neb cutsmart buffer  (New England Biolabs)


Bioz Verified Symbol New England Biolabs is a verified supplier
Bioz Manufacturer Symbol New England Biolabs manufactures this product  
  • Logo
  • About
  • News
  • Press Release
  • Team
  • Advisors
  • Partners
  • Contact
  • Bioz Stars
  • Bioz vStars
  • 99
    Name:
    CutSmart Buffer
    Description:
    CutSmart Buffer 5 0 ml
    Catalog Number:
    b7204s
    Price:
    24
    Size:
    5 0 ml
    Category:
    Buffers
    Buy from Supplier


    Structured Review

    New England Biolabs neb cutsmart buffer
    CutSmart Buffer
    CutSmart Buffer 5 0 ml
    https://www.bioz.com/result/neb cutsmart buffer/product/New England Biolabs
    Average 99 stars, based on 11 article reviews
    Price from $9.99 to $1999.99
    neb cutsmart buffer - by Bioz Stars, 2020-09
    99/100 stars

    Images

    1) Product Images from "Identification of an Intermediate in Hepatitis B Virus Covalently Closed Circular (CCC) DNA Formation and Sensitive and Selective CCC DNA Detection"

    Article Title: Identification of an Intermediate in Hepatitis B Virus Covalently Closed Circular (CCC) DNA Formation and Sensitive and Selective CCC DNA Detection

    Journal: Journal of Virology

    doi: 10.1128/JVI.00539-17

    Exo I III versus Exo T5 digestion of plasmid DNA. (A) Diagrams showing expected digestion results of various plasmid DNA species. A break in the circle denotes the nick on the DNA strand. (B and C) Plasmid pCI-HBc (2.5 ng) was mixed with 20 μl of mock PF DNA extracted from uninduced HepAD38 cells. The DNA mix was first treated with Nb.BbvCI (5 units) to nick the plasmid DNA specifically on the minus strand (B and C, lanes 5 to 8) or was left untreated (B and C, lanes 1 to 4) before digestion with Exo I III (5 units and 25 units, respectively) in two different buffers or with Exo T5 (5 units). The DNA samples were then resolved on an agarose gel, and HBc DNA was detected by Southern blotting using a riboprobe specific for the viral plus-strand (B) or minus-strand (C) DNA. The diagrams on the right of panel C depict the various DNA species and their migration on the gel. B3, 1× NEB buffer 3; BCS, 1× NEB buffer Cutsmart; PE, phenol extraction.
    Figure Legend Snippet: Exo I III versus Exo T5 digestion of plasmid DNA. (A) Diagrams showing expected digestion results of various plasmid DNA species. A break in the circle denotes the nick on the DNA strand. (B and C) Plasmid pCI-HBc (2.5 ng) was mixed with 20 μl of mock PF DNA extracted from uninduced HepAD38 cells. The DNA mix was first treated with Nb.BbvCI (5 units) to nick the plasmid DNA specifically on the minus strand (B and C, lanes 5 to 8) or was left untreated (B and C, lanes 1 to 4) before digestion with Exo I III (5 units and 25 units, respectively) in two different buffers or with Exo T5 (5 units). The DNA samples were then resolved on an agarose gel, and HBc DNA was detected by Southern blotting using a riboprobe specific for the viral plus-strand (B) or minus-strand (C) DNA. The diagrams on the right of panel C depict the various DNA species and their migration on the gel. B3, 1× NEB buffer 3; BCS, 1× NEB buffer Cutsmart; PE, phenol extraction.

    Techniques Used: Plasmid Preparation, Agarose Gel Electrophoresis, Southern Blot, Migration

