1 = T4 RNA ligase 1, Rnl2 = T4 RNA ligase 2, Rnl2tr = T4 RNA ligase 2 truncated, Rnl2 +MBP = T4 RNA ligase 2 truncated attached to an N-terminal maltose binding protein tag. All mutations indicated are substitutions in T4 Rnl2tr + MBP.
    Figure Legend Snippet: Assaying the formation of side products by T4 RNA ligases . Intermolecular strand-joining reactions containing 5'-adenylated adapters, 21-mer 5'-PO 4 RNA acceptors, and ligase (1 pmol) were incubated at 16°C overnight in the presence of 12.5% PEG 8000. Oligonucleotide substrates are depicted schematically above the gel. Grey lines represent RNA and black lines represent DNA. Products of the reaction were resolved on denaturing 15% acrylamide gels and stained with SYBR Gold. The bands corresponding to the input nucleic acids, the DNA adapter/RNA acceptor ligation product (39 bases), and larger side products are indicated. Ladder = size standard ladder, Rnl1 = T4 RNA ligase 1, Rnl2 = T4 RNA ligase 2, Rnl2tr = T4 RNA ligase 2 truncated, Rnl2 +MBP = T4 RNA ligase 2 truncated attached to an N-terminal maltose binding protein tag. All mutations indicated are substitutions in T4 Rnl2tr + MBP.

    Techniques Used: Incubation, Staining, Ligation, Binding Assay

    Following AMP during ligation reactions with T4 RNA ligases . (A) 22-mer DNA adapters were 5'-adenylated with α- 32 P-labeled ATP (see materials and methods). Intermolecular strand-joining reactions containing 10 pmol radiolabeled DNA adapter, 5 pmol 21-mer 5'-PO 4 RNA acceptor, and ligase (1 pmol) were incubated overnight at 16°C in the presence of PEG 8000. Reaction products were resolved on a denaturing 15% acrylamide gel and radioactive molecules were visualized by exposure to Phosphor screens. The resulting products were either free AMP in solution (AMP*) or the adapter remaining adenylated (Ap*p-DNA). Oligonucleotide substrates are depicted schematically above the gel. Grey lines represent RNA and black lines represent DNA. P* denotes 32 P-phosphate. (B) Determining the fate of AMP upon T4 RNA ligase-dependent deadenylation. Reactions containing radiolabeled DNA adapter (10 pmol) and ligase (14 pmol) were incubated overnight at 16°C in the presence of 12.5% PEG 8000. Oligonucleotide substrates are depicted schematically above the gel. P* denotes 32 P-phosphate. Reaction products were resolved and visualized as in (A). The resulting products were either free AMP in solution (AMP*), the adapter remaining adenylated (Ap*p-DNA), or AMP covalently bound to the ligase (AMP*-ligase). The lane labeled input contains only Ap*p-DNA. (C) Reactions identical to those in (B) were treated with Proteinase K prior to gel electrophoresis and detection. (D) Reactions containing 10 pmol radiolabeled DNA adapter, 5 pmol 28-mer [5'-PO 4 , 3'-blocked] RNA acceptor, and ligase (1 pmol) were incubated, resolved and detected as in (A). The resulting products were either free AMP in solution (AMP*), adenylated adapter (Ap*p-DNA), or Ap*p-28-mer RNA. The lane labeled RNA size control contains 5'- 32 PO 4 RNA, and the lane labeled input contains only Ap*p-DNA. Oligonucleotide substrates are depicted schematically above the gel. Grey lines represent RNA and black lines represent DNA. P* denotes 32 P-phosphate. In all panels, Rnl1 = T4 RNA ligase 1, Rnl2 = T4 RNA ligase 2, Rnl2tr = T4 RNA ligase 2 truncated, Rnl2 +MBP = T4 RNA ligase 2 truncated attached to an N-terminal maltose binding protein tag. All mutations indicated are substitutions in T4 Rnl2tr + MBP.
    Figure Legend Snippet: Following AMP during ligation reactions with T4 RNA ligases . (A) 22-mer DNA adapters were 5'-adenylated with α- 32 P-labeled ATP (see materials and methods). Intermolecular strand-joining reactions containing 10 pmol radiolabeled DNA adapter, 5 pmol 21-mer 5'-PO 4 RNA acceptor, and ligase (1 pmol) were incubated overnight at 16°C in the presence of PEG 8000. Reaction products were resolved on a denaturing 15% acrylamide gel and radioactive molecules were visualized by exposure to Phosphor screens. The resulting products were either free AMP in solution (AMP*) or the adapter remaining adenylated (Ap*p-DNA). Oligonucleotide substrates are depicted schematically above the gel. Grey lines represent RNA and black lines represent DNA. P* denotes 32 P-phosphate. (B) Determining the fate of AMP upon T4 RNA ligase-dependent deadenylation. Reactions containing radiolabeled DNA adapter (10 pmol) and ligase (14 pmol) were incubated overnight at 16°C in the presence of 12.5% PEG 8000. Oligonucleotide substrates are depicted schematically above the gel. P* denotes 32 P-phosphate. Reaction products were resolved and visualized as in (A). The resulting products were either free AMP in solution (AMP*), the adapter remaining adenylated (Ap*p-DNA), or AMP covalently bound to the ligase (AMP*-ligase). The lane labeled input contains only Ap*p-DNA. (C) Reactions identical to those in (B) were treated with Proteinase K prior to gel electrophoresis and detection. (D) Reactions containing 10 pmol radiolabeled DNA adapter, 5 pmol 28-mer [5'-PO 4 , 3'-blocked] RNA acceptor, and ligase (1 pmol) were incubated, resolved and detected as in (A). The resulting products were either free AMP in solution (AMP*), adenylated adapter (Ap*p-DNA), or Ap*p-28-mer RNA. The lane labeled RNA size control contains 5'- 32 PO 4 RNA, and the lane labeled input contains only Ap*p-DNA. Oligonucleotide substrates are depicted schematically above the gel. Grey lines represent RNA and black lines represent DNA. P* denotes 32 P-phosphate. In all panels, Rnl1 = T4 RNA ligase 1, Rnl2 = T4 RNA ligase 2, Rnl2tr = T4 RNA ligase 2 truncated, Rnl2 +MBP = T4 RNA ligase 2 truncated attached to an N-terminal maltose binding protein tag. All mutations indicated are substitutions in T4 Rnl2tr + MBP.

    Techniques Used: Ligation, Labeling, Incubation, Acrylamide Gel Assay, Nucleic Acid Electrophoresis, Binding Assay

    Production of ligation side products by T4 RNA ligases . Intermolecular ligation reactions containing 5'-adenylated DNA adapters, 21-mer 5'-PO 4 RNA acceptors and ligase (1 pmol) were incubated at 16°C overnight with 12.5% PEG 8000. Products of the reactions were resolved on denaturing 15% acrylamide gels and stained with SYBR Gold. The bands corresponding to the input nucleic acids, the DNA adapter/RNA acceptor ligation product (39 bases), and larger side products are indicated. Rnl1 = T4 RNA ligase 1, Rnl2 = T4 RNA ligase 2, Rnl2tr = T4 RNA ligase 2 truncated, Rnl2tr + MBP = T4 RNA ligase 2 truncated attached to an N-terminal maltose binding protein tag. Oligonucleotide substrates are depicted schematically above the gel. Grey lines represent RNA and black lines represent DNA.
    Figure Legend Snippet: Production of ligation side products by T4 RNA ligases . Intermolecular ligation reactions containing 5'-adenylated DNA adapters, 21-mer 5'-PO 4 RNA acceptors and ligase (1 pmol) were incubated at 16°C overnight with 12.5% PEG 8000. Products of the reactions were resolved on denaturing 15% acrylamide gels and stained with SYBR Gold. The bands corresponding to the input nucleic acids, the DNA adapter/RNA acceptor ligation product (39 bases), and larger side products are indicated. Rnl1 = T4 RNA ligase 1, Rnl2 = T4 RNA ligase 2, Rnl2tr = T4 RNA ligase 2 truncated, Rnl2tr + MBP = T4 RNA ligase 2 truncated attached to an N-terminal maltose binding protein tag. Oligonucleotide substrates are depicted schematically above the gel. Grey lines represent RNA and black lines represent DNA.

