t4 dna ligase  (Thermo Fisher)


Bioz Verified Symbol Thermo Fisher is a verified supplier
Bioz Manufacturer Symbol Thermo Fisher manufactures this product  
  • Logo
  • About
  • News
  • Press Release
  • Team
  • Advisors
  • Partners
  • Contact
  • Bioz Stars
  • Bioz vStars
  • 86
    Name:
    T4 DNA Ligase
    Description:
    Thermo Scientific T4 DNA Ligase catalyzes the formation of a phosphodiester bond between juxtaposed 5 phosphate and 3 hydroxyl termini in duplex DNA or RNA The enzyme repairs single strand nicks in duplex DNA RNA or DNA RNA hybrids It also joins DNA fragments with either cohesive or blunt termini but has no activity on single stranded nucleic acids T4 DNA Ligase requires ATP as a cofactor Highlights• Active in Themo Scientific restriction enzyme PCR and RT buffers when supplemented with ATP • Fast sticky end ligation is completed in 10 minutes at room temperature• Supplied with PEG solution for efficient blunt end ligationApplications• Cloning of restriction enzyme generated DNA fragments• Cloning of PCR products• Joining of double stranded oligonucleotide linkers or adaptors to DNA• Site directed mutagenesis• Amplified fragment length polymorphism AFLP • Ligase mediated RNA detection see Reference 3 • Nick repair in duplex DNA RNA or DNA RNA hybrids• Self circularization of linear DNA Includes• T4 DNA Ligase• 10X T4 DNA Ligase Buffer• 50 PEG SolutionNotes• Binding of T4 DNA Ligase to DNA may result in a band shift in agarose gels To avoid this incubate samples with 6X DNA Loading Dye SDS Solution at 70°C for 5 min or 65°C for 10 minutes and chill on ice prior to electrophoresis • The volume of the ligation reaction mixture should not exceed 10 of the competent cell volume in the transformation process • Prior to electro transformation remove T4 DNA Ligase from the ligation mixture using spin columns or chloroform extraction The extracted DNA can be further precipitated with ethanol
    Catalog Number:
    el0013
    Price:
    None
    Category:
    Proteins Enzymes Peptides
    Applications:
    Cloning|Restriction Enzyme Cloning
    Buy from Supplier


    Structured Review

    Thermo Fisher t4 dna ligase
    Thermo Scientific T4 DNA Ligase catalyzes the formation of a phosphodiester bond between juxtaposed 5 phosphate and 3 hydroxyl termini in duplex DNA or RNA The enzyme repairs single strand nicks in duplex DNA RNA or DNA RNA hybrids It also joins DNA fragments with either cohesive or blunt termini but has no activity on single stranded nucleic acids T4 DNA Ligase requires ATP as a cofactor Highlights• Active in Themo Scientific restriction enzyme PCR and RT buffers when supplemented with ATP • Fast sticky end ligation is completed in 10 minutes at room temperature• Supplied with PEG solution for efficient blunt end ligationApplications• Cloning of restriction enzyme generated DNA fragments• Cloning of PCR products• Joining of double stranded oligonucleotide linkers or adaptors to DNA• Site directed mutagenesis• Amplified fragment length polymorphism AFLP • Ligase mediated RNA detection see Reference 3 • Nick repair in duplex DNA RNA or DNA RNA hybrids• Self circularization of linear DNA Includes• T4 DNA Ligase• 10X T4 DNA Ligase Buffer• 50 PEG SolutionNotes• Binding of T4 DNA Ligase to DNA may result in a band shift in agarose gels To avoid this incubate samples with 6X DNA Loading Dye SDS Solution at 70°C for 5 min or 65°C for 10 minutes and chill on ice prior to electrophoresis • The volume of the ligation reaction mixture should not exceed 10 of the competent cell volume in the transformation process • Prior to electro transformation remove T4 DNA Ligase from the ligation mixture using spin columns or chloroform extraction The extracted DNA can be further precipitated with ethanol
    https://www.bioz.com/result/t4 dna ligase/product/Thermo Fisher
    Average 86 stars, based on 1 article reviews
    Price from $9.99 to $1999.99
    t4 dna ligase - by Bioz Stars, 2021-03
    86/100 stars

    Images

    Related Articles

    Incubation:

    Article Title: Autophosphorylation-dependent remodeling of the DNA-dependent protein kinase catalytic subunit regulates ligation of DNA ends
    Article Snippet: .. Reactions were started by the addition of 0.5 U of T4 DNA ligase (Invitrogen, Carlsbad, CA) and incubated at 37°C. ..

    Purification:

    Article Title: FSH1 regulates the phenotype and pathogenicity of the pathogenic dermatophyte Microsporum canis
    Article Snippet: To construct the final FSH1 double-stranded RNA interference (dsRNAi) plasmid pCB309-PFUFT, three steps of ligation were performed as follows. .. First, the purified product of PCR for the FSH1 gene was ligated into pUC-PUT following DNA digestion with Xho I and Hin dIII, and ligated by T4 DNA ligase (Invitrogen; Thermo Fisher Scientific, Inc.). ..