    Exo I III versus Exo T5 digestion of HBV core and PF DNA. (A) Diagrams showing expected results of digestion with various HBV PF DNA species. Left, structures of known and potential HBV PF DNA species; middle and right, expected digestion products of the various DNA species. The DNA species in the rectangular box, with a covalently closed minus strand and an open plus strand, represents a potential intermediate during RC DNA to CCC DNA conversion that was identified in the current study (see the text for details). The black dot at the 5′ end of the minus strand of the PF-RC and PF-DSL DNA denotes the unknown modification of this end upon removal of the RT protein (deproteination; see the text for details). (B and C) HBV core DNA (0.3 μl) combined with mock PF DNA (20 μl) extracted from uninduced HepAD38 cells (B) or PF DNA (20 μl) extracted from induced HepAD38 cells (C) was treated with Exo I III (5 units and 25 units, respectively) (lanes 3 and 10) or Exo T5 (5 units) (lanes 6 and 13) in 1× NEB CutSmart buffer. Subsequently, MfeI-HF (10 units) was used to linearize CCC DNA (lanes 5, 7, 12, and 14) and Exo T5 (5 units) was used to digest the SS circular DNA (lanes 4 and 11). Heat treatment (95°C, 10 min) was used to denature RC DNA to SS linear DNA (lanes 2 and 9). The DNA samples were then resolved on an agarose gel, and the various HBV DNA species were detected by Southern blotting using a riboprobe specific for the plus-strand (lanes 1 to 7) or minus-strand (lanes 8 to 14) DNA. The diagrams on the sides depict the various DNA species and their migration on the gel. The positions of the various RC DNA species, CCC DNA species, and SS linear and circular DNA species are indicated by the schematic diagrams. Note that the linearized CCC DNA comigrates with the DSL DNA, a minor form present in both core DNA and PF DNA (lanes 1 and 8).
    Figure Legend Snippet: Exo I III versus Exo T5 digestion of HBV core and PF DNA. (A) Diagrams showing expected results of digestion with various HBV PF DNA species. Left, structures of known and potential HBV PF DNA species; middle and right, expected digestion products of the various DNA species. The DNA species in the rectangular box, with a covalently closed minus strand and an open plus strand, represents a potential intermediate during RC DNA to CCC DNA conversion that was identified in the current study (see the text for details). The black dot at the 5′ end of the minus strand of the PF-RC and PF-DSL DNA denotes the unknown modification of this end upon removal of the RT protein (deproteination; see the text for details). (B and C) HBV core DNA (0.3 μl) combined with mock PF DNA (20 μl) extracted from uninduced HepAD38 cells (B) or PF DNA (20 μl) extracted from induced HepAD38 cells (C) was treated with Exo I III (5 units and 25 units, respectively) (lanes 3 and 10) or Exo T5 (5 units) (lanes 6 and 13) in 1× NEB CutSmart buffer. Subsequently, MfeI-HF (10 units) was used to linearize CCC DNA (lanes 5, 7, 12, and 14) and Exo T5 (5 units) was used to digest the SS circular DNA (lanes 4 and 11). Heat treatment (95°C, 10 min) was used to denature RC DNA to SS linear DNA (lanes 2 and 9). The DNA samples were then resolved on an agarose gel, and the various HBV DNA species were detected by Southern blotting using a riboprobe specific for the plus-strand (lanes 1 to 7) or minus-strand (lanes 8 to 14) DNA. The diagrams on the sides depict the various DNA species and their migration on the gel. The positions of the various RC DNA species, CCC DNA species, and SS linear and circular DNA species are indicated by the schematic diagrams. Note that the linearized CCC DNA comigrates with the DSL DNA, a minor form present in both core DNA and PF DNA (lanes 1 and 8).

    Techniques Used: Countercurrent Chromatography, Modification, Agarose Gel Electrophoresis, Southern Blot, Migration

