t4 polynucleotide kinase  (New England Biolabs)


Bioz Verified Symbol New England Biolabs is a verified supplier
Bioz Manufacturer Symbol New England Biolabs manufactures this product  
  • Logo
  • About
  • News
  • Press Release
  • Team
  • Advisors
  • Partners
  • Contact
  • Bioz Stars
  • Bioz vStars
  • 99

    Structured Review

    New England Biolabs t4 polynucleotide kinase
    T4 Polynucleotide Kinase, supplied by New England Biolabs, used in various techniques. Bioz Stars score: 99/100, based on 148 PubMed citations. ZERO BIAS - scores, article reviews, protocol conditions and more
    https://www.bioz.com/result/t4 polynucleotide kinase/product/New England Biolabs
    Average 99 stars, based on 148 article reviews
    Price from $9.99 to $1999.99
    t4 polynucleotide kinase - by Bioz Stars, 2020-04
    99/100 stars

    Images

    Similar Products

  • Logo
  • About
  • News
  • Press Release
  • Team
  • Advisors
  • Partners
  • Contact
  • Bioz Stars
  • Bioz vStars
  • 99
    New England Biolabs t4 polynucleotide kinase
    Characteristics of Ascaris small RNAs. ( A ) 5′ end-labeled Ascaris small RNAs. Low-molecular-weight (LMW) enriched RNAs were treated with calf alkaline phosphatase and then 5′ end labeled with 32 P using <t>T4</t> polynucleotide kinase. RNAs in
    T4 Polynucleotide Kinase, supplied by New England Biolabs, used in various techniques. Bioz Stars score: 99/100, based on 148 PubMed citations. ZERO BIAS - scores, article reviews, protocol conditions and more
    https://www.bioz.com/result/t4 polynucleotide kinase/product/New England Biolabs
    Average 99 stars, based on 148 article reviews
    Price from $9.99 to $1999.99
    t4 polynucleotide kinase - by Bioz Stars, 2020-04
    99/100 stars
      Buy from Supplier

    99
    New England Biolabs t4 pnk
    yUsb1 acts as a 3′–5′exonuclease and CPDase in vitro. a U6 snRNA is synthesized by RNA Polymerase III. Transcription termination produces a heterogeneous U6 with a 4–8 nucleotide U-tail. Processing by yUsb1 shortens the U-tail and leaves a phosphoryl group. b Usb1 removes nucleotides from the 3′ end of RNAs. The 5′-labeled U6 95–112+3U oligonucleotide cis -diol substrate (lane 2) is insensitive to CIP (lane 3) or <t>T4</t> PNK (lane 4) treatment. Incubation with yUsb1 for 1 h results in a shorter product (lane 5). Similar reactivity of the product to both CIP (lane 6) and T4 PNK (lane 7) indicates that the product is a noncyclic phosphate. An alkaline hydrolysis ladder (lane 1) shows the mobility of oligonucleotide products of different lengths. ( c , top ) One-dimensional 31 P NMR spectra of 2′,3′-cUMP shows a single peak at 20 ppm. A 3′ UMP standard has a single peak at 3.4 ppm. When 2′,3′-cUMP is incubated with AtRNL, which leaves a 2′ phosphate 8 , there is a single peak at 3.2 ppm. Incubation of 2′,3′-cUMP with yUsb1 produces a new signal at 3.4 ppm ( c , bottom ) Zoom of dashed region in top panel. d Time course of Usb1 processing on RNAs with different 3′ end modifications. yUsb1 is most active on RNA substrates with a cis -diol (lanes 1–4), less active on those with a 2′,3′-cyclic phosphate ( > p; lanes 5–8) or 2′ phosphates (2′P; lanes 9–12), and is inactive on 3′ phosphate ends (3′P; lanes 13–16). e Model describing the dual activities of yUsb1
    T4 Pnk, supplied by New England Biolabs, used in various techniques. Bioz Stars score: 99/100, based on 148 PubMed citations. ZERO BIAS - scores, article reviews, protocol conditions and more
    https://www.bioz.com/result/t4 pnk/product/New England Biolabs
    Average 99 stars, based on 148 article reviews
    Price from $9.99 to $1999.99
    t4 pnk - by Bioz Stars, 2020-04
    99/100 stars
      Buy from Supplier

