rabbit rb antibodies against glun2b  (Alomone Labs)


Bioz Verified Symbol Alomone Labs is a verified supplier
Bioz Manufacturer Symbol Alomone Labs manufactures this product  
  • Logo
  • About
  • News
  • Press Release
  • Team
  • Advisors
  • Partners
  • Contact
  • Bioz Stars
  • Bioz vStars
  • 95

    Structured Review

    Alomone Labs rabbit rb antibodies against glun2b
    ECM digestion increases <t>p1472-GluN2B</t> level and decreases the endocytosis of GluN2B. ( A )Dissociated hippocampal cultures at DIV21-24 were treated with Hya over night and endocytosed GluN2B (green) was quantified using Map2 staining as mask (red). ( B ) There is less endocytosis of GluN2B after ECM removal within 30 minutes (Ctl 1.00 ± 0.02, n = 79; Hya 0.9 ± 0.02, n = 80; average ± SEM, Unpaired t-test, **P = 0.0015. Scale bar: 5 µm). ( C ) Quantitative WB from lysates of acute hippocampal slices treated with Ctl or Hya probed with an antibody against pGluN2B pTyr1472 (AP2 binding site) and GluN2B. ( D ) Quantification of WB of acute hippocampal slices and cortical cultures (DIV 21–24) revealed that the amount of phosphorylated GluN2B, normalized to the total amount of GluN2B, is increased after Hya treatment (overnight for cultures, 3 h for slices; slices: Ctl 1.00 ± 0.06, n = 4; Hya 1.23 ± 0.09, n = 4; cultures: Ctl 1.00 ± 0.05, n = 9; Hya 1.26 ± 0.1, n = 9; Unpaired t-test, cultures: P = 0.0332, slices P = 0.0837, ***P
    Rabbit Rb Antibodies Against Glun2b, supplied by Alomone Labs, used in various techniques. Bioz Stars score: 95/100, based on 1 PubMed citations. ZERO BIAS - scores, article reviews, protocol conditions and more
    https://www.bioz.com/result/rabbit rb antibodies against glun2b/product/Alomone Labs
    Average 95 stars, based on 1 article reviews
    Price from $9.99 to $1999.99
    rabbit rb antibodies against glun2b - by Bioz Stars, 2022-08
    95/100 stars

    Images

    1) Product Images from "Hyaluronic acid based extracellular matrix regulates surface expression of GluN2B containing NMDA receptors"

    Article Title: Hyaluronic acid based extracellular matrix regulates surface expression of GluN2B containing NMDA receptors

    Journal: Scientific Reports

    doi: 10.1038/s41598-017-07003-3

    ECM digestion increases p1472-GluN2B level and decreases the endocytosis of GluN2B. ( A )Dissociated hippocampal cultures at DIV21-24 were treated with Hya over night and endocytosed GluN2B (green) was quantified using Map2 staining as mask (red). ( B ) There is less endocytosis of GluN2B after ECM removal within 30 minutes (Ctl 1.00 ± 0.02, n = 79; Hya 0.9 ± 0.02, n = 80; average ± SEM, Unpaired t-test, **P = 0.0015. Scale bar: 5 µm). ( C ) Quantitative WB from lysates of acute hippocampal slices treated with Ctl or Hya probed with an antibody against pGluN2B pTyr1472 (AP2 binding site) and GluN2B. ( D ) Quantification of WB of acute hippocampal slices and cortical cultures (DIV 21–24) revealed that the amount of phosphorylated GluN2B, normalized to the total amount of GluN2B, is increased after Hya treatment (overnight for cultures, 3 h for slices; slices: Ctl 1.00 ± 0.06, n = 4; Hya 1.23 ± 0.09, n = 4; cultures: Ctl 1.00 ± 0.05, n = 9; Hya 1.26 ± 0.1, n = 9; Unpaired t-test, cultures: P = 0.0332, slices P = 0.0837, ***P
    Figure Legend Snippet: ECM digestion increases p1472-GluN2B level and decreases the endocytosis of GluN2B. ( A )Dissociated hippocampal cultures at DIV21-24 were treated with Hya over night and endocytosed GluN2B (green) was quantified using Map2 staining as mask (red). ( B ) There is less endocytosis of GluN2B after ECM removal within 30 minutes (Ctl 1.00 ± 0.02, n = 79; Hya 0.9 ± 0.02, n = 80; average ± SEM, Unpaired t-test, **P = 0.0015. Scale bar: 5 µm). ( C ) Quantitative WB from lysates of acute hippocampal slices treated with Ctl or Hya probed with an antibody against pGluN2B pTyr1472 (AP2 binding site) and GluN2B. ( D ) Quantification of WB of acute hippocampal slices and cortical cultures (DIV 21–24) revealed that the amount of phosphorylated GluN2B, normalized to the total amount of GluN2B, is increased after Hya treatment (overnight for cultures, 3 h for slices; slices: Ctl 1.00 ± 0.06, n = 4; Hya 1.23 ± 0.09, n = 4; cultures: Ctl 1.00 ± 0.05, n = 9; Hya 1.26 ± 0.1, n = 9; Unpaired t-test, cultures: P = 0.0332, slices P = 0.0837, ***P