    Polymerase Chain Reaction:

    Article Title: FSH1 regulates the phenotype and pathogenicity of the pathogenic dermatophyte Microsporum canis
    Article Snippet: To construct the final FSH1 double-stranded RNA interference (dsRNAi) plasmid pCB309-PFUFT, three steps of ligation were performed as follows. .. First, the purified product of PCR for the FSH1 gene was ligated into pUC-PUT following DNA digestion with Xho I and Hin dIII, and ligated by T4 DNA ligase (Invitrogen; Thermo Fisher Scientific, Inc.). ..

    Modification:

    Article Title: In vitro repair of complex unligatable oxidatively induced DNA double-strand breaks by human cell extracts
    Article Snippet: Finally, due to its relatively speedy processing times and lack of radioactive components, this assay can be easily scaled up to levels appropriate for biochemical analysis and protein purification or for high throughput screening methods. .. Dulbecco’s modified Eagle’s medium (DMEM), fetal bovine serum, non-essential amino acids (10 mM), glutamine (100 mM), penicillin/streptomycin (10 000 U/ml), Saccharomyces cerevisiae tRNA and T4 DNA ligase (1 U/µl) were purchased from Life Technologies (Gaithersburg, MD). .. Bleomycin and phenylmethylsulfonyl fluoride (PMSF) were obtained from Sigma (St Louis, MO).

    Ligation:

    Article Title: Practical Synthesis of Cap‐4 RNA
    Article Snippet: Enzymatic ligation of cap‐4 RNA . .. The 38‐nt T. cruzi cap‐4 RNA was prepared by splinted enzymatic ligation of an 11‐nt cap‐4 RNA and a chemically synthesized 5′‐phosphorylated 27‐nt RNA by using T4 DNA ligase (Thermo Fisher) in analogy to ref. . ..

    Article Title: Profiling non-lysyl tRNAs in HIV-1
    Article Snippet: The ligation reaction relies on an 8-bp RNA:DNA hybrid helix containing a Cy3 or Cy5 fluorophore pre-attached to the loop and an overhang complementary to the universally conserved 3′CCA nucleotides present in all tRNAs ( ). .. The ligation reaction was carried out overnight (∼16 h) at 16°C with 0.13 μg/μL total RNA in 1X T4 DNA ligase buffer, 0.5 U/μL T4 DNA ligase (USB Corporation, 70042X), 15% DMSO, and 4.5 μM labeling oligonucleotide. .. Hybridization was performed at 60°C overnight (∼16 h) with 1–2 μg each of Cy3- or Cy5-labeled total RNA as previously described ( ).

    Synthesized:

    Article Title: Practical Synthesis of Cap‐4 RNA
    Article Snippet: Enzymatic ligation of cap‐4 RNA . .. The 38‐nt T. cruzi cap‐4 RNA was prepared by splinted enzymatic ligation of an 11‐nt cap‐4 RNA and a chemically synthesized 5′‐phosphorylated 27‐nt RNA by using T4 DNA ligase (Thermo Fisher) in analogy to ref. . ..

    Labeling:

    Article Title: Profiling non-lysyl tRNAs in HIV-1
    Article Snippet: The ligation reaction relies on an 8-bp RNA:DNA hybrid helix containing a Cy3 or Cy5 fluorophore pre-attached to the loop and an overhang complementary to the universally conserved 3′CCA nucleotides present in all tRNAs ( ). .. The ligation reaction was carried out overnight (∼16 h) at 16°C with 0.13 μg/μL total RNA in 1X T4 DNA ligase buffer, 0.5 U/μL T4 DNA ligase (USB Corporation, 70042X), 15% DMSO, and 4.5 μM labeling oligonucleotide. .. Hybridization was performed at 60°C overnight (∼16 h) with 1–2 μg each of Cy3- or Cy5-labeled total RNA as previously described ( ).

    Mass Spectrometry:

    Article Title: Detection of Ligation Products of DNA Linkers with 5?-OH Ends by Denaturing PAGE Silver Stain
    Article Snippet: When these manufacturers were questioned, they stated that their T4 DNA ligases had very high quality and it was very unlikely that there would be PNK in their ligases because their ligases were produced by using E. coli cells and production lines that were different from those for T4 PNK. .. A quality inspection report of T4 DNA ligase from Fermentas showed that T4 PNK could not be detected in their T4 DNA ligase ( ); (iii) PNK could not be detected in T4 DNA ligase (Fermentas) by using mass spectrometry (MS) analysis ( and ); (iv) PNK is abundant in mammalian cells but absent in E. coli cells . .. Therefore, the endogenous PNK should be absent in the host E. coli cells that carry plasmids enabling T4 or E. coli DNA ligase high expression; (v) The ligation of linkers A–B and E–F could not be significantly inhibited by (NH4 )2 SO4 , a strong inhibitor of T4 PNK ( , and ); and (vi) T4 PNK requires ATP for activity.