    Techniques Used: Ligation, Incubation, Staining, Binding Assay

    Purification and activity of T4 RNA Ligase 2 truncated mutants . (A) Aliquots of T4 RNA ligase 2 truncated and mutants were separated on 10-20% Tris-glycine SDS polyacrylamide gels and stained with Coomassie blue. The size (in kDa) of marker polypeptides are indicated on the left. (B) Intermolecular strand-joining activity of T4 RNA ligase 2 truncated mutants under multiple turnover conditions. 10 pmol 5'-adenylated 17-mer DNA was incubated for one hour at 25°C with 5 pmol 5'- FAM-labeled 31-mer RNA. 1 pmol of each ligase was added into reaction mixture. The reaction products were resolved on denaturing 15% acrylamide gels, scanned and quantified as described in the methods section. Rnl2tr = T4 RNA ligase 2 truncated, Rnl2tr + MBP = T4 RNA ligase 2 truncated attached to an N-terminal maltose binding protein tag. All mutations indicated are substitutions in T4 Rnl2tr + MBP. Data are shown as the mean +/- SEM of at least three independent experiments. * denotes difference in means p
    Figure Legend Snippet: Purification and activity of T4 RNA Ligase 2 truncated mutants . (A) Aliquots of T4 RNA ligase 2 truncated and mutants were separated on 10-20% Tris-glycine SDS polyacrylamide gels and stained with Coomassie blue. The size (in kDa) of marker polypeptides are indicated on the left. (B) Intermolecular strand-joining activity of T4 RNA ligase 2 truncated mutants under multiple turnover conditions. 10 pmol 5'-adenylated 17-mer DNA was incubated for one hour at 25°C with 5 pmol 5'- FAM-labeled 31-mer RNA. 1 pmol of each ligase was added into reaction mixture. The reaction products were resolved on denaturing 15% acrylamide gels, scanned and quantified as described in the methods section. Rnl2tr = T4 RNA ligase 2 truncated, Rnl2tr + MBP = T4 RNA ligase 2 truncated attached to an N-terminal maltose binding protein tag. All mutations indicated are substitutions in T4 Rnl2tr + MBP. Data are shown as the mean +/- SEM of at least three independent experiments. * denotes difference in means p

    Techniques Used: Purification, Activity Assay, Staining, Marker, Incubation, Labeling, Binding Assay

    Effect of pH on ligase intermolecular strand-joining activity . (A-D) Intermolecular strand-joining reactions were carried out with 10 pmol 5'-adenylated 17mer DNA, 5 pmol 31-mer 5'-FAM-labeled RNA acceptor, and ligase (1 pmol) for 1 hour at 25°C to assess the effect of pH on ligation efficiency. Ligation efficiency was determined by resolving the material in the reactions on denaturing 15% acrylamide gels and quantifying the amount of ligation product versus input nucleic acid. (E-H) Intermolecular strand-joining reactions were carried out with 10 pmol 5'-adenylated 17-mer DNA, 5 pmol 31-mer 5'-FAM-labeled RNA acceptor, and ligase (13.8 pmol) for 1 hour at 25°C to assess the effect of pH on ligation efficiency. Rnl2tr = T4 RNA ligase 2 truncated, Rnl2tr + MBP = T4 RNA ligase 2 truncated attached to an N-terminal maltose binding protein tag. All mutations indicated are substitutions in T4 Rnl2tr + MBP. Data are shown as the mean +/- SEM of at least three independent experiments.
    Figure Legend Snippet: Effect of pH on ligase intermolecular strand-joining activity . (A-D) Intermolecular strand-joining reactions were carried out with 10 pmol 5'-adenylated 17mer DNA, 5 pmol 31-mer 5'-FAM-labeled RNA acceptor, and ligase (1 pmol) for 1 hour at 25°C to assess the effect of pH on ligation efficiency. Ligation efficiency was determined by resolving the material in the reactions on denaturing 15% acrylamide gels and quantifying the amount of ligation product versus input nucleic acid. (E-H) Intermolecular strand-joining reactions were carried out with 10 pmol 5'-adenylated 17-mer DNA, 5 pmol 31-mer 5'-FAM-labeled RNA acceptor, and ligase (13.8 pmol) for 1 hour at 25°C to assess the effect of pH on ligation efficiency. Rnl2tr = T4 RNA ligase 2 truncated, Rnl2tr + MBP = T4 RNA ligase 2 truncated attached to an N-terminal maltose binding protein tag. All mutations indicated are substitutions in T4 Rnl2tr + MBP. Data are shown as the mean +/- SEM of at least three independent experiments.

    Techniques Used: Activity Assay, Labeling, Ligation, Binding Assay

    Analysis of intermolecular strand-joining over time . Strand-joining reactions were carried out with 10 pmol 5'-adenylated adapter, 5 pmol 31-mer 5'-FAM-labeled RNA acceptor, and ligase (1 pmol) over a span of 24 hours at 25°C to assess the progress of ligation reactions. Ligation efficiency was determined by resolving the material in the reactions on denaturing 15% acrylamide gels and quantifying the amount of ligation product versus input nucleic acid. Rnl2tr = T4 RNA ligase 2 truncated, Rnl2tr + MBP = T4 RNA ligase 2 truncated attached to an N-terminal maltose binding protein tag. All mutations indicated are substitutions in T4 Rnl2tr + MBP. Data are shown as the mean +/- SEM of at least three independent experiments.
    Figure Legend Snippet: Analysis of intermolecular strand-joining over time . Strand-joining reactions were carried out with 10 pmol 5'-adenylated adapter, 5 pmol 31-mer 5'-FAM-labeled RNA acceptor, and ligase (1 pmol) over a span of 24 hours at 25°C to assess the progress of ligation reactions. Ligation efficiency was determined by resolving the material in the reactions on denaturing 15% acrylamide gels and quantifying the amount of ligation product versus input nucleic acid. Rnl2tr = T4 RNA ligase 2 truncated, Rnl2tr + MBP = T4 RNA ligase 2 truncated attached to an N-terminal maltose binding protein tag. All mutations indicated are substitutions in T4 Rnl2tr + MBP. Data are shown as the mean +/- SEM of at least three independent experiments.

    Techniques Used: Labeling, Ligation, Binding Assay

    20) Product Images from "T4 RNA Ligase 2 truncated active site mutants: improved tools for RNA analysis"

    Article Title: T4 RNA Ligase 2 truncated active site mutants: improved tools for RNA analysis

    Journal: BMC Biotechnology

    doi: 10.1186/1472-6750-11-72

    Effect of PEG 8000 on ligase intermolecular strand-joining activity . Strand-joining reactions were carried out with 10 pmol 5'-adenylated 17-mer DNA, 5 pmol 31-mer 5'-FAM-labeled RNA acceptor, ligase (13.8 pmol), and varying amounts of PEG 8000 for 1 hour at 25°C to assess the effect of PEG on ligation efficiency. Ligation efficiency was determined by resolving the material in the reactions on denaturing 15% acrylamide gels and quantifying the amount of ligation product versus input nucleic acid. Rnl2tr = T4 RNA ligase 2 truncated, Rnl2tr + MBP = T4 RNA ligase 2 truncated attached to an N-terminal maltose binding protein tag. All mutations indicated are substitutions in T4 Rnl2tr + MBP. Data are shown as the mean +/- SEM of at least three independent experiments.
    Figure Legend Snippet: Effect of PEG 8000 on ligase intermolecular strand-joining activity . Strand-joining reactions were carried out with 10 pmol 5'-adenylated 17-mer DNA, 5 pmol 31-mer 5'-FAM-labeled RNA acceptor, ligase (13.8 pmol), and varying amounts of PEG 8000 for 1 hour at 25°C to assess the effect of PEG on ligation efficiency. Ligation efficiency was determined by resolving the material in the reactions on denaturing 15% acrylamide gels and quantifying the amount of ligation product versus input nucleic acid. Rnl2tr = T4 RNA ligase 2 truncated, Rnl2tr + MBP = T4 RNA ligase 2 truncated attached to an N-terminal maltose binding protein tag. All mutations indicated are substitutions in T4 Rnl2tr + MBP. Data are shown as the mean +/- SEM of at least three independent experiments.

    Techniques Used: Activity Assay, Labeling, Ligation, Binding Assay

    Deadenylation activity of T4 RNA ligase 2 truncated mutants . 5'-adenylated DNA adapters were incubated with an excess of ligase (13.8 pmol), and 12.5% PEG 8000 at 16°C overnight. Oligonucleotide substrates are depicted schematically above the gel. The contents of each sample were resolved on denaturing 15% acrylamide gels and stained with SYBR Gold to visualize nucleic acid. Deadenylation of the DNA adapter (loss of 5'-App) is indicated by a band shift of ~1 nt towards the bottom of the gel. Rnl1 = T4 RNA ligase 1, Rnl2 = T4 RNA ligase 2, Rnl2tr = T4 RNA ligase 2 truncated, Rnl2 +MBP = T4 RNA ligase 2 truncated attached to an N-terminal maltose binding protein tag. All mutations indicated are substitutions in T4 Rnl2tr + MBP.
    Figure Legend Snippet: Deadenylation activity of T4 RNA ligase 2 truncated mutants . 5'-adenylated DNA adapters were incubated with an excess of ligase (13.8 pmol), and 12.5% PEG 8000 at 16°C overnight. Oligonucleotide substrates are depicted schematically above the gel. The contents of each sample were resolved on denaturing 15% acrylamide gels and stained with SYBR Gold to visualize nucleic acid. Deadenylation of the DNA adapter (loss of 5'-App) is indicated by a band shift of ~1 nt towards the bottom of the gel. Rnl1 = T4 RNA ligase 1, Rnl2 = T4 RNA ligase 2, Rnl2tr = T4 RNA ligase 2 truncated, Rnl2 +MBP = T4 RNA ligase 2 truncated attached to an N-terminal maltose binding protein tag. All mutations indicated are substitutions in T4 Rnl2tr + MBP.