    Techniques Used: Staining, CTL Assay, Western Blot, Binding Assay

    ECM removal enhances GluN2B-NMDAR mediated synaptic currents. ( A ) Example traces of NMDAR - mediated sEPCSs before and after Hya treatment in dissociated hippocampal cultures DIV21-24. ( B ) Amplitudes of single peaks show no significant differences between Hya treated or Hya plus Ifenprodil treated cultures (Ctl, −905.5 ± 179.4, n = 10; Hya, −776.2 ± 174.8, n = 10; Hya + Ifen, −758.2 ± 161.7, n = 11; average ± SEM; One-way ANOVA, P = 0.7991). ( C ) Average of single peaks before and after Hya treatment and after Ifenprodil application. Normalization of the amplitude illustrates the increased decay-time after Hya treatment (red line) in comparison to Ctl (black line). This can be restored after Ifenprodil application (green line). Ctl traces are identical. ( D ) Quantification of the area under the curve (AUC) of averaged and normalized events (left), which represent the total charge transfer revealed bigger charge transfer after ECM removal, which was reduced to control levels after blocking GluN2B-NMDAR with Ifen (Ctl, 1 ± 0.02, n = 10; Hya, 1.38 ± 0.09, n = 10; Hya + Ifenprodil, 0.98 ± 0.05, n = 11; average ± SEM; One-way ANOVA, P
    Figure Legend Snippet: ECM removal enhances GluN2B-NMDAR mediated synaptic currents. ( A ) Example traces of NMDAR - mediated sEPCSs before and after Hya treatment in dissociated hippocampal cultures DIV21-24. ( B ) Amplitudes of single peaks show no significant differences between Hya treated or Hya plus Ifenprodil treated cultures (Ctl, −905.5 ± 179.4, n = 10; Hya, −776.2 ± 174.8, n = 10; Hya + Ifen, −758.2 ± 161.7, n = 11; average ± SEM; One-way ANOVA, P = 0.7991). ( C ) Average of single peaks before and after Hya treatment and after Ifenprodil application. Normalization of the amplitude illustrates the increased decay-time after Hya treatment (red line) in comparison to Ctl (black line). This can be restored after Ifenprodil application (green line). Ctl traces are identical. ( D ) Quantification of the area under the curve (AUC) of averaged and normalized events (left), which represent the total charge transfer revealed bigger charge transfer after ECM removal, which was reduced to control levels after blocking GluN2B-NMDAR with Ifen (Ctl, 1 ± 0.02, n = 10; Hya, 1.38 ± 0.09, n = 10; Hya + Ifenprodil, 0.98 ± 0.05, n = 11; average ± SEM; One-way ANOVA, P