    Confirmation of the closed circular minus strand in the processed RC DNA by BmgBI or Nt.BbvCI and Exo I III digestion. (A and D) Diagrams showing expected results of digestion performed with various HBV PF DNA species. The short line intersecting the circle denotes the site of BmgBI digestion (A) or Nt.BbvCI nicking (D). The presence of the RNA (short gray line) at the 5′ end of the plus strand in RC DNA prevents BmgBI digestion (panel A; arrow blocked by a short line). The black dot at the 5′ end of the minus strand of the PF-RC DNA denotes the unknown modification of this end upon removal of the RT protein. The DNA species indicated in the rectangular box, with a covalently closed minus strand and an open plus strand, represents a potential intermediate during RC DNA to CCC DNA conversion that was identified in this study (see the text for details). (B and C) HBV core DNA (0.3 μl) combined with mock PF DNA (20 μl) extracted from uninduced HepAD38 cells (lanes 1 to 3) or PF DNA (lanes 4 to 6) extracted from induced HepAD38 cells was treated with BmgBI (5 units) in 1× NEB buffer 3 to linearize all supercoiled and nicked CCC DNA (lanes 2, 3, 5, and 6) or was mock treated (lanes 1 and 4). For lanes 3 and 6, the DNA samples were further digested with Exo I III after BmgBI treatment. The samples were then resolved on an agarose gel, and various HBV DNA species were detected by Southern blotting using a riboprobe specific for the viral plus-strand (B) or minus-strand (C) DNA. The diagrams on the right of panel C depict the various DNA species and their migration on the gel. (E) PF DNA extracted from induced HepAD38 cells was treated with Nt.BbvCI (5 units) in 1× NEB Cutsmart buffer to nick all CCC DNA (lanes 3, 4, 7, and 8) or mock treated (lanes 1 and 5). For lanes 4 and 8, the DNA samples were further digested with Exo I III after Nt.BbvCI treatment. The samples were then resolved on an agarose gel, and various HBV DNA species were detected by Southern blotting using a riboprobe specific for the viral plus-strand (lanes 1 to 4) or minus-strand (lanes 5 to 8) DNA. The diagrams on the right depict the various DNA species and their migration on the gel. Marker, the DNA marker lane. The size of the DNA markers is indicated (in kilobase pairs). The blank spaces between the lanes in panels B, C, and E indicate where other lanes from the same gel that were deemed nonessential for this work were cropped out during the preparation of the figure.
    Figure Legend Snippet: Confirmation of the closed circular minus strand in the processed RC DNA by BmgBI or Nt.BbvCI and Exo I III digestion. (A and D) Diagrams showing expected results of digestion performed with various HBV PF DNA species. The short line intersecting the circle denotes the site of BmgBI digestion (A) or Nt.BbvCI nicking (D). The presence of the RNA (short gray line) at the 5′ end of the plus strand in RC DNA prevents BmgBI digestion (panel A; arrow blocked by a short line). The black dot at the 5′ end of the minus strand of the PF-RC DNA denotes the unknown modification of this end upon removal of the RT protein. The DNA species indicated in the rectangular box, with a covalently closed minus strand and an open plus strand, represents a potential intermediate during RC DNA to CCC DNA conversion that was identified in this study (see the text for details). (B and C) HBV core DNA (0.3 μl) combined with mock PF DNA (20 μl) extracted from uninduced HepAD38 cells (lanes 1 to 3) or PF DNA (lanes 4 to 6) extracted from induced HepAD38 cells was treated with BmgBI (5 units) in 1× NEB buffer 3 to linearize all supercoiled and nicked CCC DNA (lanes 2, 3, 5, and 6) or was mock treated (lanes 1 and 4). For lanes 3 and 6, the DNA samples were further digested with Exo I III after BmgBI treatment. The samples were then resolved on an agarose gel, and various HBV DNA species were detected by Southern blotting using a riboprobe specific for the viral plus-strand (B) or minus-strand (C) DNA. The diagrams on the right of panel C depict the various DNA species and their migration on the gel. (E) PF DNA extracted from induced HepAD38 cells was treated with Nt.BbvCI (5 units) in 1× NEB Cutsmart buffer to nick all CCC DNA (lanes 3, 4, 7, and 8) or mock treated (lanes 1 and 5). For lanes 4 and 8, the DNA samples were further digested with Exo I III after Nt.BbvCI treatment. The samples were then resolved on an agarose gel, and various HBV DNA species were detected by Southern blotting using a riboprobe specific for the viral plus-strand (lanes 1 to 4) or minus-strand (lanes 5 to 8) DNA. The diagrams on the right depict the various DNA species and their migration on the gel. Marker, the DNA marker lane. The size of the DNA markers is indicated (in kilobase pairs). The blank spaces between the lanes in panels B, C, and E indicate where other lanes from the same gel that were deemed nonessential for this work were cropped out during the preparation of the figure.