    Techniques Used: Activity Assay, Incubation, Staining, Electrophoretic Mobility Shift Assay, Binding Assay

    Assaying the formation of side products by T4 RNA ligases . Intermolecular strand-joining reactions containing 5'-adenylated adapters, 21-mer 5'-PO 4 RNA acceptors, and ligase (1 pmol) were incubated at 16°C overnight in the presence of 12.5% PEG 8000. Oligonucleotide substrates are depicted schematically above the gel. Grey lines represent RNA and black lines represent DNA. Products of the reaction were resolved on denaturing 15% acrylamide gels and stained with SYBR Gold. The bands corresponding to the input nucleic acids, the DNA adapter/RNA acceptor ligation product (39 bases), and larger side products are indicated. Ladder = size standard ladder, Rnl1 = T4 RNA ligase 1, Rnl2 = T4 RNA ligase 2, Rnl2tr = T4 RNA ligase 2 truncated, Rnl2 +MBP = T4 RNA ligase 2 truncated attached to an N-terminal maltose binding protein tag. All mutations indicated are substitutions in T4 Rnl2tr + MBP.
    Figure Legend Snippet: Assaying the formation of side products by T4 RNA ligases . Intermolecular strand-joining reactions containing 5'-adenylated adapters, 21-mer 5'-PO 4 RNA acceptors, and ligase (1 pmol) were incubated at 16°C overnight in the presence of 12.5% PEG 8000. Oligonucleotide substrates are depicted schematically above the gel. Grey lines represent RNA and black lines represent DNA. Products of the reaction were resolved on denaturing 15% acrylamide gels and stained with SYBR Gold. The bands corresponding to the input nucleic acids, the DNA adapter/RNA acceptor ligation product (39 bases), and larger side products are indicated. Ladder = size standard ladder, Rnl1 = T4 RNA ligase 1, Rnl2 = T4 RNA ligase 2, Rnl2tr = T4 RNA ligase 2 truncated, Rnl2 +MBP = T4 RNA ligase 2 truncated attached to an N-terminal maltose binding protein tag. All mutations indicated are substitutions in T4 Rnl2tr + MBP.

    Techniques Used: Incubation, Staining, Ligation, Binding Assay

    Following AMP during ligation reactions with T4 RNA ligases . (A) 22-mer DNA adapters were 5'-adenylated with α- 32 P-labeled ATP (see materials and methods). Intermolecular strand-joining reactions containing 10 pmol radiolabeled DNA adapter, 5 pmol 21-mer 5'-PO 4 RNA acceptor, and ligase (1 pmol) were incubated overnight at 16°C in the presence of PEG 8000. Reaction products were resolved on a denaturing 15% acrylamide gel and radioactive molecules were visualized by exposure to Phosphor screens. The resulting products were either free AMP in solution (AMP*) or the adapter remaining adenylated (Ap*p-DNA). Oligonucleotide substrates are depicted schematically above the gel. Grey lines represent RNA and black lines represent DNA. P* denotes 32 P-phosphate. (B) Determining the fate of AMP upon T4 RNA ligase-dependent deadenylation. Reactions containing radiolabeled DNA adapter (10 pmol) and ligase (14 pmol) were incubated overnight at 16°C in the presence of 12.5% PEG 8000. Oligonucleotide substrates are depicted schematically above the gel. P* denotes 32 P-phosphate. Reaction products were resolved and visualized as in (A). The resulting products were either free AMP in solution (AMP*), the adapter remaining adenylated (Ap*p-DNA), or AMP covalently bound to the ligase (AMP*-ligase). The lane labeled input contains only Ap*p-DNA. (C) Reactions identical to those in (B) were treated with Proteinase K prior to gel electrophoresis and detection. (D) Reactions containing 10 pmol radiolabeled DNA adapter, 5 pmol 28-mer [5'-PO 4 , 3'-blocked] RNA acceptor, and ligase (1 pmol) were incubated, resolved and detected as in (A). The resulting products were either free AMP in solution (AMP*), adenylated adapter (Ap*p-DNA), or Ap*p-28-mer RNA. The lane labeled RNA size control contains 5'- 32 PO 4 RNA, and the lane labeled input contains only Ap*p-DNA. Oligonucleotide substrates are depicted schematically above the gel. Grey lines represent RNA and black lines represent DNA. P* denotes 32 P-phosphate. In all panels, Rnl1 = T4 RNA ligase 1, Rnl2 = T4 RNA ligase 2, Rnl2tr = T4 RNA ligase 2 truncated, Rnl2 +MBP = T4 RNA ligase 2 truncated attached to an N-terminal maltose binding protein tag. All mutations indicated are substitutions in T4 Rnl2tr + MBP.
    Figure Legend Snippet: Following AMP during ligation reactions with T4 RNA ligases . (A) 22-mer DNA adapters were 5'-adenylated with α- 32 P-labeled ATP (see materials and methods). Intermolecular strand-joining reactions containing 10 pmol radiolabeled DNA adapter, 5 pmol 21-mer 5'-PO 4 RNA acceptor, and ligase (1 pmol) were incubated overnight at 16°C in the presence of PEG 8000. Reaction products were resolved on a denaturing 15% acrylamide gel and radioactive molecules were visualized by exposure to Phosphor screens. The resulting products were either free AMP in solution (AMP*) or the adapter remaining adenylated (Ap*p-DNA). Oligonucleotide substrates are depicted schematically above the gel. Grey lines represent RNA and black lines represent DNA. P* denotes 32 P-phosphate. (B) Determining the fate of AMP upon T4 RNA ligase-dependent deadenylation. Reactions containing radiolabeled DNA adapter (10 pmol) and ligase (14 pmol) were incubated overnight at 16°C in the presence of 12.5% PEG 8000. Oligonucleotide substrates are depicted schematically above the gel. P* denotes 32 P-phosphate. Reaction products were resolved and visualized as in (A). The resulting products were either free AMP in solution (AMP*), the adapter remaining adenylated (Ap*p-DNA), or AMP covalently bound to the ligase (AMP*-ligase). The lane labeled input contains only Ap*p-DNA. (C) Reactions identical to those in (B) were treated with Proteinase K prior to gel electrophoresis and detection. (D) Reactions containing 10 pmol radiolabeled DNA adapter, 5 pmol 28-mer [5'-PO 4 , 3'-blocked] RNA acceptor, and ligase (1 pmol) were incubated, resolved and detected as in (A). The resulting products were either free AMP in solution (AMP*), adenylated adapter (Ap*p-DNA), or Ap*p-28-mer RNA. The lane labeled RNA size control contains 5'- 32 PO 4 RNA, and the lane labeled input contains only Ap*p-DNA. Oligonucleotide substrates are depicted schematically above the gel. Grey lines represent RNA and black lines represent DNA. P* denotes 32 P-phosphate. In all panels, Rnl1 = T4 RNA ligase 1, Rnl2 = T4 RNA ligase 2, Rnl2tr = T4 RNA ligase 2 truncated, Rnl2 +MBP = T4 RNA ligase 2 truncated attached to an N-terminal maltose binding protein tag. All mutations indicated are substitutions in T4 Rnl2tr + MBP.

    Techniques Used: Ligation, Labeling, Incubation, Acrylamide Gel Assay, Nucleic Acid Electrophoresis, Binding Assay

    Production of ligation side products by T4 RNA ligases . Intermolecular ligation reactions containing 5'-adenylated DNA adapters, 21-mer 5'-PO 4 RNA acceptors and ligase (1 pmol) were incubated at 16°C overnight with 12.5% PEG 8000. Products of the reactions were resolved on denaturing 15% acrylamide gels and stained with SYBR Gold. The bands corresponding to the input nucleic acids, the DNA adapter/RNA acceptor ligation product (39 bases), and larger side products are indicated. Rnl1 = T4 RNA ligase 1, Rnl2 = T4 RNA ligase 2, Rnl2tr = T4 RNA ligase 2 truncated, Rnl2tr + MBP = T4 RNA ligase 2 truncated attached to an N-terminal maltose binding protein tag. Oligonucleotide substrates are depicted schematically above the gel. Grey lines represent RNA and black lines represent DNA.
    Figure Legend Snippet: Production of ligation side products by T4 RNA ligases . Intermolecular ligation reactions containing 5'-adenylated DNA adapters, 21-mer 5'-PO 4 RNA acceptors and ligase (1 pmol) were incubated at 16°C overnight with 12.5% PEG 8000. Products of the reactions were resolved on denaturing 15% acrylamide gels and stained with SYBR Gold. The bands corresponding to the input nucleic acids, the DNA adapter/RNA acceptor ligation product (39 bases), and larger side products are indicated. Rnl1 = T4 RNA ligase 1, Rnl2 = T4 RNA ligase 2, Rnl2tr = T4 RNA ligase 2 truncated, Rnl2tr + MBP = T4 RNA ligase 2 truncated attached to an N-terminal maltose binding protein tag. Oligonucleotide substrates are depicted schematically above the gel. Grey lines represent RNA and black lines represent DNA.