    Techniques Used: CTL Assay, Blocking Assay

    ECM removal leads to increased surface expression of GluN2B in a β1 - integrin dependent manner. ( A ) Dissociated hippocampal cultures were treated with Hya over night and stained against the total amount of GluN2B and the dendritic marker Map2 (scale bar: 10 μm. ( B ) Total GluN2B expression is not affected by ECM removal (Dendrites: Ctl 1 ± 0.10, n = 30; Hya 0.89 ± 0.03, n = 30, P = 0.31; Synapses: Ctl: 1 ± 0.03, n = 30; Hya: 1.05 ± 0.03, n = 30, P = 0.27; average ± SEM; unpaired t-test). ( C ) Quantitative WB of lysed cortical cultures (DIV21) pretreated with Hya over night show no significant change in GluN2B immunoreactivity. ( D ) Dissociated hippocampal cultures at DIV21-24 were treated with Hya over night and stained against surface GluN2B (green) and the synaptic marker PSD-95 (scale bar: 10 μm). ( E ) Synaptic GluN2B surface expression at various time points after Hya treatment (Ctl: 1 ± 0.04, n = 24; Hya 1,5 h: 1.08 ± 0.04, n = 22, P = 0.76; Hya 3 h: 1.40 ± 0.09, n = 30, P = 0.0001; Hya 6 h: 1.41 ± 0.13, n = 9, P = 0.002; Hya 12 h: 1.35 ± 0.08, n = 8, P = 0.01; Hya 48 h: 1.18 ± 0.05, n = 8, P = 0.04 average ± SEM; One way-ANOVA, Dunnett’s Multiple Comparison Test). ( F,G ) GluN2B surface expression at synapses and dendrites increases after ECM degradation and can be restored by simultaneous application of the β1-integrin function blocking antibody CD29. ( F ) Synapses: Ctl: 1.0 ± 0.05, n = 68; Hya: 1.3 ± 0.05, n = 70; Hya + CD29: 0.93 ± 0.03, n = 51. ( G ) Dendrites: Ctl 1.00 ± 0.04, n = 36; Hya 1.78 ± 0.11, n = 35; Hya + CD29 0.96 ± 0.03, n = 34; average ± SEM; One-way ANOVA, P
    Figure Legend Snippet: ECM removal leads to increased surface expression of GluN2B in a β1 - integrin dependent manner. ( A ) Dissociated hippocampal cultures were treated with Hya over night and stained against the total amount of GluN2B and the dendritic marker Map2 (scale bar: 10 μm. ( B ) Total GluN2B expression is not affected by ECM removal (Dendrites: Ctl 1 ± 0.10, n = 30; Hya 0.89 ± 0.03, n = 30, P = 0.31; Synapses: Ctl: 1 ± 0.03, n = 30; Hya: 1.05 ± 0.03, n = 30, P = 0.27; average ± SEM; unpaired t-test). ( C ) Quantitative WB of lysed cortical cultures (DIV21) pretreated with Hya over night show no significant change in GluN2B immunoreactivity. ( D ) Dissociated hippocampal cultures at DIV21-24 were treated with Hya over night and stained against surface GluN2B (green) and the synaptic marker PSD-95 (scale bar: 10 μm). ( E ) Synaptic GluN2B surface expression at various time points after Hya treatment (Ctl: 1 ± 0.04, n = 24; Hya 1,5 h: 1.08 ± 0.04, n = 22, P = 0.76; Hya 3 h: 1.40 ± 0.09, n = 30, P = 0.0001; Hya 6 h: 1.41 ± 0.13, n = 9, P = 0.002; Hya 12 h: 1.35 ± 0.08, n = 8, P = 0.01; Hya 48 h: 1.18 ± 0.05, n = 8, P = 0.04 average ± SEM; One way-ANOVA, Dunnett’s Multiple Comparison Test). ( F,G ) GluN2B surface expression at synapses and dendrites increases after ECM degradation and can be restored by simultaneous application of the β1-integrin function blocking antibody CD29. ( F ) Synapses: Ctl: 1.0 ± 0.05, n = 68; Hya: 1.3 ± 0.05, n = 70; Hya + CD29: 0.93 ± 0.03, n = 51. ( G ) Dendrites: Ctl 1.00 ± 0.04, n = 36; Hya 1.78 ± 0.11, n = 35; Hya + CD29 0.96 ± 0.03, n = 34; average ± SEM; One-way ANOVA, P

    Techniques Used: Expressing, Staining, Marker, CTL Assay, Western Blot, Blocking Assay