    Techniques Used: Modification, Countercurrent Chromatography, Agarose Gel Electrophoresis, Southern Blot, Migration, Marker

    Related Articles

    Amplification:

    Article Title: Droplet Tn-Seq combines microfluidics with Tn-Seq for identifying complex single-cell phenotypes
    Article Snippet: .. Beads were then dried for 3 min at room temperature, and DNA was eluted off the beads with 12.7 μl of dH2 O. (3) In all, 11.49 μl of phi29 amplified DNA was then added to a MmeI digestion mix (two units NEB MmeI enzyme, 50 μM SAM, 1× CutSmart Buffer) in a total volume of 20 μl, and incubated for 2.5 h at 37 °C followed by 20 min at 65 °C. (4) In all, 1 μl of alkaline phosphatase (NEB - M0290S Calf Intestinal, CIP) was added to the sample and incubated for 1 h at 37 °C. (5) In total, 10 μl of magnetic beads plus 20 μl PEG solution per sample were used to wash the sample followed by elution in 14.3 μl of dH2 O. (6) T4 DNA ligase (NEB M0202L) was used to ligate DNA adapter barcodes by adding 13.12 μl DNA to 1 μl of 1:5 diluted adapter, 1× T4 DNA Ligase Reaction Buffer, and 400 units T4 DNA ligase, followed by incubation at 16 °C for 16 h, 65 °C for 10 min, and held at 10 °C. (7) In all, 10 μl magnetic beads plus 20 μl PEG solution were used to wash the sample followed by elution in 36 μl of dH2 O. (8) Adapter ligated DNA was then PCR amplified using Q5 high-fidelity DNA polymerase (NEB – M0491L) by adding 34 μl of DNA to 1X Q5 reaction buffer, 10 mM dNTPs, 0.45 μM of each primer (P1-M6-GAT-MmeI; P2-ADPT-Tnseq-primer; Supplementary Data ), one unit Q5 DNA polymerase, and incubated at 98 °C for 30 s, and 18–22 cycles of 98 °C for 10 s, 62 °C for 30 s, 72 °C for 15 s, followed by 72 °C for 2 min, and a 10 °C hold. (9) PCR products were gel purified and sequenced on an Illumina NextSeq 500 according to the manufacturer's protocol. .. Sequence analysis was performed with a series of in-house scripts , , .

    Magnetic Beads:

    Article Title: Droplet Tn-Seq combines microfluidics with Tn-Seq for identifying complex single-cell phenotypes
    Article Snippet: .. Beads were then dried for 3 min at room temperature, and DNA was eluted off the beads with 12.7 μl of dH2 O. (3) In all, 11.49 μl of phi29 amplified DNA was then added to a MmeI digestion mix (two units NEB MmeI enzyme, 50 μM SAM, 1× CutSmart Buffer) in a total volume of 20 μl, and incubated for 2.5 h at 37 °C followed by 20 min at 65 °C. (4) In all, 1 μl of alkaline phosphatase (NEB - M0290S Calf Intestinal, CIP) was added to the sample and incubated for 1 h at 37 °C. (5) In total, 10 μl of magnetic beads plus 20 μl PEG solution per sample were used to wash the sample followed by elution in 14.3 μl of dH2 O. (6) T4 DNA ligase (NEB M0202L) was used to ligate DNA adapter barcodes by adding 13.12 μl DNA to 1 μl of 1:5 diluted adapter, 1× T4 DNA Ligase Reaction Buffer, and 400 units T4 DNA ligase, followed by incubation at 16 °C for 16 h, 65 °C for 10 min, and held at 10 °C. (7) In all, 10 μl magnetic beads plus 20 μl PEG solution were used to wash the sample followed by elution in 36 μl of dH2 O. (8) Adapter ligated DNA was then PCR amplified using Q5 high-fidelity DNA polymerase (NEB – M0491L) by adding 34 μl of DNA to 1X Q5 reaction buffer, 10 mM dNTPs, 0.45 μM of each primer (P1-M6-GAT-MmeI; P2-ADPT-Tnseq-primer; Supplementary Data ), one unit Q5 DNA polymerase, and incubated at 98 °C for 30 s, and 18–22 cycles of 98 °C for 10 s, 62 °C for 30 s, 72 °C for 15 s, followed by 72 °C for 2 min, and a 10 °C hold. (9) PCR products were gel purified and sequenced on an Illumina NextSeq 500 according to the manufacturer's protocol. .. Sequence analysis was performed with a series of in-house scripts , , .