    Techniques Used: Ligation, Incubation, Staining, Binding Assay

    Purification and activity of T4 RNA Ligase 2 truncated mutants . (A) Aliquots of T4 RNA ligase 2 truncated and mutants were separated on 10-20% Tris-glycine SDS polyacrylamide gels and stained with Coomassie blue. The size (in kDa) of marker polypeptides are indicated on the left. (B) Intermolecular strand-joining activity of T4 RNA ligase 2 truncated mutants under multiple turnover conditions. 10 pmol 5'-adenylated 17-mer DNA was incubated for one hour at 25°C with 5 pmol 5'- FAM-labeled 31-mer RNA. 1 pmol of each ligase was added into reaction mixture. The reaction products were resolved on denaturing 15% acrylamide gels, scanned and quantified as described in the methods section. Rnl2tr = T4 RNA ligase 2 truncated, Rnl2tr + MBP = T4 RNA ligase 2 truncated attached to an N-terminal maltose binding protein tag. All mutations indicated are substitutions in T4 Rnl2tr + MBP. Data are shown as the mean +/- SEM of at least three independent experiments. * denotes difference in means p
    Figure Legend Snippet: Purification and activity of T4 RNA Ligase 2 truncated mutants . (A) Aliquots of T4 RNA ligase 2 truncated and mutants were separated on 10-20% Tris-glycine SDS polyacrylamide gels and stained with Coomassie blue. The size (in kDa) of marker polypeptides are indicated on the left. (B) Intermolecular strand-joining activity of T4 RNA ligase 2 truncated mutants under multiple turnover conditions. 10 pmol 5'-adenylated 17-mer DNA was incubated for one hour at 25°C with 5 pmol 5'- FAM-labeled 31-mer RNA. 1 pmol of each ligase was added into reaction mixture. The reaction products were resolved on denaturing 15% acrylamide gels, scanned and quantified as described in the methods section. Rnl2tr = T4 RNA ligase 2 truncated, Rnl2tr + MBP = T4 RNA ligase 2 truncated attached to an N-terminal maltose binding protein tag. All mutations indicated are substitutions in T4 Rnl2tr + MBP. Data are shown as the mean +/- SEM of at least three independent experiments. * denotes difference in means p

    Techniques Used: Purification, Activity Assay, Staining, Marker, Incubation, Labeling, Binding Assay

    Effect of pH on ligase intermolecular strand-joining activity . (A-D) Intermolecular strand-joining reactions were carried out with 10 pmol 5'-adenylated 17mer DNA, 5 pmol 31-mer 5'-FAM-labeled RNA acceptor, and ligase (1 pmol) for 1 hour at 25°C to assess the effect of pH on ligation efficiency. Ligation efficiency was determined by resolving the material in the reactions on denaturing 15% acrylamide gels and quantifying the amount of ligation product versus input nucleic acid. (E-H) Intermolecular strand-joining reactions were carried out with 10 pmol 5'-adenylated 17-mer DNA, 5 pmol 31-mer 5'-FAM-labeled RNA acceptor, and ligase (13.8 pmol) for 1 hour at 25°C to assess the effect of pH on ligation efficiency. Rnl2tr = T4 RNA ligase 2 truncated, Rnl2tr + MBP = T4 RNA ligase 2 truncated attached to an N-terminal maltose binding protein tag. All mutations indicated are substitutions in T4 Rnl2tr + MBP. Data are shown as the mean +/- SEM of at least three independent experiments.
    Figure Legend Snippet: Effect of pH on ligase intermolecular strand-joining activity . (A-D) Intermolecular strand-joining reactions were carried out with 10 pmol 5'-adenylated 17mer DNA, 5 pmol 31-mer 5'-FAM-labeled RNA acceptor, and ligase (1 pmol) for 1 hour at 25°C to assess the effect of pH on ligation efficiency. Ligation efficiency was determined by resolving the material in the reactions on denaturing 15% acrylamide gels and quantifying the amount of ligation product versus input nucleic acid. (E-H) Intermolecular strand-joining reactions were carried out with 10 pmol 5'-adenylated 17-mer DNA, 5 pmol 31-mer 5'-FAM-labeled RNA acceptor, and ligase (13.8 pmol) for 1 hour at 25°C to assess the effect of pH on ligation efficiency. Rnl2tr = T4 RNA ligase 2 truncated, Rnl2tr + MBP = T4 RNA ligase 2 truncated attached to an N-terminal maltose binding protein tag. All mutations indicated are substitutions in T4 Rnl2tr + MBP. Data are shown as the mean +/- SEM of at least three independent experiments.

    Techniques Used: Activity Assay, Labeling, Ligation, Binding Assay

    Analysis of intermolecular strand-joining over time . Strand-joining reactions were carried out with 10 pmol 5'-adenylated adapter, 5 pmol 31-mer 5'-FAM-labeled RNA acceptor, and ligase (1 pmol) over a span of 24 hours at 25°C to assess the progress of ligation reactions. Ligation efficiency was determined by resolving the material in the reactions on denaturing 15% acrylamide gels and quantifying the amount of ligation product versus input nucleic acid. Rnl2tr = T4 RNA ligase 2 truncated, Rnl2tr + MBP = T4 RNA ligase 2 truncated attached to an N-terminal maltose binding protein tag. All mutations indicated are substitutions in T4 Rnl2tr + MBP. Data are shown as the mean +/- SEM of at least three independent experiments.
    Figure Legend Snippet: Analysis of intermolecular strand-joining over time . Strand-joining reactions were carried out with 10 pmol 5'-adenylated adapter, 5 pmol 31-mer 5'-FAM-labeled RNA acceptor, and ligase (1 pmol) over a span of 24 hours at 25°C to assess the progress of ligation reactions. Ligation efficiency was determined by resolving the material in the reactions on denaturing 15% acrylamide gels and quantifying the amount of ligation product versus input nucleic acid. Rnl2tr = T4 RNA ligase 2 truncated, Rnl2tr + MBP = T4 RNA ligase 2 truncated attached to an N-terminal maltose binding protein tag. All mutations indicated are substitutions in T4 Rnl2tr + MBP. Data are shown as the mean +/- SEM of at least three independent experiments.

    Techniques Used: Labeling, Ligation, Binding Assay

    21) Product Images from "Small RNA Library Preparation Method for Next-Generation Sequencing Using Chemical Modifications to Prevent Adapter Dimer Formation"

    Article Title: Small RNA Library Preparation Method for Next-Generation Sequencing Using Chemical Modifications to Prevent Adapter Dimer Formation

    Journal: PLoS ONE

    doi: 10.1371/journal.pone.0167009

    Optimization of the 3´ adapter ligation step. Synthetic Let-7d-5p (NNN) miRNA was ligated to the 3´ adapter using the same ligation conditions as the CleanTag library prep workflow step 1. A) Yield increase with addition of PEG 8000 using T4 RNA Ligase 2, truncated KQ and modified 3´ adapter (MP (n-1)). B) Specificity comparison between ligases used in 3´ ligation step: 1) T4 RNA Ligase 2, truncated; 2) T4 RNA Ligase 2, truncated KQ; 3) T4 RNA Ligase 1; 4) No Ligase. Both unmodified and modified (MP (n-1)) 3´ adapters were tested. Side products indicated with red arrows.
    Figure Legend Snippet: Optimization of the 3´ adapter ligation step. Synthetic Let-7d-5p (NNN) miRNA was ligated to the 3´ adapter using the same ligation conditions as the CleanTag library prep workflow step 1. A) Yield increase with addition of PEG 8000 using T4 RNA Ligase 2, truncated KQ and modified 3´ adapter (MP (n-1)). B) Specificity comparison between ligases used in 3´ ligation step: 1) T4 RNA Ligase 2, truncated; 2) T4 RNA Ligase 2, truncated KQ; 3) T4 RNA Ligase 1; 4) No Ligase. Both unmodified and modified (MP (n-1)) 3´ adapters were tested. Side products indicated with red arrows.