    Similar Products

  • Logo
  • About
  • News
  • Press Release
  • Team
  • Advisors
  • Partners
  • Contact
  • Bioz Stars
  • Bioz vStars
  • 95
    Alomone Labs rabbit rb antibodies against glun2b
    ECM digestion increases <t>p1472-GluN2B</t> level and decreases the endocytosis of GluN2B. ( A )Dissociated hippocampal cultures at DIV21-24 were treated with Hya over night and endocytosed GluN2B (green) was quantified using Map2 staining as mask (red). ( B ) There is less endocytosis of GluN2B after ECM removal within 30 minutes (Ctl 1.00 ± 0.02, n = 79; Hya 0.9 ± 0.02, n = 80; average ± SEM, Unpaired t-test, **P = 0.0015. Scale bar: 5 µm). ( C ) Quantitative WB from lysates of acute hippocampal slices treated with Ctl or Hya probed with an antibody against pGluN2B pTyr1472 (AP2 binding site) and GluN2B. ( D ) Quantification of WB of acute hippocampal slices and cortical cultures (DIV 21–24) revealed that the amount of phosphorylated GluN2B, normalized to the total amount of GluN2B, is increased after Hya treatment (overnight for cultures, 3 h for slices; slices: Ctl 1.00 ± 0.06, n = 4; Hya 1.23 ± 0.09, n = 4; cultures: Ctl 1.00 ± 0.05, n = 9; Hya 1.26 ± 0.1, n = 9; Unpaired t-test, cultures: P = 0.0332, slices P = 0.0837, ***P
    Rabbit Rb Antibodies Against Glun2b, supplied by Alomone Labs, used in various techniques. Bioz Stars score: 95/100, based on 1 PubMed citations. ZERO BIAS - scores, article reviews, protocol conditions and more
    https://www.bioz.com/result/rabbit rb antibodies against glun2b/product/Alomone Labs
    Average 95 stars, based on 1 article reviews
    Price from $9.99 to $1999.99
    rabbit rb antibodies against glun2b - by Bioz Stars, 2022-08
    95/100 stars
      Buy from Supplier

    Image Search Results


    ECM digestion increases p1472-GluN2B level and decreases the endocytosis of GluN2B. ( A )Dissociated hippocampal cultures at DIV21-24 were treated with Hya over night and endocytosed GluN2B (green) was quantified using Map2 staining as mask (red). ( B ) There is less endocytosis of GluN2B after ECM removal within 30 minutes (Ctl 1.00 ± 0.02, n = 79; Hya 0.9 ± 0.02, n = 80; average ± SEM, Unpaired t-test, **P = 0.0015. Scale bar: 5 µm). ( C ) Quantitative WB from lysates of acute hippocampal slices treated with Ctl or Hya probed with an antibody against pGluN2B pTyr1472 (AP2 binding site) and GluN2B. ( D ) Quantification of WB of acute hippocampal slices and cortical cultures (DIV 21–24) revealed that the amount of phosphorylated GluN2B, normalized to the total amount of GluN2B, is increased after Hya treatment (overnight for cultures, 3 h for slices; slices: Ctl 1.00 ± 0.06, n = 4; Hya 1.23 ± 0.09, n = 4; cultures: Ctl 1.00 ± 0.05, n = 9; Hya 1.26 ± 0.1, n = 9; Unpaired t-test, cultures: P = 0.0332, slices P = 0.0837, ***P

    Journal: Scientific Reports

    Article Title: Hyaluronic acid based extracellular matrix regulates surface expression of GluN2B containing NMDA receptors

    doi: 10.1038/s41598-017-07003-3

    Figure Lengend Snippet: ECM digestion increases p1472-GluN2B level and decreases the endocytosis of GluN2B. ( A )Dissociated hippocampal cultures at DIV21-24 were treated with Hya over night and endocytosed GluN2B (green) was quantified using Map2 staining as mask (red). ( B ) There is less endocytosis of GluN2B after ECM removal within 30 minutes (Ctl 1.00 ± 0.02, n = 79; Hya 0.9 ± 0.02, n = 80; average ± SEM, Unpaired t-test, **P = 0.0015. Scale bar: 5 µm). ( C ) Quantitative WB from lysates of acute hippocampal slices treated with Ctl or Hya probed with an antibody against pGluN2B pTyr1472 (AP2 binding site) and GluN2B. ( D ) Quantification of WB of acute hippocampal slices and cortical cultures (DIV 21–24) revealed that the amount of phosphorylated GluN2B, normalized to the total amount of GluN2B, is increased after Hya treatment (overnight for cultures, 3 h for slices; slices: Ctl 1.00 ± 0.06, n = 4; Hya 1.23 ± 0.09, n = 4; cultures: Ctl 1.00 ± 0.05, n = 9; Hya 1.26 ± 0.1, n = 9; Unpaired t-test, cultures: P = 0.0332, slices P = 0.0837, ***P

    Article Snippet: Antibodies and drugs The following commercial antibodies were used for Immunocytochemistry (ICC) and Western blot (WB) in the concentrations indicated: rabbit (rb) antibodies against GluN2B (alomone labs; ICC live staining: 1:200, fixed staining.