    Similar Products

  • Logo
  • About
  • News
  • Press Release
  • Team
  • Advisors
  • Partners
  • Contact
  • Bioz Stars
  • Bioz vStars
  • 97
    Thermo Fisher t4 dna ligase
    Detection of tRNAs by microarray analysis. ( A ) Array scheme. Total cellular or viral RNA were deacylated, and directly labeled with a Cy3 or Cy5 containing oligonucleotide using <t>T4</t> DNA ligase. The labeling samples with the opposite fluorophores were combined
    T4 Dna Ligase, supplied by Thermo Fisher, used in various techniques. Bioz Stars score: 97/100, based on 1 PubMed citations. ZERO BIAS - scores, article reviews, protocol conditions and more
    https://www.bioz.com/result/t4 dna ligase/product/Thermo Fisher
    Average 97 stars, based on 1 article reviews
    Price from $9.99 to $1999.99
    t4 dna ligase - by Bioz Stars, 2021-03
    97/100 stars
      Buy from Supplier

    Image Search Results


    Detection of tRNAs by microarray analysis. ( A ) Array scheme. Total cellular or viral RNA were deacylated, and directly labeled with a Cy3 or Cy5 containing oligonucleotide using T4 DNA ligase. The labeling samples with the opposite fluorophores were combined

    Journal: RNA

    Article Title: Profiling non-lysyl tRNAs in HIV-1

    doi: 10.1261/rna.1928110

    Figure Lengend Snippet: Detection of tRNAs by microarray analysis. ( A ) Array scheme. Total cellular or viral RNA were deacylated, and directly labeled with a Cy3 or Cy5 containing oligonucleotide using T4 DNA ligase. The labeling samples with the opposite fluorophores were combined

    Article Snippet: The ligation reaction was carried out overnight (∼16 h) at 16°C with 0.13 μg/μL total RNA in 1X T4 DNA ligase buffer, 0.5 U/μL T4 DNA ligase (USB Corporation, 70042X), 15% DMSO, and 4.5 μM labeling oligonucleotide.

    Techniques: Microarray, Labeling

    15% denaturing PAGE for the ligation products of linkers A–B, C–D and linkers G–H. PAGE (10×10×0.03 cm, A:B = 29∶1, 7 M urea, 0.5x TBE) was run in 0.5 x TBE, 25°C, 100 V for 3.5 hrs in ( A )–( F ), or 4.3 hrs in ( G ). The ligation products were indicated by the arrows. Lane M: DNA marker I (GeneRuler™ 50 bp DNA ladder, Fermentas). Lane M1: DNA marker I plus oligo 15. ( A ) The ligation products joined by using T4 DNA ligase from Fermentas. Lane 1: the ligation products of linkers C–D preincubated with T4 DNA ligase; Lane 2: the ligation products of linkers C–D without the preincubation; Lane 4: the ligation products of linkers A–B; Lanes 3 and 5: the negative controls. ( B ) The ligation products joined by using T4 DNA ligase from Takara. Lanes 1–3∶0.5, 1, and 2 µl of 1 µM oligo 15, respectively; Lanes 4 and 6: the ligation products of linkers A–B; Lane 8: the ligation products of linkers C–D. Lanes 5, 7, and 9: the negative controls. ( C ) The ligation products joined by using T4 DNA ligase from Promega. Lane 1∶1 µl of 1 µM oligo 15; Lanes 2 and 4: ligation products of linkers A–B, and C–D, respectively; Lanes 3 and 5: the negative controls. ( D ) The ligation products joined by using E. coli DNA ligase from Takara. Lanes 1 and 3: the ligation products of linkers A–B, and C–D, respectively; Lanes 2 and 4: the negative controls. ( E ) The ligation products of linkers A–B joined in T4 DNA ligase reaction mixture containing (NH 4 ) 2 SO 4 . Lanes 1–3: the ligase reaction mixture with 7.5 mM (NH 4 ) 2 SO 4 , 3.75 mM (NH 4 ) 2 SO 4 , and without (NH 4 ) 2 SO 4 , respectively; Lane 4: the negative control. ( F ) The ligation products of the phosphorylated linkers A–B and C–D joined by using T4 and E. coli DNA ligase (Takara). Lane 1∶1 µl of 1 µM oligo 15; Lanes 2 and 4: the ligation products of the phosphorylated linkers A–B joined by using T4 and E. coli DNA ligase, respectively; Lanes 3 and 5: the ligation products of the phosphorylated linkers C–D joined by using T4 and E. coli DNA ligase, respectively; Lanes 6 and 7: the ligation products of linkers A–B and C–D, respectively; Lanes 8 and 9: the negative controls of lanes 6 and 7, respectively. ( G ) The ligation products of linkers A–B and the phosphorylated linkers G–H. Lanes 1 and 2: the ligation products of linkers A–B and the ligation products of the phosphorylated linkers G–H plus the negative control of linkers A–B, respectively; Lane 3: the negative control of linkers G–H plus the negative control of linkers A–B. The band from the ligation products of the phosphorylated linkers G–H run a little more slowly than that of linkers A–B. The sequences of linkers G and H are similar to those of linkers A and B, respectively. But there is a 1-base deletion at the 5′ end of each of linkers G and H.