    Image Search Results


    Characteristics of Ascaris small RNAs. ( A ) 5′ end-labeled Ascaris small RNAs. Low-molecular-weight (LMW) enriched RNAs were treated with calf alkaline phosphatase and then 5′ end labeled with 32 P using T4 polynucleotide kinase. RNAs in

    Journal: Genome Research

    Article Title: Deep small RNA sequencing from the nematode Ascaris reveals conservation, functional diversification, and novel developmental profiles

    doi: 10.1101/gr.121426.111

    Figure Lengend Snippet: Characteristics of Ascaris small RNAs. ( A ) 5′ end-labeled Ascaris small RNAs. Low-molecular-weight (LMW) enriched RNAs were treated with calf alkaline phosphatase and then 5′ end labeled with 32 P using T4 polynucleotide kinase. RNAs in

    Article Snippet: Total RNA was isolated using TRIzol (Invitrogen), and small RNA samples were 5′ labeled by first treating with calf alkaline phosphatase (Roche) followed by phosphorylation with T4 polynucleotide kinase (NEB) and 32 P-γ-ATP.

    Techniques: Labeling, Molecular Weight

    yUsb1 acts as a 3′–5′exonuclease and CPDase in vitro. a U6 snRNA is synthesized by RNA Polymerase III. Transcription termination produces a heterogeneous U6 with a 4–8 nucleotide U-tail. Processing by yUsb1 shortens the U-tail and leaves a phosphoryl group. b Usb1 removes nucleotides from the 3′ end of RNAs. The 5′-labeled U6 95–112+3U oligonucleotide cis -diol substrate (lane 2) is insensitive to CIP (lane 3) or T4 PNK (lane 4) treatment. Incubation with yUsb1 for 1 h results in a shorter product (lane 5). Similar reactivity of the product to both CIP (lane 6) and T4 PNK (lane 7) indicates that the product is a noncyclic phosphate. An alkaline hydrolysis ladder (lane 1) shows the mobility of oligonucleotide products of different lengths. ( c , top ) One-dimensional 31 P NMR spectra of 2′,3′-cUMP shows a single peak at 20 ppm. A 3′ UMP standard has a single peak at 3.4 ppm. When 2′,3′-cUMP is incubated with AtRNL, which leaves a 2′ phosphate 8 , there is a single peak at 3.2 ppm. Incubation of 2′,3′-cUMP with yUsb1 produces a new signal at 3.4 ppm ( c , bottom ) Zoom of dashed region in top panel. d Time course of Usb1 processing on RNAs with different 3′ end modifications. yUsb1 is most active on RNA substrates with a cis -diol (lanes 1–4), less active on those with a 2′,3′-cyclic phosphate ( > p; lanes 5–8) or 2′ phosphates (2′P; lanes 9–12), and is inactive on 3′ phosphate ends (3′P; lanes 13–16). e Model describing the dual activities of yUsb1

    Journal: Nature Communications

    Article Title: Usb1 controls U6 snRNP assembly through evolutionarily divergent cyclic phosphodiesterase activities

    doi: 10.1038/s41467-017-00484-w

    Figure Lengend Snippet: yUsb1 acts as a 3′–5′exonuclease and CPDase in vitro. a U6 snRNA is synthesized by RNA Polymerase III. Transcription termination produces a heterogeneous U6 with a 4–8 nucleotide U-tail. Processing by yUsb1 shortens the U-tail and leaves a phosphoryl group. b Usb1 removes nucleotides from the 3′ end of RNAs. The 5′-labeled U6 95–112+3U oligonucleotide cis -diol substrate (lane 2) is insensitive to CIP (lane 3) or T4 PNK (lane 4) treatment. Incubation with yUsb1 for 1 h results in a shorter product (lane 5). Similar reactivity of the product to both CIP (lane 6) and T4 PNK (lane 7) indicates that the product is a noncyclic phosphate. An alkaline hydrolysis ladder (lane 1) shows the mobility of oligonucleotide products of different lengths. ( c , top ) One-dimensional 31 P NMR spectra of 2′,3′-cUMP shows a single peak at 20 ppm. A 3′ UMP standard has a single peak at 3.4 ppm. When 2′,3′-cUMP is incubated with AtRNL, which leaves a 2′ phosphate 8 , there is a single peak at 3.2 ppm. Incubation of 2′,3′-cUMP with yUsb1 produces a new signal at 3.4 ppm ( c , bottom ) Zoom of dashed region in top panel. d Time course of Usb1 processing on RNAs with different 3′ end modifications. yUsb1 is most active on RNA substrates with a cis -diol (lanes 1–4), less active on those with a 2′,3′-cyclic phosphate ( > p; lanes 5–8) or 2′ phosphates (2′P; lanes 9–12), and is inactive on 3′ phosphate ends (3′P; lanes 13–16). e Model describing the dual activities of yUsb1

    Article Snippet: Samples were treated with CIP or T4 PNK by addition of “Cutsmart” or “PNK” buffer from New England Biolabs and 10 units of CIP or T4 PNK and incubation at 37 °C for 15 min. Mock treated samples contained only Cutsmart buffer and water in lieu of CIP or T4 PNK.