    Techniques: Staining, CTL Assay, Western Blot, Binding Assay

    ECM removal enhances GluN2B-NMDAR mediated synaptic currents. ( A ) Example traces of NMDAR - mediated sEPCSs before and after Hya treatment in dissociated hippocampal cultures DIV21-24. ( B ) Amplitudes of single peaks show no significant differences between Hya treated or Hya plus Ifenprodil treated cultures (Ctl, −905.5 ± 179.4, n = 10; Hya, −776.2 ± 174.8, n = 10; Hya + Ifen, −758.2 ± 161.7, n = 11; average ± SEM; One-way ANOVA, P = 0.7991). ( C ) Average of single peaks before and after Hya treatment and after Ifenprodil application. Normalization of the amplitude illustrates the increased decay-time after Hya treatment (red line) in comparison to Ctl (black line). This can be restored after Ifenprodil application (green line). Ctl traces are identical. ( D ) Quantification of the area under the curve (AUC) of averaged and normalized events (left), which represent the total charge transfer revealed bigger charge transfer after ECM removal, which was reduced to control levels after blocking GluN2B-NMDAR with Ifen (Ctl, 1 ± 0.02, n = 10; Hya, 1.38 ± 0.09, n = 10; Hya + Ifenprodil, 0.98 ± 0.05, n = 11; average ± SEM; One-way ANOVA, P

    Journal: Scientific Reports

    Article Title: Hyaluronic acid based extracellular matrix regulates surface expression of GluN2B containing NMDA receptors

    doi: 10.1038/s41598-017-07003-3

    Figure Lengend Snippet: ECM removal enhances GluN2B-NMDAR mediated synaptic currents. ( A ) Example traces of NMDAR - mediated sEPCSs before and after Hya treatment in dissociated hippocampal cultures DIV21-24. ( B ) Amplitudes of single peaks show no significant differences between Hya treated or Hya plus Ifenprodil treated cultures (Ctl, −905.5 ± 179.4, n = 10; Hya, −776.2 ± 174.8, n = 10; Hya + Ifen, −758.2 ± 161.7, n = 11; average ± SEM; One-way ANOVA, P = 0.7991). ( C ) Average of single peaks before and after Hya treatment and after Ifenprodil application. Normalization of the amplitude illustrates the increased decay-time after Hya treatment (red line) in comparison to Ctl (black line). This can be restored after Ifenprodil application (green line). Ctl traces are identical. ( D ) Quantification of the area under the curve (AUC) of averaged and normalized events (left), which represent the total charge transfer revealed bigger charge transfer after ECM removal, which was reduced to control levels after blocking GluN2B-NMDAR with Ifen (Ctl, 1 ± 0.02, n = 10; Hya, 1.38 ± 0.09, n = 10; Hya + Ifenprodil, 0.98 ± 0.05, n = 11; average ± SEM; One-way ANOVA, P

    Article Snippet: Antibodies and drugs The following commercial antibodies were used for Immunocytochemistry (ICC) and Western blot (WB) in the concentrations indicated: rabbit (rb) antibodies against GluN2B (alomone labs; ICC live staining: 1:200, fixed staining.