    Isolation:

    Article Title: Depurination of colibactin-derived interstrand cross-links
    Article Snippet: .. To set up the linearization reactions, 20 units of EcoRI-HF® (New England Biolabs®) was mixed with 500 ng of isolated DNA (40 units/µg DNA) in CutSmart® buffer (New England Biolabs®), pH 7.9, in a total volume of 50 µL for 30 min at 37 °C. .. The CutSmart® buffer (New England Biolabs®) contains 50 mM potassium acetate, 20 mM Tris-acetate, 10 mM magnesium acetate, and 100 µg/mL BSA.

    Purification:

    Article Title: Droplet Tn-Seq combines microfluidics with Tn-Seq for identifying complex single-cell phenotypes
    Article Snippet: .. Beads were then dried for 3 min at room temperature, and DNA was eluted off the beads with 12.7 μl of dH2 O. (3) In all, 11.49 μl of phi29 amplified DNA was then added to a MmeI digestion mix (two units NEB MmeI enzyme, 50 μM SAM, 1× CutSmart Buffer) in a total volume of 20 μl, and incubated for 2.5 h at 37 °C followed by 20 min at 65 °C. (4) In all, 1 μl of alkaline phosphatase (NEB - M0290S Calf Intestinal, CIP) was added to the sample and incubated for 1 h at 37 °C. (5) In total, 10 μl of magnetic beads plus 20 μl PEG solution per sample were used to wash the sample followed by elution in 14.3 μl of dH2 O. (6) T4 DNA ligase (NEB M0202L) was used to ligate DNA adapter barcodes by adding 13.12 μl DNA to 1 μl of 1:5 diluted adapter, 1× T4 DNA Ligase Reaction Buffer, and 400 units T4 DNA ligase, followed by incubation at 16 °C for 16 h, 65 °C for 10 min, and held at 10 °C. (7) In all, 10 μl magnetic beads plus 20 μl PEG solution were used to wash the sample followed by elution in 36 μl of dH2 O. (8) Adapter ligated DNA was then PCR amplified using Q5 high-fidelity DNA polymerase (NEB – M0491L) by adding 34 μl of DNA to 1X Q5 reaction buffer, 10 mM dNTPs, 0.45 μM of each primer (P1-M6-GAT-MmeI; P2-ADPT-Tnseq-primer; Supplementary Data ), one unit Q5 DNA polymerase, and incubated at 98 °C for 30 s, and 18–22 cycles of 98 °C for 10 s, 62 °C for 30 s, 72 °C for 15 s, followed by 72 °C for 2 min, and a 10 °C hold. (9) PCR products were gel purified and sequenced on an Illumina NextSeq 500 according to the manufacturer's protocol. .. Sequence analysis was performed with a series of in-house scripts , , .

    Real-time Polymerase Chain Reaction:

    Article Title: Exonuclease combinations reduce noises in 3D genomics technologies
    Article Snippet: .. After LRL (Lambda and RecJF within Lambda buffer) (NEB), LRC (Lambda and RecJF within Cutsmart buffer) (NEB), LIC (Lambda and Exonuclease I within Cutsmart buffer) (NEB) and I+IIIC (I+III or IIIIC) (Exonuclease I and Exonuclease III within Cutsmart buffer) (NEB) elimination, qPCR was performed. .. Primer BH2 for qPCR was designed across both ends of the BamHI restriction site.