    Techniques Used: Ligation, Modification

    22) Product Images from "Random-sequence genetic oligomer pools display an innate potential for ligation and recombination"

    Article Title: Random-sequence genetic oligomer pools display an innate potential for ligation and recombination

    Journal: eLife

    doi: 10.7554/eLife.43022

    Analysis of regioselectivity of ligation by H4 and J4 RNA motifs. ( A ) Partial RNAse T1 digest of T4-RNA Ligase 2 (Rnl2) ligated H4 (H4T) (Tab S2) and self-ligated H4T RNA. Regiospecific nuclease-catalysed cleavage at the ligation junction confirms that 3’−5’ linkages were formed in both ligation reactions. Note that cleavage of self-ligated H4T by RNAse T1 is slower due to the presence of the co-purified splint (H4_splintA) RNA used for in-ice H4T ligation. ( B ) A 3’−5’ regioselective 8–17 DNAzyme cleaves a typical self-ligated (H4, lig) or enzymatically ligated (H4, Rnl2) full-length H4 clone from the original semi-random RNA pool at the ligation junction with similar efficiencies. ( C ) A minimal J4 cis motif (J4-min) is unable to cleave an enzymatically produced 3’−5’ ligation site (J4-min Rnl2; lane 1, 2; 15 hr, RT, see Material and methods). In contrast, the same Rnl2 product is efficiently cleaved by a custom DNAzyme (lane 3, E1111_J4) under the same conditions. However, J4-min catalyses reverse cleavage of its own gel-purified in-ice ligation product, suggesting that the ligation reaction of J4 yields RNA with a 2’−5’ phosphodiester linkage. Rapid initial cleavage of self-ligated J4-min that occurs during the mixing dead time is inhibited after annealing of the J4-min RNA to the E1111_J4 DNAzyme, suggesting that the J4 internal loop is a prerequisite for rapid self-cleavage.
    Figure Legend Snippet: Analysis of regioselectivity of ligation by H4 and J4 RNA motifs. ( A ) Partial RNAse T1 digest of T4-RNA Ligase 2 (Rnl2) ligated H4 (H4T) (Tab S2) and self-ligated H4T RNA. Regiospecific nuclease-catalysed cleavage at the ligation junction confirms that 3’−5’ linkages were formed in both ligation reactions. Note that cleavage of self-ligated H4T by RNAse T1 is slower due to the presence of the co-purified splint (H4_splintA) RNA used for in-ice H4T ligation. ( B ) A 3’−5’ regioselective 8–17 DNAzyme cleaves a typical self-ligated (H4, lig) or enzymatically ligated (H4, Rnl2) full-length H4 clone from the original semi-random RNA pool at the ligation junction with similar efficiencies. ( C ) A minimal J4 cis motif (J4-min) is unable to cleave an enzymatically produced 3’−5’ ligation site (J4-min Rnl2; lane 1, 2; 15 hr, RT, see Material and methods). In contrast, the same Rnl2 product is efficiently cleaved by a custom DNAzyme (lane 3, E1111_J4) under the same conditions. However, J4-min catalyses reverse cleavage of its own gel-purified in-ice ligation product, suggesting that the ligation reaction of J4 yields RNA with a 2’−5’ phosphodiester linkage. Rapid initial cleavage of self-ligated J4-min that occurs during the mixing dead time is inhibited after annealing of the J4-min RNA to the E1111_J4 DNAzyme, suggesting that the J4 internal loop is a prerequisite for rapid self-cleavage.

    Techniques Used: Ligation, Purification, Produced

    23) Product Images from "Simple and efficient synthesis of 5? pre-adenylated DNA using thermostable RNA ligase"

    Article Title: Simple and efficient synthesis of 5? pre-adenylated DNA using thermostable RNA ligase

    Journal: Nucleic Acids Research

    doi: 10.1093/nar/gkr544

    Ligation of adenylated DNA linker made with MthRnl to RNA. AppDNA17c-NH 2 was ligated to RNA22 (lane 2) and FAM-RNA23 (lane 4) using T4 RNA ligase 2 truncated without ATP as described in ‘Materials and Methods’ section. Lanes 1 and 3 are controls without ligase. Single-stranded RNA size markers (Mr) are included for reference. The products were analyzed by a 15% urea–PAGE.
    Figure Legend Snippet: Ligation of adenylated DNA linker made with MthRnl to RNA. AppDNA17c-NH 2 was ligated to RNA22 (lane 2) and FAM-RNA23 (lane 4) using T4 RNA ligase 2 truncated without ATP as described in ‘Materials and Methods’ section. Lanes 1 and 3 are controls without ligase. Single-stranded RNA size markers (Mr) are included for reference. The products were analyzed by a 15% urea–PAGE.

    Techniques Used: Ligation, Polyacrylamide Gel Electrophoresis

    24) Product Images from "Simple and efficient synthesis of 5? pre-adenylated DNA using thermostable RNA ligase"

    Article Title: Simple and efficient synthesis of 5? pre-adenylated DNA using thermostable RNA ligase

    Journal: Nucleic Acids Research

    doi: 10.1093/nar/gkr544

    Ligation of adenylated DNA linker made with MthRnl to RNA. AppDNA17c-NH 2 was ligated to RNA22 (lane 2) and FAM-RNA23 (lane 4) using T4 RNA ligase 2 truncated without ATP as described in ‘Materials and Methods’ section. Lanes 1 and 3 are controls without ligase. Single-stranded RNA size markers (Mr) are included for reference. The products were analyzed by a 15% urea–PAGE.
    Figure Legend Snippet: Ligation of adenylated DNA linker made with MthRnl to RNA. AppDNA17c-NH 2 was ligated to RNA22 (lane 2) and FAM-RNA23 (lane 4) using T4 RNA ligase 2 truncated without ATP as described in ‘Materials and Methods’ section. Lanes 1 and 3 are controls without ligase. Single-stranded RNA size markers (Mr) are included for reference. The products were analyzed by a 15% urea–PAGE.

    Techniques Used: Ligation, Polyacrylamide Gel Electrophoresis

    25) Product Images from "Scanometric microRNA (Scano-miR) Array Profiling of Prostate Cancer Markers Using Spherical Nucleic Acid (SNA)-Gold Nanoparticle Conjugates"

    Article Title: Scanometric microRNA (Scano-miR) Array Profiling of Prostate Cancer Markers Using Spherical Nucleic Acid (SNA)-Gold Nanoparticle Conjugates

    Journal: Analytical Chemistry

    doi: 10.1021/ac3004055

    (a) Synthetic miR-16 was added into denatured human serum at different concentrations and analyzed using the Scano-miR platform. Signal intensities generated from both perfectly matched capture probe sequences (Rno-miR-16) and capture probe with a single
    Figure Legend Snippet: (a) Synthetic miR-16 was added into denatured human serum at different concentrations and analyzed using the Scano-miR platform. Signal intensities generated from both perfectly matched capture probe sequences (Rno-miR-16) and capture probe with a single

    Techniques Used: Generated

    26) Product Images from "Site-specific terminal and internal labeling of RNA by poly(A) polymerase tailing and copper-catalyzed or copper-free strain-promoted click chemistry"

    Article Title: Site-specific terminal and internal labeling of RNA by poly(A) polymerase tailing and copper-catalyzed or copper-free strain-promoted click chemistry

    Journal: Nucleic Acids Research

    doi: 10.1093/nar/gks062

    Creating an internal fluorescent label. ( A ) General reaction scheme for creation of terminal (upper right corner) or internal modifications (lower right corner). An internal modification can be created by first adding an N 3 -modified nucleotide to the 3′-terminus of the RNA sequence, connecting this RNA to a second RNA sequence via splinted ligation, and subjecting the product, with an internal N 3 -modification to CuAAC. ( B ) Splinted ligation of RNA1 and RNA4, employing different ligases (RNL2 and DNL) under different reaction conditions (time and temperature). Analysis by 15% seqPAGE. ( C ) Addition of 2′-N 3 -guanosine to RNA1, followed by splinted ligation to RNA4 (using RNL2), and CuAAC with Alexa Fluor 488/647 alkyne, with or without the use of a helper DNA that forces the modified position into a 9-nt bulge loop. Analysis by 15% seqPAGE. Radioactivity scan (left panel), and an overlay of Alexa Fluor 488 scan (green, middle two lanes) and Alexa Fluor 647 scan (magenta, right two lanes) are shown. ( D ) Formation of 9 nt bulge loop to assist CuAAC. N.R.: no reaction control.
    Figure Legend Snippet: Creating an internal fluorescent label. ( A ) General reaction scheme for creation of terminal (upper right corner) or internal modifications (lower right corner). An internal modification can be created by first adding an N 3 -modified nucleotide to the 3′-terminus of the RNA sequence, connecting this RNA to a second RNA sequence via splinted ligation, and subjecting the product, with an internal N 3 -modification to CuAAC. ( B ) Splinted ligation of RNA1 and RNA4, employing different ligases (RNL2 and DNL) under different reaction conditions (time and temperature). Analysis by 15% seqPAGE. ( C ) Addition of 2′-N 3 -guanosine to RNA1, followed by splinted ligation to RNA4 (using RNL2), and CuAAC with Alexa Fluor 488/647 alkyne, with or without the use of a helper DNA that forces the modified position into a 9-nt bulge loop. Analysis by 15% seqPAGE. Radioactivity scan (left panel), and an overlay of Alexa Fluor 488 scan (green, middle two lanes) and Alexa Fluor 647 scan (magenta, right two lanes) are shown. ( D ) Formation of 9 nt bulge loop to assist CuAAC. N.R.: no reaction control.