    Techniques: CTL Assay, Blocking Assay

    ECM removal leads to increased surface expression of GluN2B in a β1 - integrin dependent manner. ( A ) Dissociated hippocampal cultures were treated with Hya over night and stained against the total amount of GluN2B and the dendritic marker Map2 (scale bar: 10 μm. ( B ) Total GluN2B expression is not affected by ECM removal (Dendrites: Ctl 1 ± 0.10, n = 30; Hya 0.89 ± 0.03, n = 30, P = 0.31; Synapses: Ctl: 1 ± 0.03, n = 30; Hya: 1.05 ± 0.03, n = 30, P = 0.27; average ± SEM; unpaired t-test). ( C ) Quantitative WB of lysed cortical cultures (DIV21) pretreated with Hya over night show no significant change in GluN2B immunoreactivity. ( D ) Dissociated hippocampal cultures at DIV21-24 were treated with Hya over night and stained against surface GluN2B (green) and the synaptic marker PSD-95 (scale bar: 10 μm). ( E ) Synaptic GluN2B surface expression at various time points after Hya treatment (Ctl: 1 ± 0.04, n = 24; Hya 1,5 h: 1.08 ± 0.04, n = 22, P = 0.76; Hya 3 h: 1.40 ± 0.09, n = 30, P = 0.0001; Hya 6 h: 1.41 ± 0.13, n = 9, P = 0.002; Hya 12 h: 1.35 ± 0.08, n = 8, P = 0.01; Hya 48 h: 1.18 ± 0.05, n = 8, P = 0.04 average ± SEM; One way-ANOVA, Dunnett’s Multiple Comparison Test). ( F,G ) GluN2B surface expression at synapses and dendrites increases after ECM degradation and can be restored by simultaneous application of the β1-integrin function blocking antibody CD29. ( F ) Synapses: Ctl: 1.0 ± 0.05, n = 68; Hya: 1.3 ± 0.05, n = 70; Hya + CD29: 0.93 ± 0.03, n = 51. ( G ) Dendrites: Ctl 1.00 ± 0.04, n = 36; Hya 1.78 ± 0.11, n = 35; Hya + CD29 0.96 ± 0.03, n = 34; average ± SEM; One-way ANOVA, P

    Journal: Scientific Reports

    Article Title: Hyaluronic acid based extracellular matrix regulates surface expression of GluN2B containing NMDA receptors

    doi: 10.1038/s41598-017-07003-3

    Figure Lengend Snippet: ECM removal leads to increased surface expression of GluN2B in a β1 - integrin dependent manner. ( A ) Dissociated hippocampal cultures were treated with Hya over night and stained against the total amount of GluN2B and the dendritic marker Map2 (scale bar: 10 μm. ( B ) Total GluN2B expression is not affected by ECM removal (Dendrites: Ctl 1 ± 0.10, n = 30; Hya 0.89 ± 0.03, n = 30, P = 0.31; Synapses: Ctl: 1 ± 0.03, n = 30; Hya: 1.05 ± 0.03, n = 30, P = 0.27; average ± SEM; unpaired t-test). ( C ) Quantitative WB of lysed cortical cultures (DIV21) pretreated with Hya over night show no significant change in GluN2B immunoreactivity. ( D ) Dissociated hippocampal cultures at DIV21-24 were treated with Hya over night and stained against surface GluN2B (green) and the synaptic marker PSD-95 (scale bar: 10 μm). ( E ) Synaptic GluN2B surface expression at various time points after Hya treatment (Ctl: 1 ± 0.04, n = 24; Hya 1,5 h: 1.08 ± 0.04, n = 22, P = 0.76; Hya 3 h: 1.40 ± 0.09, n = 30, P = 0.0001; Hya 6 h: 1.41 ± 0.13, n = 9, P = 0.002; Hya 12 h: 1.35 ± 0.08, n = 8, P = 0.01; Hya 48 h: 1.18 ± 0.05, n = 8, P = 0.04 average ± SEM; One way-ANOVA, Dunnett’s Multiple Comparison Test). ( F,G ) GluN2B surface expression at synapses and dendrites increases after ECM degradation and can be restored by simultaneous application of the β1-integrin function blocking antibody CD29. ( F ) Synapses: Ctl: 1.0 ± 0.05, n = 68; Hya: 1.3 ± 0.05, n = 70; Hya + CD29: 0.93 ± 0.03, n = 51. ( G ) Dendrites: Ctl 1.00 ± 0.04, n = 36; Hya 1.78 ± 0.11, n = 35; Hya + CD29 0.96 ± 0.03, n = 34; average ± SEM; One-way ANOVA, P

    Article Snippet: Antibodies and drugs The following commercial antibodies were used for Immunocytochemistry (ICC) and Western blot (WB) in the concentrations indicated: rabbit (rb) antibodies against GluN2B (alomone labs; ICC live staining: 1:200, fixed staining.

    Techniques: Expressing, Staining, Marker, CTL Assay, Western Blot, Blocking Assay