    Journal: PLoS ONE

    Article Title: Detection of Ligation Products of DNA Linkers with 5?-OH Ends by Denaturing PAGE Silver Stain

    doi: 10.1371/journal.pone.0039251

    Figure Lengend Snippet: 15% denaturing PAGE for the ligation products of linkers A–B, C–D and linkers G–H. PAGE (10×10×0.03 cm, A:B = 29∶1, 7 M urea, 0.5x TBE) was run in 0.5 x TBE, 25°C, 100 V for 3.5 hrs in ( A )–( F ), or 4.3 hrs in ( G ). The ligation products were indicated by the arrows. Lane M: DNA marker I (GeneRuler™ 50 bp DNA ladder, Fermentas). Lane M1: DNA marker I plus oligo 15. ( A ) The ligation products joined by using T4 DNA ligase from Fermentas. Lane 1: the ligation products of linkers C–D preincubated with T4 DNA ligase; Lane 2: the ligation products of linkers C–D without the preincubation; Lane 4: the ligation products of linkers A–B; Lanes 3 and 5: the negative controls. ( B ) The ligation products joined by using T4 DNA ligase from Takara. Lanes 1–3∶0.5, 1, and 2 µl of 1 µM oligo 15, respectively; Lanes 4 and 6: the ligation products of linkers A–B; Lane 8: the ligation products of linkers C–D. Lanes 5, 7, and 9: the negative controls. ( C ) The ligation products joined by using T4 DNA ligase from Promega. Lane 1∶1 µl of 1 µM oligo 15; Lanes 2 and 4: ligation products of linkers A–B, and C–D, respectively; Lanes 3 and 5: the negative controls. ( D ) The ligation products joined by using E. coli DNA ligase from Takara. Lanes 1 and 3: the ligation products of linkers A–B, and C–D, respectively; Lanes 2 and 4: the negative controls. ( E ) The ligation products of linkers A–B joined in T4 DNA ligase reaction mixture containing (NH 4 ) 2 SO 4 . Lanes 1–3: the ligase reaction mixture with 7.5 mM (NH 4 ) 2 SO 4 , 3.75 mM (NH 4 ) 2 SO 4 , and without (NH 4 ) 2 SO 4 , respectively; Lane 4: the negative control. ( F ) The ligation products of the phosphorylated linkers A–B and C–D joined by using T4 and E. coli DNA ligase (Takara). Lane 1∶1 µl of 1 µM oligo 15; Lanes 2 and 4: the ligation products of the phosphorylated linkers A–B joined by using T4 and E. coli DNA ligase, respectively; Lanes 3 and 5: the ligation products of the phosphorylated linkers C–D joined by using T4 and E. coli DNA ligase, respectively; Lanes 6 and 7: the ligation products of linkers A–B and C–D, respectively; Lanes 8 and 9: the negative controls of lanes 6 and 7, respectively. ( G ) The ligation products of linkers A–B and the phosphorylated linkers G–H. Lanes 1 and 2: the ligation products of linkers A–B and the ligation products of the phosphorylated linkers G–H plus the negative control of linkers A–B, respectively; Lane 3: the negative control of linkers G–H plus the negative control of linkers A–B. The band from the ligation products of the phosphorylated linkers G–H run a little more slowly than that of linkers A–B. The sequences of linkers G and H are similar to those of linkers A and B, respectively. But there is a 1-base deletion at the 5′ end of each of linkers G and H.

    Article Snippet: A quality inspection report of T4 DNA ligase from Fermentas showed that T4 PNK could not be detected in their T4 DNA ligase ( ); (iii) PNK could not be detected in T4 DNA ligase (Fermentas) by using mass spectrometry (MS) analysis ( and ); (iv) PNK is abundant in mammalian cells but absent in E. coli cells .

    Techniques: Polyacrylamide Gel Electrophoresis, Ligation, Marker, Negative Control

    12% denaturing PAGE for the ligation products of linkers A–B treated with CIAP. PAGE (10×10×0.03 cm, A:B = 19∶1, 7 M urea and 0.5 x TBE) was run in 0.5 x TBE, 25°C, 200 V for 1.7 hrs. The arrows indicate the ligation products. Lane M: DNA marker I (GeneRuler™ 50 bp DNA ladder, Fermentas); Lane M1: DNA marker I +1 µl of 1 µM oligo 15. The ligases used in ( A )–( C ) were T4 DNA ligases. The ligases used in ( D )–( E ) were E. coli DNA ligases. ( A ) CIAP was inactivated at 75°C for 15 min. Lanes 1 and 5∶1 µl of 1 µM oligo 15; Lanes 2: CIAP was inactivated at 75°C for 15 min; Lane 3: the positive control without CIAP treatment; Lane 4: the negative control without ligase. ( B ) CIAP was inactivated at 85°C for 25 min and 45 min. Lanes 1 and 3: the positive controls without CIAP treatment; Lanes 2 and 4: CIAP was inactivated at 85°C for 25 min and 45 min, respectively; Lane 5: the negative control without ligase. ( C ) CIAP was inactivated at 85°C for 65 min and 90 min. Lanes 1 and 3: the positive controls without CIAP treatment; Lanes 2 and 4: CIAP was inactivated at 85°C for 65 min and 90 min, respectively; Lane 5: the negative control without ligase. ( D ) CIAP was inactivated at 85°C for 45 min. Lanes 1 and 3: the positive control without CIAP treatment and the negative control without ligase, respectively; Lane 2: CIAP was inactivated at 85°C for 45 min. ( E ) CIAP was inactivated at 85°C for 65 and 90 min. Lanes 1 and 3: the positive controls without CIAP treatment; Lanes 2 and 4: CIAP was inactivated at 85°C for 65 and 90 min, respectively; Lane 5: the negative control without ligase.