    Incubation:

    Article Title: Droplet Tn-Seq combines microfluidics with Tn-Seq for identifying complex single-cell phenotypes
    Article Snippet: .. Beads were then dried for 3 min at room temperature, and DNA was eluted off the beads with 12.7 μl of dH2 O. (3) In all, 11.49 μl of phi29 amplified DNA was then added to a MmeI digestion mix (two units NEB MmeI enzyme, 50 μM SAM, 1× CutSmart Buffer) in a total volume of 20 μl, and incubated for 2.5 h at 37 °C followed by 20 min at 65 °C. (4) In all, 1 μl of alkaline phosphatase (NEB - M0290S Calf Intestinal, CIP) was added to the sample and incubated for 1 h at 37 °C. (5) In total, 10 μl of magnetic beads plus 20 μl PEG solution per sample were used to wash the sample followed by elution in 14.3 μl of dH2 O. (6) T4 DNA ligase (NEB M0202L) was used to ligate DNA adapter barcodes by adding 13.12 μl DNA to 1 μl of 1:5 diluted adapter, 1× T4 DNA Ligase Reaction Buffer, and 400 units T4 DNA ligase, followed by incubation at 16 °C for 16 h, 65 °C for 10 min, and held at 10 °C. (7) In all, 10 μl magnetic beads plus 20 μl PEG solution were used to wash the sample followed by elution in 36 μl of dH2 O. (8) Adapter ligated DNA was then PCR amplified using Q5 high-fidelity DNA polymerase (NEB – M0491L) by adding 34 μl of DNA to 1X Q5 reaction buffer, 10 mM dNTPs, 0.45 μM of each primer (P1-M6-GAT-MmeI; P2-ADPT-Tnseq-primer; Supplementary Data ), one unit Q5 DNA polymerase, and incubated at 98 °C for 30 s, and 18–22 cycles of 98 °C for 10 s, 62 °C for 30 s, 72 °C for 15 s, followed by 72 °C for 2 min, and a 10 °C hold. (9) PCR products were gel purified and sequenced on an Illumina NextSeq 500 according to the manufacturer's protocol. .. Sequence analysis was performed with a series of in-house scripts , , .

    Polymerase Chain Reaction:

    Article Title: Droplet Tn-Seq combines microfluidics with Tn-Seq for identifying complex single-cell phenotypes
    Article Snippet: .. Beads were then dried for 3 min at room temperature, and DNA was eluted off the beads with 12.7 μl of dH2 O. (3) In all, 11.49 μl of phi29 amplified DNA was then added to a MmeI digestion mix (two units NEB MmeI enzyme, 50 μM SAM, 1× CutSmart Buffer) in a total volume of 20 μl, and incubated for 2.5 h at 37 °C followed by 20 min at 65 °C. (4) In all, 1 μl of alkaline phosphatase (NEB - M0290S Calf Intestinal, CIP) was added to the sample and incubated for 1 h at 37 °C. (5) In total, 10 μl of magnetic beads plus 20 μl PEG solution per sample were used to wash the sample followed by elution in 14.3 μl of dH2 O. (6) T4 DNA ligase (NEB M0202L) was used to ligate DNA adapter barcodes by adding 13.12 μl DNA to 1 μl of 1:5 diluted adapter, 1× T4 DNA Ligase Reaction Buffer, and 400 units T4 DNA ligase, followed by incubation at 16 °C for 16 h, 65 °C for 10 min, and held at 10 °C. (7) In all, 10 μl magnetic beads plus 20 μl PEG solution were used to wash the sample followed by elution in 36 μl of dH2 O. (8) Adapter ligated DNA was then PCR amplified using Q5 high-fidelity DNA polymerase (NEB – M0491L) by adding 34 μl of DNA to 1X Q5 reaction buffer, 10 mM dNTPs, 0.45 μM of each primer (P1-M6-GAT-MmeI; P2-ADPT-Tnseq-primer; Supplementary Data ), one unit Q5 DNA polymerase, and incubated at 98 °C for 30 s, and 18–22 cycles of 98 °C for 10 s, 62 °C for 30 s, 72 °C for 15 s, followed by 72 °C for 2 min, and a 10 °C hold. (9) PCR products were gel purified and sequenced on an Illumina NextSeq 500 according to the manufacturer's protocol. .. Sequence analysis was performed with a series of in-house scripts , , .

    Article Title: A simple and efficient cloning system for CRISPR/Cas9-mediated genome editing in rice
    Article Snippet: .. The reagents were recommended as following: one ul of PCR product, 50 ng of PJG112, 1 ul of Cutsmart Buffer (NEB), 0.4 ul of T4 ligase buffer (NEB), 5 U of Bsa I (NEB), 20 U of T4 DNA ligase (NEB) and add ddH2 O to 10 ul. ..