    Techniques Used: Modification, Sequencing, Ligation, Radioactivity

    27) Product Images from "Decreasing miRNA sequencing bias using a single adapter and circularization approach"

    Article Title: Decreasing miRNA sequencing bias using a single adapter and circularization approach

    Journal: Genome Biology

    doi: 10.1186/s13059-018-1488-z

    Bias in miRNA detection using various small-RNA library preparation kits. For each kit, sequencing libraries were prepared from the miRXplore™ pool and sequenced; the sequence data were then used to calculate fold-deviations from the equimolar input and plotted as log 2 values. Densities of miRNAs within a two-fold deviation from the expected values (between vertical lines ) are considered unbiased according to [ 8 ]. Under-represented, over-represented, and accurately quantified percentages of miRNAs are shown in red font . Results for two-adapter schemes are a TruSeq® Small RNA, b NEBNext®, and c QIAseq. d NEXTFlex™, a scheme using two adapters with randomized sequences. e SMARTer, which uses template switching. f RealSeq®-AC, which uses a single-adapter and circularization (* p value vs other kits
    Figure Legend Snippet: Bias in miRNA detection using various small-RNA library preparation kits. For each kit, sequencing libraries were prepared from the miRXplore™ pool and sequenced; the sequence data were then used to calculate fold-deviations from the equimolar input and plotted as log 2 values. Densities of miRNAs within a two-fold deviation from the expected values (between vertical lines ) are considered unbiased according to [ 8 ]. Under-represented, over-represented, and accurately quantified percentages of miRNAs are shown in red font . Results for two-adapter schemes are a TruSeq® Small RNA, b NEBNext®, and c QIAseq. d NEXTFlex™, a scheme using two adapters with randomized sequences. e SMARTer, which uses template switching. f RealSeq®-AC, which uses a single-adapter and circularization (* p value vs other kits

    Techniques Used: Sequencing

    Differential quantification of brain samples between different small RNA library preparation kits. Data obtained with either a TruSeq®, b NEBNext®, c NEXTFlex™, d QIAseq, or e SMARTer kits were compared with data obtained with RealSeq®-AC to obtain differential quantification (log 2 ) values for 276 high-confidence miRNAs. These values were plotted against the accuracy of detection of that miRNA when profiling the equimolar pool of synthetic miRNAs (Fig. 2 a–c). f–j The reverse comparison, with the differential quantification of RealSeq®-AC versus each of the other kits plotted against the accuracy of RealSeq®-AC when quantifying the synthetic pool of miRNAs. FN false negative, FP false positive. See Methods for more details
    Figure Legend Snippet: Differential quantification of brain samples between different small RNA library preparation kits. Data obtained with either a TruSeq®, b NEBNext®, c NEXTFlex™, d QIAseq, or e SMARTer kits were compared with data obtained with RealSeq®-AC to obtain differential quantification (log 2 ) values for 276 high-confidence miRNAs. These values were plotted against the accuracy of detection of that miRNA when profiling the equimolar pool of synthetic miRNAs (Fig. 2 a–c). f–j The reverse comparison, with the differential quantification of RealSeq®-AC versus each of the other kits plotted against the accuracy of RealSeq®-AC when quantifying the synthetic pool of miRNAs. FN false negative, FP false positive. See Methods for more details

    Techniques Used:

    Correlation of miRNA reads between libraries created with 100 ng, 10 ng, or 1 ng inputs of Human Reference RNA (Agilent). Raw reads mapping to miRNAs were used to calculate the Pearson correlation between libraries
    Figure Legend Snippet: Correlation of miRNA reads between libraries created with 100 ng, 10 ng, or 1 ng inputs of Human Reference RNA (Agilent). Raw reads mapping to miRNAs were used to calculate the Pearson correlation between libraries

    Techniques Used:

    Related Articles

    Functional Assay:

    Article Title: Simple and efficient synthesis of 5? pre-adenylated DNA using thermostable RNA ligase
    Article Snippet: .. This result demonstrates that pre-adenylated DNA, synthesized with MthRnl, is a functional substrate for truncated T4 RNA ligase 2 in the absence of ATP. ..

    Ligation:

    Article Title: Blocking of targeted microRNAs from next-generation sequencing libraries
    Article Snippet: .. This decrease in yield in the 3′ approach is likely due to the leftover ATP from the initial blocking ligation with T4 DNA Ligase inhibiting the truncated T4 RNA Ligase 2 in the subsequent ligation of the adaptor to the 3′ ends of the small RNA pool. .. Although truncated T4 RNA Ligase 2 cannot turnover ATP, ATP can still bind to the remnants of the active site, leading to inhibition of the enzyme (personal communication with NEB).

    Article Title: Simple and efficient synthesis of 5? pre-adenylated DNA using thermostable RNA ligase
    Article Snippet: .. Ten microliter ligation reactions containing 5 pmol of the RNA acceptor, 7 pmol AppDNA17c-NH2 in 10 mM Tris–HCl pH 7.5 buffer, 10 mM MgCl2 , 1 mM DTT and 200 U of truncated T4 RNA ligase 2 were incubated for 2 h at 25°C. .. Reactions were stopped by adding 5 µl formamide loading buffer, heat inactivated at 95°C for 3 min and the products were separated, stained and visualized as described for the DNA adenylation above.

    Article Title: Structure-function analysis of Methanobacterium thermoautotrophicum RNA ligase - engineering a thermostable ATP independent enzyme
    Article Snippet: .. The ligation of pre-adenylated ssDNA or RNA with an acceptor substrate using T4 RNA ligase 1 or truncated T4 RNA ligase 2 (NEB) without ATP were carried out in single-turnover conditions and performed in 10 μl containing 5 pmol of the RNA acceptor, 8 pmol of pre-adenylated donor substrate in 10 mM Tris-HCl pH 7.5 buffer, 10 mM Mg+2 , 1 mM DTT and 200 U (~10 pmol) of truncated T4Rnl2 or 10 U (~50 pmol) of T4Rnl1. .. Standard reactions with a 5’-phosphorylated donor, various acceptors and ATP using T4Rnl1 were performed according to the manufacturer’s protocol (NEB).

    Synthesized:

    Article Title: Simple and efficient synthesis of 5? pre-adenylated DNA using thermostable RNA ligase
    Article Snippet: .. This result demonstrates that pre-adenylated DNA, synthesized with MthRnl, is a functional substrate for truncated T4 RNA ligase 2 in the absence of ATP. ..

    Blocking Assay:

    Article Title: Blocking of targeted microRNAs from next-generation sequencing libraries
    Article Snippet: .. This decrease in yield in the 3′ approach is likely due to the leftover ATP from the initial blocking ligation with T4 DNA Ligase inhibiting the truncated T4 RNA Ligase 2 in the subsequent ligation of the adaptor to the 3′ ends of the small RNA pool. .. Although truncated T4 RNA Ligase 2 cannot turnover ATP, ATP can still bind to the remnants of the active site, leading to inhibition of the enzyme (personal communication with NEB).

    Incubation:

    Article Title: Simple and efficient synthesis of 5? pre-adenylated DNA using thermostable RNA ligase
    Article Snippet: .. Ten microliter ligation reactions containing 5 pmol of the RNA acceptor, 7 pmol AppDNA17c-NH2 in 10 mM Tris–HCl pH 7.5 buffer, 10 mM MgCl2 , 1 mM DTT and 200 U of truncated T4 RNA ligase 2 were incubated for 2 h at 25°C. .. Reactions were stopped by adding 5 µl formamide loading buffer, heat inactivated at 95°C for 3 min and the products were separated, stained and visualized as described for the DNA adenylation above.

    other:

    Article Title: Blocking of targeted microRNAs from next-generation sequencing libraries
    Article Snippet: In the standard protocol (Figure ), a pre-adenylated DNA oligonucleotide adaptor is ligated to the 3′ ends of the pool of small RNA species using truncated T4 RNA Ligase 2.

    Inhibition:

    Article Title: Blocking of targeted microRNAs from next-generation sequencing libraries
    Article Snippet: .. Although truncated T4 RNA Ligase 2 cannot turnover ATP, ATP can still bind to the remnants of the active site, leading to inhibition of the enzyme (personal communication with NEB). .. Thus, a 3′ approach could likely be implemented without unwanted consequences if the reaction components of the blocking ligation were removed via column purification or some other suitable method.