    Journal: PLoS ONE

    Article Title: Detection of Ligation Products of DNA Linkers with 5?-OH Ends by Denaturing PAGE Silver Stain

    doi: 10.1371/journal.pone.0039251

    Figure Lengend Snippet: 12% denaturing PAGE for the ligation products of linkers A–B treated with CIAP. PAGE (10×10×0.03 cm, A:B = 19∶1, 7 M urea and 0.5 x TBE) was run in 0.5 x TBE, 25°C, 200 V for 1.7 hrs. The arrows indicate the ligation products. Lane M: DNA marker I (GeneRuler™ 50 bp DNA ladder, Fermentas); Lane M1: DNA marker I +1 µl of 1 µM oligo 15. The ligases used in ( A )–( C ) were T4 DNA ligases. The ligases used in ( D )–( E ) were E. coli DNA ligases. ( A ) CIAP was inactivated at 75°C for 15 min. Lanes 1 and 5∶1 µl of 1 µM oligo 15; Lanes 2: CIAP was inactivated at 75°C for 15 min; Lane 3: the positive control without CIAP treatment; Lane 4: the negative control without ligase. ( B ) CIAP was inactivated at 85°C for 25 min and 45 min. Lanes 1 and 3: the positive controls without CIAP treatment; Lanes 2 and 4: CIAP was inactivated at 85°C for 25 min and 45 min, respectively; Lane 5: the negative control without ligase. ( C ) CIAP was inactivated at 85°C for 65 min and 90 min. Lanes 1 and 3: the positive controls without CIAP treatment; Lanes 2 and 4: CIAP was inactivated at 85°C for 65 min and 90 min, respectively; Lane 5: the negative control without ligase. ( D ) CIAP was inactivated at 85°C for 45 min. Lanes 1 and 3: the positive control without CIAP treatment and the negative control without ligase, respectively; Lane 2: CIAP was inactivated at 85°C for 45 min. ( E ) CIAP was inactivated at 85°C for 65 and 90 min. Lanes 1 and 3: the positive controls without CIAP treatment; Lanes 2 and 4: CIAP was inactivated at 85°C for 65 and 90 min, respectively; Lane 5: the negative control without ligase.

    Article Snippet: A quality inspection report of T4 DNA ligase from Fermentas showed that T4 PNK could not be detected in their T4 DNA ligase ( ); (iii) PNK could not be detected in T4 DNA ligase (Fermentas) by using mass spectrometry (MS) analysis ( and ); (iv) PNK is abundant in mammalian cells but absent in E. coli cells .

    Techniques: Polyacrylamide Gel Electrophoresis, Ligation, Marker, Positive Control, Negative Control

    12% denaturing PAGE for the ligation products of linkers A–B, C–D, and E–F. PAGE (10×10×0.03 cm, A:B = 19∶1, 7 M urea and 0.5 x TBE) was run in 0.5 x TBE, 25°C, 200 V for 1.7 hrs for the ligation products of linkers A–B and C–D, or 100 V for 3.5 hrs for those of linkers E–F. The arrows indicate the ligation products. Lane M: DNA marker I (GeneRuler™ 50 bp DNA ladder, Fermentas); Lane M1: DNA marker I +1 µl of 1 µM oligo 15; Lane M2: pUC19 DNA/MspI Marker (Fermentas). ( A ) The ligation products joined by using T4 DNA ligase from Takara and Fermentas. Lane 1∶1 µl of 1 µM oligo 15; Lanes 2 and 6: the ligation products of linkers A–B joined by using T4 DNA ligase from Takara and Fermentas, respectively. We could see 5 bands. Of them, bands 1 and 2 were from oligos 4 and 1, respectively. Band 3 was from both oligos 2 and 3. Band 4 was unknown. Perhaps it might be the intermixtures of oligos 1–4. Band 5 was the denatured ligation products of linkers A–B; Lanes 4 and 8: the ligation products of linkers C–D joined by using T4 DNA ligase from Takara and Fermentas, respectively. We could see 4 bands. Of them, bands 6 and 7 were from both oligos 6 and 7, and both oligos 5 and 8, respectively. Band 8 was the denatured ligation products of linkers C–D. Band 9 was unknown. Perhaps it might be the intermixtures of oligos 5–8 and the double-strand ligation products of linkers C–D; Lanes 3, 5, 7, and 9: the negative controls. ( B ) The ligation products of linkers A–B and C–D joined by using T4 DNA ligase from Promega and the ligation products of linkers A–B joined in the ligase reaction mixture containing (NH 4 ) 2 SO 4 . Lane 1∶1 µl of 1 µM oligo 15; Lanes 2 and 4: the denatured ligation products of linkers A–B, and C–D, respectively. T4 DNA ligase was from Promega; Lanes 6 and 7: the ligation products of linkers A–B joined in the ligase reaction mixture without (NH 4 ) 2 SO 4 and with (NH 4 ) 2 SO 4 , respectively. T4 DNA ligase used was from Takara; Lanes 3, 5, and 8: the negative controls. ( C ) The ligation products of linkers A–B and C–D joined by using E. coli DNA ligase. Lane 1∶1 µl of 1 µM oligo 15; Lanes 2 and 4: the ligation products of linkers A–B, and C–D, respectively; Lanes 3 and 5: the negative controls. ( D ) The ligation products of linkers E–F joined in the ligase reaction mixture with (NH 4 ) 2 SO 4 . The ligase was T4 DNA ligase (Fermentas). Lane 1: pUC19 DNA/MspI Marker plus 2 µl of ligation products of linkers E–F; Lanes 2 and 3: the ligation products of linkers E–F joined in the ligase reaction mixtures with (NH 4 ) 2 SO 4 , and without (NH 4 ) 2 SO 4 , respectively. We could see 3 bands. Bands 10 and 11 are from both oligos 9 and 12, and both oligos 10 and 11, respectively; Band 12 is the ligation products of linkers E–F; Lane 4: the negative control. ( E ) The ligation products of linkers E–F joined by using E. coli DNA ligase. Lane 1: the ligation products of linkers E–F. Lane 2: the negative control. ( F ) The ligation products of linkers A–B preincubated with T4 PNK in the E. coli DNA ligase reaction mixture without ATP. The ligase was E. coli DNA ligase (Takara). Lane 1∶1 µl of 1 µM oligo 15; Lane 2: linkers A–B were not preincubated with T4 PNK; Lane 3: linkers A–B were preincubated with T4 PNK; Lane 4: the negative control.

