rabbit polyclonal anti aqp5 antibody (Alomone Labs)


Structured Review

Rabbit Polyclonal Anti Aqp5 Antibody, supplied by Alomone Labs, used in various techniques. Bioz Stars score: 94/100, based on 1 PubMed citations. ZERO BIAS - scores, article reviews, protocol conditions and more
https://www.bioz.com/result/rabbit polyclonal anti aqp5 antibody/product/Alomone Labs
Average 94 stars, based on 1 article reviews
Price from $9.99 to $1999.99
Images
1) Product Images from "CXCR4 Regulates Temporal Differentiation via PRC1 Complex in Organogenesis of Epithelial Glands"
Article Title: CXCR4 Regulates Temporal Differentiation via PRC1 Complex in Organogenesis of Epithelial Glands
Journal: International Journal of Molecular Sciences
doi: 10.3390/ijms22020619

Figure Legend Snippet: Spatiotemporal expression of CXC-chemokine receptor 4 (CXCR4) and its ligand, CXCL12, and developmental genes in embryonic organs. ( A ) Schematic diagram of embryonic submandibular gland (eSMG) isolation and ex vivo culture. ( B ) Ex vivo branching morphogenesis of eSMGs from embryonic day (E) 13 to 17, showing epithelial growth and retraction of mesenchyme. Scale bars: 500 µm. ( C ) Temporal mRNA expression patterns of keratin 7 ( Krt7 ), aquaporin 5 ( Aqp5 ), e-cadherin ( Cdh1 ), Krt15 , Cxcr4 , and Cxcl12 were measured from E13 to E17 by qPCR ( n = 3). ( D ) Epithelial (Epi) and mesenchymal (Mes) expression of Cxcr4 , Cxcl12 , odd-skipped related transcription factor 1 ( Osr1 ), and Cdh1 were quantified by qPCR at E13. The comparative C t values are expressed as fold increase relative to the epithelium ( n = 3). ( E ) Representative images showing expression of CXCR4 and CXCL12 in eSMG (upper) and their colocalization (lower) ( n = 3, scale bar: 500 µm). ( F ) Representative immunofluorescence images of CXCR4 and CXCL12 expression in E12 embryonic lung and pancreas ( n = 4); whole view (left two panels; scale bar: 500 µm) and magnified lumen structures (right two panels; scale bar: 50 µm). Data are presented as the mean ± SEM; * p
Techniques Used: Expressing, Isolation, Ex Vivo, Real-time Polymerase Chain Reaction, Immunofluorescence

Figure Legend Snippet: AMD3100-induced precocious differentiation of epithelial cells. ( A , B ) Representative contour tracing ( A ) and bud number changes ( B ) of control and AMD3100-treated eSMGs during 48 h at 6-h intervals ( n = 3). ( C ) EdU staining results at 6 and 24 h after AMD3100 treatment. EdU in green and PNA in gray ( n = 4, scale bar: 500 µm). ( D ) Immunostaining results of Ki67 (red) and F-actin (green) in acini and duct of eSMGs 24 h after AMD3100 treatment. Morphologies of acinar buds and duct cells are outlined with white dotted lines. Scale bar: 50 µm. ( E ) Duct widths of control and AMD3100-treated eSMGs were visualized via F-actin-based intensity profiles of horizontal sectioning of ducts 24 h after the treatment. ( F ) Duct widths of control and AMD3100-treated eSMGs were quantified 24 h after the treatment ( n = 9). ( G ) Immunostaining results of AQP5 (green) and KRT7 (red). Magnified regions of acinar buds are marked with white dotted squares. The white arrows (middle panels) indicate areas with the highest AQP5 expression ( n = 4, scale bar: left, 100 µm; middle and right, 50 µm). Data are presented as the mean ± SEM; * p
Techniques Used: Staining, Immunostaining, Expressing