    Similar Products

  • Logo
  • About
  • News
  • Press Release
  • Team
  • Advisors
  • Partners
  • Contact
  • Bioz Stars
  • Bioz vStars
  • 99
    New England Biolabs t4 rna ligase 2
    Graphical Visualization of the 3′ RACE-Seq Approach, Related to Figure 2 (A) Graphical representation of 3′ RACE-seq library preparation and the oligonucleotides used. First, the 3′ adaptor RA3_15N was joined to the 3′ end of RNA by enzymatic ligation. The adaptor has: (i) 5′ rApp modification for efficient and specific ligation by the truncated <t>T4</t> RNA ligase 2, (ii) delimiter sequence to be used in bioinformatics analyses to exclude RT and PCR artifacts (CTGAC, highlighted in violet), (iii) unique 15N barcode for individual transcript barcoding (highlighted in green), (iv) anchor sequence to pair with the reverse transcription primer (underlined) and (v) dideoxyC on the 3′ end to prevent concatamer formation. The RNA ligated to the adaptor sequence was purified from excess adaptor and reverse transcription was performed with the RT primer, which is compatible with Illumina sequencing and has: (i) sequences to base-pair with the adaptor (underlined), (ii) 6-nucleotide barcode for sample barcoding (highlighted in red), (iii) sequences that base pair with the universal outer primer for nested PCR (blue). Libraries were generated by nested PCR with 2 outer forward primers (F1 and F2) and a single universal reverse primer (uni rev). PCR amplicons of first and second PCRs were purified from excess primers on AmPure beads (Agencourt) before beginning the next step. (B) Flowchart of the bioinformatics approach to 3′ RACE-seq data analysis. The procedure starts at the top. Datasets are shown in rectangles. Software used is depicted in hexagons.
    T4 Rna Ligase 2, supplied by New England Biolabs, used in various techniques. Bioz Stars score: 99/100, based on 205 PubMed citations. ZERO BIAS - scores, article reviews, protocol conditions and more
    https://www.bioz.com/result/t4 rna ligase 2/product/New England Biolabs
    Average 99 stars, based on 205 article reviews
    Price from $9.99 to $1999.99
    t4 rna ligase 2 - by Bioz Stars, 2020-09
    99/100 stars
      Buy from Supplier

    99
    New England Biolabs t4 rna ligase 2 truncated k227q
    MicroRNA capture was performed with 4 different ligases using the vendor recommended protocols to compare capture efficiency across 20 different microRNA. The ligation products were analyzed by 15% denaturing urea-PAGE. Capture efficiency was determined by performing a Cy3 scan and comparing the intensities of the ∼40 nt captured microRNA band versus the ∼20 nt free microRNA band. <t>T4</t> RNA <t>Ligase</t> 2 truncated (T4 Rnl2 T) had high average capture efficiency and low bias but many randomly sized background products. The point mutant enzymes T4 RNA Ligase 2 truncated <t>K227Q</t> (T4 Rnl2 TK) and T4 RNA Ligase 2 truncated KQ (T4 Rnl2 TKQ) had decreased side product formation but also lower average capture efficiency and higher bias. Thermostable 5′ App DNA/RNA Ligase (Mth Rnl), which was performed at 65°C instead of 25°C, had similar average capture efficiency and bias but with distinct ligation efficiency pattern.
    T4 Rna Ligase 2 Truncated K227q, supplied by New England Biolabs, used in various techniques. Bioz Stars score: 99/100, based on 21 PubMed citations. ZERO BIAS - scores, article reviews, protocol conditions and more
    https://www.bioz.com/result/t4 rna ligase 2 truncated k227q/product/New England Biolabs
    Average 99 stars, based on 21 article reviews
    Price from $9.99 to $1999.99
    t4 rna ligase 2 truncated k227q - by Bioz Stars, 2020-09
    99/100 stars
      Buy from Supplier

    99
    New England Biolabs t4 rna ligase 2 truncated r55k k227q
    MicroRNA capture was performed with 4 different ligases using the vendor recommended protocols to compare capture efficiency across 20 different microRNA. The ligation products were analyzed by 15% denaturing urea-PAGE. Capture efficiency was determined by performing a Cy3 scan and comparing the intensities of the ∼40 nt captured microRNA band versus the ∼20 nt free microRNA band. <t>T4</t> RNA <t>Ligase</t> 2 truncated (T4 Rnl2 T) had high average capture efficiency and low bias but many randomly sized background products. The point mutant enzymes T4 RNA Ligase 2 truncated <t>K227Q</t> (T4 Rnl2 TK) and T4 RNA Ligase 2 truncated KQ (T4 Rnl2 TKQ) had decreased side product formation but also lower average capture efficiency and higher bias. Thermostable 5′ App DNA/RNA Ligase (Mth Rnl), which was performed at 65°C instead of 25°C, had similar average capture efficiency and bias but with distinct ligation efficiency pattern.
    T4 Rna Ligase 2 Truncated R55k K227q, supplied by New England Biolabs, used in various techniques. Bioz Stars score: 99/100, based on 1 PubMed citations. ZERO BIAS - scores, article reviews, protocol conditions and more
    https://www.bioz.com/result/t4 rna ligase 2 truncated r55k k227q/product/New England Biolabs
    Average 99 stars, based on 1 article reviews
    Price from $9.99 to $1999.99
    t4 rna ligase 2 truncated r55k k227q - by Bioz Stars, 2020-09
    99/100 stars
      Buy from Supplier

    Image Search Results


    Graphical Visualization of the 3′ RACE-Seq Approach, Related to Figure 2 (A) Graphical representation of 3′ RACE-seq library preparation and the oligonucleotides used. First, the 3′ adaptor RA3_15N was joined to the 3′ end of RNA by enzymatic ligation. The adaptor has: (i) 5′ rApp modification for efficient and specific ligation by the truncated T4 RNA ligase 2, (ii) delimiter sequence to be used in bioinformatics analyses to exclude RT and PCR artifacts (CTGAC, highlighted in violet), (iii) unique 15N barcode for individual transcript barcoding (highlighted in green), (iv) anchor sequence to pair with the reverse transcription primer (underlined) and (v) dideoxyC on the 3′ end to prevent concatamer formation. The RNA ligated to the adaptor sequence was purified from excess adaptor and reverse transcription was performed with the RT primer, which is compatible with Illumina sequencing and has: (i) sequences to base-pair with the adaptor (underlined), (ii) 6-nucleotide barcode for sample barcoding (highlighted in red), (iii) sequences that base pair with the universal outer primer for nested PCR (blue). Libraries were generated by nested PCR with 2 outer forward primers (F1 and F2) and a single universal reverse primer (uni rev). PCR amplicons of first and second PCRs were purified from excess primers on AmPure beads (Agencourt) before beginning the next step. (B) Flowchart of the bioinformatics approach to 3′ RACE-seq data analysis. The procedure starts at the top. Datasets are shown in rectangles. Software used is depicted in hexagons.

    Journal: Cell

    Article Title: Uridylation by TUT4/7 Restricts Retrotransposition of Human LINE-1s

    doi: 10.1016/j.cell.2018.07.022

    Figure Lengend Snippet: Graphical Visualization of the 3′ RACE-Seq Approach, Related to Figure 2 (A) Graphical representation of 3′ RACE-seq library preparation and the oligonucleotides used. First, the 3′ adaptor RA3_15N was joined to the 3′ end of RNA by enzymatic ligation. The adaptor has: (i) 5′ rApp modification for efficient and specific ligation by the truncated T4 RNA ligase 2, (ii) delimiter sequence to be used in bioinformatics analyses to exclude RT and PCR artifacts (CTGAC, highlighted in violet), (iii) unique 15N barcode for individual transcript barcoding (highlighted in green), (iv) anchor sequence to pair with the reverse transcription primer (underlined) and (v) dideoxyC on the 3′ end to prevent concatamer formation. The RNA ligated to the adaptor sequence was purified from excess adaptor and reverse transcription was performed with the RT primer, which is compatible with Illumina sequencing and has: (i) sequences to base-pair with the adaptor (underlined), (ii) 6-nucleotide barcode for sample barcoding (highlighted in red), (iii) sequences that base pair with the universal outer primer for nested PCR (blue). Libraries were generated by nested PCR with 2 outer forward primers (F1 and F2) and a single universal reverse primer (uni rev). PCR amplicons of first and second PCRs were purified from excess primers on AmPure beads (Agencourt) before beginning the next step. (B) Flowchart of the bioinformatics approach to 3′ RACE-seq data analysis. The procedure starts at the top. Datasets are shown in rectangles. Software used is depicted in hexagons.

    Article Snippet: The reactions were carried out in 20 μL with 1x T4 RNA ligase 2 truncated buffer (NEB) supplemented with PEG-8000 at 10% final concentration, 0.25 U/μl RiboLock inhibitor (Thermo Fisher Scientific), 3 pmol of the 5′ FAM-labeled 44-mer oligonucleotide RNA44 (Future Synthesis) and 300 U T4 RNA ligase 2 truncated (NEB) for 18h at 18°C.