    Journal: PLoS ONE

    Article Title: Detection of Ligation Products of DNA Linkers with 5?-OH Ends by Denaturing PAGE Silver Stain

    doi: 10.1371/journal.pone.0039251

    Figure Lengend Snippet: 12% denaturing PAGE for the ligation products of linkers A–B, C–D, and E–F. PAGE (10×10×0.03 cm, A:B = 19∶1, 7 M urea and 0.5 x TBE) was run in 0.5 x TBE, 25°C, 200 V for 1.7 hrs for the ligation products of linkers A–B and C–D, or 100 V for 3.5 hrs for those of linkers E–F. The arrows indicate the ligation products. Lane M: DNA marker I (GeneRuler™ 50 bp DNA ladder, Fermentas); Lane M1: DNA marker I +1 µl of 1 µM oligo 15; Lane M2: pUC19 DNA/MspI Marker (Fermentas). ( A ) The ligation products joined by using T4 DNA ligase from Takara and Fermentas. Lane 1∶1 µl of 1 µM oligo 15; Lanes 2 and 6: the ligation products of linkers A–B joined by using T4 DNA ligase from Takara and Fermentas, respectively. We could see 5 bands. Of them, bands 1 and 2 were from oligos 4 and 1, respectively. Band 3 was from both oligos 2 and 3. Band 4 was unknown. Perhaps it might be the intermixtures of oligos 1–4. Band 5 was the denatured ligation products of linkers A–B; Lanes 4 and 8: the ligation products of linkers C–D joined by using T4 DNA ligase from Takara and Fermentas, respectively. We could see 4 bands. Of them, bands 6 and 7 were from both oligos 6 and 7, and both oligos 5 and 8, respectively. Band 8 was the denatured ligation products of linkers C–D. Band 9 was unknown. Perhaps it might be the intermixtures of oligos 5–8 and the double-strand ligation products of linkers C–D; Lanes 3, 5, 7, and 9: the negative controls. ( B ) The ligation products of linkers A–B and C–D joined by using T4 DNA ligase from Promega and the ligation products of linkers A–B joined in the ligase reaction mixture containing (NH 4 ) 2 SO 4 . Lane 1∶1 µl of 1 µM oligo 15; Lanes 2 and 4: the denatured ligation products of linkers A–B, and C–D, respectively. T4 DNA ligase was from Promega; Lanes 6 and 7: the ligation products of linkers A–B joined in the ligase reaction mixture without (NH 4 ) 2 SO 4 and with (NH 4 ) 2 SO 4 , respectively. T4 DNA ligase used was from Takara; Lanes 3, 5, and 8: the negative controls. ( C ) The ligation products of linkers A–B and C–D joined by using E. coli DNA ligase. Lane 1∶1 µl of 1 µM oligo 15; Lanes 2 and 4: the ligation products of linkers A–B, and C–D, respectively; Lanes 3 and 5: the negative controls. ( D ) The ligation products of linkers E–F joined in the ligase reaction mixture with (NH 4 ) 2 SO 4 . The ligase was T4 DNA ligase (Fermentas). Lane 1: pUC19 DNA/MspI Marker plus 2 µl of ligation products of linkers E–F; Lanes 2 and 3: the ligation products of linkers E–F joined in the ligase reaction mixtures with (NH 4 ) 2 SO 4 , and without (NH 4 ) 2 SO 4 , respectively. We could see 3 bands. Bands 10 and 11 are from both oligos 9 and 12, and both oligos 10 and 11, respectively; Band 12 is the ligation products of linkers E–F; Lane 4: the negative control. ( E ) The ligation products of linkers E–F joined by using E. coli DNA ligase. Lane 1: the ligation products of linkers E–F. Lane 2: the negative control. ( F ) The ligation products of linkers A–B preincubated with T4 PNK in the E. coli DNA ligase reaction mixture without ATP. The ligase was E. coli DNA ligase (Takara). Lane 1∶1 µl of 1 µM oligo 15; Lane 2: linkers A–B were not preincubated with T4 PNK; Lane 3: linkers A–B were preincubated with T4 PNK; Lane 4: the negative control.

    Article Snippet: A quality inspection report of T4 DNA ligase from Fermentas showed that T4 PNK could not be detected in their T4 DNA ligase ( ); (iii) PNK could not be detected in T4 DNA ligase (Fermentas) by using mass spectrometry (MS) analysis ( and ); (iv) PNK is abundant in mammalian cells but absent in E. coli cells .