    Techniques: In Vitro, Synthesized, Labeling, Incubation, Nuclear Magnetic Resonance

    PARP3 monoribosylates H2B in damaged chromatin. ( a , left) 10μg of the chicken chromatin employed in these experiments was fractionated by SDS–PAGE and stained with Coomassie blue. (right) One microgram of soluble MNase-treated chicken chromatin or 50-mer oligonucleotide duplex (200 nM) harbouring a nick with 3′-P/5′-OH termini was mock-treated (0) or treated with 1, 0.5 or 0.25 U T4 PNK to restore 3′-OH/5′-P termini. These DNA substrates were then incubated with 100 nM hPARP3 and 12.5 μM biotin-NAD + for 30 min and biotinylated products separated by 15% SDS–PAGE and detected with streptavidin-HRP. ( b ) 1 μg chicken chromatin or the indicated recombinant histone was incubated with 100 nM hPARP3 in the presence of 300 nM 32 P-NAD + or 12.5 μM biotin-NAD and oligonucleotide harbouring either a DSB (middle) or SSB (right) and the reaction products fractionated by 15% SDS–PAGE and detected by autoradiography or streptavidin-HRP. (left) An aliquot of the chicken chromatin and recombinant histones was fractionated by SDS–PAGE and stained with Coomassie blue. ( c , left) Aliquots of recombinant histone standards were fractionated separately or together as an octamer on triton-acid urea gels and analysed by staining with Coomassie blue. (right) The products of the PARP3 ribosylation reactions conducted in b were fractionated on triton-acid urea gels and analysed by autoradiography. HRP, horseradish peroxidase.

    Journal: Nature Communications

    Article Title: PARP3 is a sensor of nicked nucleosomes and monoribosylates histone H2BGlu2

    doi: 10.1038/ncomms12404

    Figure Lengend Snippet: PARP3 monoribosylates H2B in damaged chromatin. ( a , left) 10μg of the chicken chromatin employed in these experiments was fractionated by SDS–PAGE and stained with Coomassie blue. (right) One microgram of soluble MNase-treated chicken chromatin or 50-mer oligonucleotide duplex (200 nM) harbouring a nick with 3′-P/5′-OH termini was mock-treated (0) or treated with 1, 0.5 or 0.25 U T4 PNK to restore 3′-OH/5′-P termini. These DNA substrates were then incubated with 100 nM hPARP3 and 12.5 μM biotin-NAD + for 30 min and biotinylated products separated by 15% SDS–PAGE and detected with streptavidin-HRP. ( b ) 1 μg chicken chromatin or the indicated recombinant histone was incubated with 100 nM hPARP3 in the presence of 300 nM 32 P-NAD + or 12.5 μM biotin-NAD and oligonucleotide harbouring either a DSB (middle) or SSB (right) and the reaction products fractionated by 15% SDS–PAGE and detected by autoradiography or streptavidin-HRP. (left) An aliquot of the chicken chromatin and recombinant histones was fractionated by SDS–PAGE and stained with Coomassie blue. ( c , left) Aliquots of recombinant histone standards were fractionated separately or together as an octamer on triton-acid urea gels and analysed by staining with Coomassie blue. (right) The products of the PARP3 ribosylation reactions conducted in b were fractionated on triton-acid urea gels and analysed by autoradiography. HRP, horseradish peroxidase.

    Article Snippet: DNA from the MNase concentration that produced the greatest SSB/DSB ratio (0.015 U) was mock-treated or treated with T4 PNK in the presence of 2 mM ATP and 10U T4 PNK enzyme (wild-type or 3′-phosphatase dead; New England Biolabs).

    Techniques: SDS Page, Staining, Incubation, TNKS1 Histone Ribosylation Assay, Recombinant, Autoradiography