    Techniques: Ligation, Modification, Sequencing, Polymerase Chain Reaction, Purification, Nested PCR, Generated, Software

    Modification of miRNA sequencing library generation protocol to allow for blocking of targeted species. ( A ) In the standard protocol, a pre-adenylated adaptor is ligated to the 3′ end of a small RNA pool using T4 RNA Ligase 2, truncated. Subsequently, a second adaptor is added to the 5′ end of the miRNA with T4 RNA Ligase 1, followed by reverse transcription and PCR. ( B ) In our modification, a hairpin oligonucleotide with an overhang complementary to the 5′ end of the targeted miRNA is attached via ligation with T4 DNA Ligase to the 5′ end of the miRNA subsequent to the ligation of the adaptor to the 3′ end. This prevents the ligation of the second adaptor to the 5′ end of the miRNA, resulting in a product that does not amplify during PCR. ( C ) Sequencing libraries were generated from human heart total RNA using a titration of a blocking oligonucleotide targeting hsa-miR-16–5p. The fraction of hsa-miR-16–5p present in the blocked library compared to the unblocked library is shown on the y-axis.

    Journal: Nucleic Acids Research

    Article Title: Blocking of targeted microRNAs from next-generation sequencing libraries

    doi: 10.1093/nar/gkv724

    Figure Lengend Snippet: Modification of miRNA sequencing library generation protocol to allow for blocking of targeted species. ( A ) In the standard protocol, a pre-adenylated adaptor is ligated to the 3′ end of a small RNA pool using T4 RNA Ligase 2, truncated. Subsequently, a second adaptor is added to the 5′ end of the miRNA with T4 RNA Ligase 1, followed by reverse transcription and PCR. ( B ) In our modification, a hairpin oligonucleotide with an overhang complementary to the 5′ end of the targeted miRNA is attached via ligation with T4 DNA Ligase to the 5′ end of the miRNA subsequent to the ligation of the adaptor to the 3′ end. This prevents the ligation of the second adaptor to the 5′ end of the miRNA, resulting in a product that does not amplify during PCR. ( C ) Sequencing libraries were generated from human heart total RNA using a titration of a blocking oligonucleotide targeting hsa-miR-16–5p. The fraction of hsa-miR-16–5p present in the blocked library compared to the unblocked library is shown on the y-axis.

    Article Snippet: Although truncated T4 RNA Ligase 2 cannot turnover ATP, ATP can still bind to the remnants of the active site, leading to inhibition of the enzyme (personal communication with NEB).

    Techniques: Modification, Sequencing, Blocking Assay, Polymerase Chain Reaction, Ligation, Generated, Titration

    MicroRNA capture was performed with 4 different ligases using the vendor recommended protocols to compare capture efficiency across 20 different microRNA. The ligation products were analyzed by 15% denaturing urea-PAGE. Capture efficiency was determined by performing a Cy3 scan and comparing the intensities of the ∼40 nt captured microRNA band versus the ∼20 nt free microRNA band. T4 RNA Ligase 2 truncated (T4 Rnl2 T) had high average capture efficiency and low bias but many randomly sized background products. The point mutant enzymes T4 RNA Ligase 2 truncated K227Q (T4 Rnl2 TK) and T4 RNA Ligase 2 truncated KQ (T4 Rnl2 TKQ) had decreased side product formation but also lower average capture efficiency and higher bias. Thermostable 5′ App DNA/RNA Ligase (Mth Rnl), which was performed at 65°C instead of 25°C, had similar average capture efficiency and bias but with distinct ligation efficiency pattern.

    Journal: PLoS ONE

    Article Title: Elimination of Ligation Dependent Artifacts in T4 RNA Ligase to Achieve High Efficiency and Low Bias MicroRNA Capture

    doi: 10.1371/journal.pone.0094619

    Figure Lengend Snippet: MicroRNA capture was performed with 4 different ligases using the vendor recommended protocols to compare capture efficiency across 20 different microRNA. The ligation products were analyzed by 15% denaturing urea-PAGE. Capture efficiency was determined by performing a Cy3 scan and comparing the intensities of the ∼40 nt captured microRNA band versus the ∼20 nt free microRNA band. T4 RNA Ligase 2 truncated (T4 Rnl2 T) had high average capture efficiency and low bias but many randomly sized background products. The point mutant enzymes T4 RNA Ligase 2 truncated K227Q (T4 Rnl2 TK) and T4 RNA Ligase 2 truncated KQ (T4 Rnl2 TKQ) had decreased side product formation but also lower average capture efficiency and higher bias. Thermostable 5′ App DNA/RNA Ligase (Mth Rnl), which was performed at 65°C instead of 25°C, had similar average capture efficiency and bias but with distinct ligation efficiency pattern.

    Article Snippet: Ligation Protocol Unless otherwise indicated, ligation was performed by mixing 1.25 µL of 2 µM adenylated adapter, 1 µL of T4 RNA Ligase buffer (New England Biolabs, Ipswich, MA), 5 µL of 50% PEG8000, 1 µL of synthetic target, 0.5 µL of total RNA, 1 µL of T4 RNA Ligase 2 truncated K227Q (New England Biolabs, Ipswich, MA) and water into a 20 µL reaction volume.

    Techniques: Ligation, Polyacrylamide Gel Electrophoresis, Mutagenesis

    Schematic illustration of microRNA capture by 3′ adapter ligation. The 19 nt, enzymatically pre-adenlyated adapter is ligated to the 3′ OH of microRNA using T4 RNA ligase 2. The reaction is run at 25°C for 4 hours in the absence of ATP. In order to characterize capture efficiency, the microRNA is end labeled with Cy3. The 3′ end of the adapter is blocked by –ddC, a fluorophore, or other moiety to prevent the formation of concatemers and circularized products.

    Journal: PLoS ONE

    Article Title: Elimination of Ligation Dependent Artifacts in T4 RNA Ligase to Achieve High Efficiency and Low Bias MicroRNA Capture

    doi: 10.1371/journal.pone.0094619

    Figure Lengend Snippet: Schematic illustration of microRNA capture by 3′ adapter ligation. The 19 nt, enzymatically pre-adenlyated adapter is ligated to the 3′ OH of microRNA using T4 RNA ligase 2. The reaction is run at 25°C for 4 hours in the absence of ATP. In order to characterize capture efficiency, the microRNA is end labeled with Cy3. The 3′ end of the adapter is blocked by –ddC, a fluorophore, or other moiety to prevent the formation of concatemers and circularized products.

    Article Snippet: Ligation Protocol Unless otherwise indicated, ligation was performed by mixing 1.25 µL of 2 µM adenylated adapter, 1 µL of T4 RNA Ligase buffer (New England Biolabs, Ipswich, MA), 5 µL of 50% PEG8000, 1 µL of synthetic target, 0.5 µL of total RNA, 1 µL of T4 RNA Ligase 2 truncated K227Q (New England Biolabs, Ipswich, MA) and water into a 20 µL reaction volume.

    Techniques: Ligation, Labeling

    MicroRNA capture was performed with 4 different ligases using the vendor recommended protocols to compare capture efficiency across 20 different microRNA. The ligation products were analyzed by 15% denaturing urea-PAGE. Capture efficiency was determined by performing a Cy3 scan and comparing the intensities of the ∼40 nt captured microRNA band versus the ∼20 nt free microRNA band. T4 RNA Ligase 2 truncated (T4 Rnl2 T) had high average capture efficiency and low bias but many randomly sized background products. The point mutant enzymes T4 RNA Ligase 2 truncated K227Q (T4 Rnl2 TK) and T4 RNA Ligase 2 truncated KQ (T4 Rnl2 TKQ) had decreased side product formation but also lower average capture efficiency and higher bias. Thermostable 5′ App DNA/RNA Ligase (Mth Rnl), which was performed at 65°C instead of 25°C, had similar average capture efficiency and bias but with distinct ligation efficiency pattern.

    Journal: PLoS ONE

    Article Title: Elimination of Ligation Dependent Artifacts in T4 RNA Ligase to Achieve High Efficiency and Low Bias MicroRNA Capture

    doi: 10.1371/journal.pone.0094619

    Figure Lengend Snippet: MicroRNA capture was performed with 4 different ligases using the vendor recommended protocols to compare capture efficiency across 20 different microRNA. The ligation products were analyzed by 15% denaturing urea-PAGE. Capture efficiency was determined by performing a Cy3 scan and comparing the intensities of the ∼40 nt captured microRNA band versus the ∼20 nt free microRNA band. T4 RNA Ligase 2 truncated (T4 Rnl2 T) had high average capture efficiency and low bias but many randomly sized background products. The point mutant enzymes T4 RNA Ligase 2 truncated K227Q (T4 Rnl2 TK) and T4 RNA Ligase 2 truncated KQ (T4 Rnl2 TKQ) had decreased side product formation but also lower average capture efficiency and higher bias. Thermostable 5′ App DNA/RNA Ligase (Mth Rnl), which was performed at 65°C instead of 25°C, had similar average capture efficiency and bias but with distinct ligation efficiency pattern.

    Article Snippet: In the experiments where different ligases were investigated, T4 RNA Ligase 2 truncated, T4 RNA Ligase 2 truncated R55K K227Q, and Thermostable 5′ App DNA/RNA Ligase were all obtained from New England Biolabs.

    Techniques: Ligation, Polyacrylamide Gel Electrophoresis, Mutagenesis