    Techniques: Polyacrylamide Gel Electrophoresis, Ligation, Marker, Negative Control

    The radioautograph of oligo 11 phosphorylated by T4 DNA ligase. The oligo 11 was phosphorylated by using commercial T4 DNA ligase. The phosphorylation products were loaded on a 15% denaturing PAGE gel (10×10×0.03 cm, A:B = 29∶1, 7 M urea, 0.5 x TBE). Electrophoresis was run in 0.5 x TBE at 100 V and 25°C for 3 hrs. The gel was dried between two semipermeable cellulose acetate membranes and radioautographed at −20°C for 1–3 days. The arrows indicate the phosphorylation products. The positive controls were oligo 11 phosphorylated by T4 PNK. ( A ) Oligo 11 was phosphorylated by T4 DNA ligase at 37°C for 2 hrs. Lanes 1 and 5: the positive controls; Lanes 2 and 4: the negative controls without ligase, and without oligo 11, respectively; Lane 3: the phosphorylation products of oligo 11 by T4 DNA ligase. ( B ) Oligo 11 treated with CIAP was phosphorylated by T4 DNA ligase at 37°C for 2 hrs. Lanes 1 and 5: the positive controls; Lane 2: the phosphorylation products of oligo 11 by T4 DNA ligase; Lanes 3 and 4: the negative controls without ligase, and without oligo 11, respectively; Lanes 6, 7, and 8: oligo 11 treated with CIAP was phosphorylated by T4 DNA ligase. CIAP was inactivated at 85°C for 15 min, 30 min, and 60 min, respectively. Lanes 9 and 10: the negative controls without ligase, and without oligo 11, respectively. ( C ) Oligo 11 treated with CIAP was phosphorylated by T4 DNA ligase at 37°C for 2 hrs. Lanes 1 and 5: the positive controls; Lane 2: the phosphorylation products of oligo 11 by T4 DNA ligase; Lanes 3 and 4: the negative controls without ligase, and without oligo 11, respectively; Lanes 6, 7, and 8: oligo 11 treated with CIAP was phosphorylated by T4 DNA ligase. CIAP was inactivated at 85°C for 60 min, 15 min, and 30 min, respectively. ( D ) Oligos 11 and 12 were phosphorylated by T4 DNA ligase at 37°C for 1 hr. Lane 1: oligos 11 and 12 were phosphorylated by T4 PNK; Lane 2: oligos 11 and 12 were phosphorylated by T4 DNA ligase; Lane 3: oligo 11 were phosphorylated by T4 DNA ligase; Lane 4: the negative control without ligase. ( E ) Oligo 11 was phosphorylated by T4 DNA ligase at 37°C for 2 hrs. 1 x TE and 10% SDS were not added to the phosphorylation products before phenol/chloroform extraction. Lane 1: the positive control; Lanes 2 and 3: the phosphorylation products of oligo 11 by T4 DNA ligase and the negative controls without ligase, respectively.

    Journal: PLoS ONE

    Article Title: Detection of Ligation Products of DNA Linkers with 5?-OH Ends by Denaturing PAGE Silver Stain

    doi: 10.1371/journal.pone.0039251

    Figure Lengend Snippet: The radioautograph of oligo 11 phosphorylated by T4 DNA ligase. The oligo 11 was phosphorylated by using commercial T4 DNA ligase. The phosphorylation products were loaded on a 15% denaturing PAGE gel (10×10×0.03 cm, A:B = 29∶1, 7 M urea, 0.5 x TBE). Electrophoresis was run in 0.5 x TBE at 100 V and 25°C for 3 hrs. The gel was dried between two semipermeable cellulose acetate membranes and radioautographed at −20°C for 1–3 days. The arrows indicate the phosphorylation products. The positive controls were oligo 11 phosphorylated by T4 PNK. ( A ) Oligo 11 was phosphorylated by T4 DNA ligase at 37°C for 2 hrs. Lanes 1 and 5: the positive controls; Lanes 2 and 4: the negative controls without ligase, and without oligo 11, respectively; Lane 3: the phosphorylation products of oligo 11 by T4 DNA ligase. ( B ) Oligo 11 treated with CIAP was phosphorylated by T4 DNA ligase at 37°C for 2 hrs. Lanes 1 and 5: the positive controls; Lane 2: the phosphorylation products of oligo 11 by T4 DNA ligase; Lanes 3 and 4: the negative controls without ligase, and without oligo 11, respectively; Lanes 6, 7, and 8: oligo 11 treated with CIAP was phosphorylated by T4 DNA ligase. CIAP was inactivated at 85°C for 15 min, 30 min, and 60 min, respectively. Lanes 9 and 10: the negative controls without ligase, and without oligo 11, respectively. ( C ) Oligo 11 treated with CIAP was phosphorylated by T4 DNA ligase at 37°C for 2 hrs. Lanes 1 and 5: the positive controls; Lane 2: the phosphorylation products of oligo 11 by T4 DNA ligase; Lanes 3 and 4: the negative controls without ligase, and without oligo 11, respectively; Lanes 6, 7, and 8: oligo 11 treated with CIAP was phosphorylated by T4 DNA ligase. CIAP was inactivated at 85°C for 60 min, 15 min, and 30 min, respectively. ( D ) Oligos 11 and 12 were phosphorylated by T4 DNA ligase at 37°C for 1 hr. Lane 1: oligos 11 and 12 were phosphorylated by T4 PNK; Lane 2: oligos 11 and 12 were phosphorylated by T4 DNA ligase; Lane 3: oligo 11 were phosphorylated by T4 DNA ligase; Lane 4: the negative control without ligase. ( E ) Oligo 11 was phosphorylated by T4 DNA ligase at 37°C for 2 hrs. 1 x TE and 10% SDS were not added to the phosphorylation products before phenol/chloroform extraction. Lane 1: the positive control; Lanes 2 and 3: the phosphorylation products of oligo 11 by T4 DNA ligase and the negative controls without ligase, respectively.

    Article Snippet: A quality inspection report of T4 DNA ligase from Fermentas showed that T4 PNK could not be detected in their T4 DNA ligase ( ); (iii) PNK could not be detected in T4 DNA ligase (Fermentas) by using mass spectrometry (MS) analysis ( and ); (iv) PNK is abundant in mammalian cells but absent in E. coli cells .

    Techniques: Polyacrylamide Gel Electrophoresis, Electrophoresis, Negative Control, Positive Control

    Enzymatic ligation of T. cruzi cap‐4 spliced leader RNA using T4 DNA ligase. A) RNA sequences and sequence of the 20‐nt DNA splint; B) HPLC analysis of a typical ligation reaction after 3 h reaction time; reaction conditions: 10 μ m RNA 10 , 12.5 μ m RNA 11 , 12.5 μ m splint; 0.5 m m ATP, 40 m m Tris ⋅ HCl (pH 7.8), 10 m m MgCl 2 , 10 m m DTT, 5 % ( w / v ) PEG 4000, 0.5 U μL −1 T4 DNA ligase; C) LC–ESI mass spectrum of the purified 39‐nt cap‐4 RNA ligation product.

    Journal: Chembiochem

    Article Title: Practical Synthesis of Cap‐4 RNA

    doi: 10.1002/cbic.201900590

    Figure Lengend Snippet: Enzymatic ligation of T. cruzi cap‐4 spliced leader RNA using T4 DNA ligase. A) RNA sequences and sequence of the 20‐nt DNA splint; B) HPLC analysis of a typical ligation reaction after 3 h reaction time; reaction conditions: 10 μ m RNA 10 , 12.5 μ m RNA 11 , 12.5 μ m splint; 0.5 m m ATP, 40 m m Tris ⋅ HCl (pH 7.8), 10 m m MgCl 2 , 10 m m DTT, 5 % ( w / v ) PEG 4000, 0.5 U μL −1 T4 DNA ligase; C) LC–ESI mass spectrum of the purified 39‐nt cap‐4 RNA ligation product.

    Article Snippet: The 38‐nt T. cruzi cap‐4 RNA was prepared by splinted enzymatic ligation of an 11‐nt cap‐4 RNA and a chemically synthesized 5′‐phosphorylated 27‐nt RNA by using T4 DNA ligase (Thermo Fisher) in analogy to ref. .

    Techniques: Ligation, Sequencing, High Performance Liquid Chromatography, Purification

    In vitro BER assay with purified wtP53, Δ40p53 and Δ133p53 fusion proteins showing that Δ40p53 and Δ133p53 cannot induce mtBER but can attenuate mtBER activity induced by wtp53 . (A) wtP53, Δ40p53 and Δ133p53 His fusion proteins were stained with Coomassie blue (upper panel) and identified by Western blotting with anti-P53 antibodies (lower panel). (B) Purified p53, Δ40p53 and Δ133p53 protein (100, 500 and 1000 ng, lanes 3-9) or d4T (10, 50 and 300 nM, lanes 11-14) were added to BER reaction mixtures containing both whole-mitochondrial extracts obtained from H1299 cells and T4 DNA ligase. The templates were treated with T4 DNA ligase and Klenow fragment was used as a positive control (lane 15).

    Journal: Aging and Disease

    Article Title: The Δ133p53 Isoform Reduces Wtp53-induced Stimulation of DNA Pol γ Activity in the Presence and Absence of D4T

    doi: 10.14336/AD.2016.0910

    Figure Lengend Snippet: In vitro BER assay with purified wtP53, Δ40p53 and Δ133p53 fusion proteins showing that Δ40p53 and Δ133p53 cannot induce mtBER but can attenuate mtBER activity induced by wtp53 . (A) wtP53, Δ40p53 and Δ133p53 His fusion proteins were stained with Coomassie blue (upper panel) and identified by Western blotting with anti-P53 antibodies (lower panel). (B) Purified p53, Δ40p53 and Δ133p53 protein (100, 500 and 1000 ng, lanes 3-9) or d4T (10, 50 and 300 nM, lanes 11-14) were added to BER reaction mixtures containing both whole-mitochondrial extracts obtained from H1299 cells and T4 DNA ligase. The templates were treated with T4 DNA ligase and Klenow fragment was used as a positive control (lane 15).

    Article Snippet: Klenow fragment and T4 DNA ligase were obtained from Invitrogen.

    Techniques: In Vitro, Purification, Activity Assay, Staining, Western Blot, Positive Control