    Plasmid Preparation:

    Article Title: Restriction Endonucleases from Invasive Neisseria gonorrhoeae Cause Double-Strand Breaks and Distort Mitosis in Epithelial Cells during Infection
    Article Snippet: .. Portions of lysates were further heat inactivated (HI) at 95°C for 10 min. One µg of the commercial plasmid pECFP-N1 (Clonetech, CA, USA) was subjected to either MS11 P+ lysate or HI lysate together with CutSmart buffer (New England Biolabs, Ipswich, MA, USA) for 1 h. As controls, circular/uncut pECFP-N1 was used as well as HindIII (Roche, Mannheim, Germany) linearized pECFP-N1. .. The plasmid reactions were run on 1% agarose gel electrophoresis in 1xTBE buffer and stained with ethidium bromide.

    Article Title: Exonuclease combinations reduce noises in 3D genomics technologies
    Article Snippet: .. Linearized plasmid DNA was obtained in the following 200 μl solution/per reaction, including 23.4 μl plasmid, 5 μl BamHI-HF (HindIII for P2) (NEB), 20 μl 10× Cutsmart Buffer (NEBuffer 2 for P2) and 151.6 μl H2 O. .. Three reactions were performed at 37°C for 1 h. To increase the yield of linearized plasmid DNA, three digested solutions were combined, followed by addition of 1.2-fold phenol/chloroform/isoamyl alcohol for DNA extraction ( ).

    Similar Products

  • Logo
  • About
  • News
  • Press Release
  • Team
  • Advisors
  • Partners
  • Contact
  • Bioz Stars
  • Bioz vStars
  • 99
    New England Biolabs lrc
    C-technology application and preliminary assessment in Hi-C. ( A ) DNA library (572 ng) linear noise elimination for C-technologies, after proximal-ligation. M (left), 1 kb DNA ladder; 1: <t>LRL,</t> LRL used for linear noise elimination. 2: <t>LRC,</t> LRC used for linear noise elimination; 3: LIC, LIC used for linear noise elimination; 4: I+IIIC, I+IIIC used for linear noise elimination; C: Co, without exonucleases digestion; M (right): 100 bp DNA ladder. ( B ) The yield ratio of remaining DNA after four linear elimination treatments, which was consistent to (A). The remaining ratio (gray) and eliminated ratio (purple) are shown together in the bar chart. ( C ) A 40 ng library was given four exonuclease treatment combinations, along with addition of plasmid chaperon carrier, as indicated. M: 1 kb + 100 bp DNA ladder. 1′: LRLP1, LRL with P1 chaperon used for linear noise elimination; 2′: LRC with P1 chaperon used for linear noise elimination; 3′: LICP1, LIC with P1 chaperon used for linear noise elimination; 4′: I+IIICP1, I+IIIC with P1 chaperon used for linear noise elimination; C’: P1 chaperon added, without exonucleases digestion. ( D ) The yield ratio of remaining DNA, after four linear DNA elimination treatments, which was consistent to ( C ). ( E ) HiC-Pro filtering results of Hi-C with exonuclease elimination LIC, compared with standard Hi-C in Figure 1B . LIC-Hi-C had three experimental replicates (LIC-Hi-C 1; LIC-Hi-C 2; and LIC-Hi-C 3). HiC-Pro terms are as indicated in Supplemental S.3.
    Lrc, supplied by New England Biolabs, used in various techniques. Bioz Stars score: 99/100, based on 25 PubMed citations. ZERO BIAS - scores, article reviews, protocol conditions and more
    https://www.bioz.com/result/lrc/product/New England Biolabs
    Average 99 stars, based on 25 article reviews
    Price from $9.99 to $1999.99
    lrc - by Bioz Stars, 2020-09
    99/100 stars
      Buy from Supplier

    94
    New England Biolabs m taq i dna methyltransferase
    A total of 1225 tiled fluorescence microscopy images of a sample of E. coli genomic <t>DNA</t> labeled with Atto647N at sites reading 5′-TCGA-3′ using the M. <t>Taq</t> I DNA <t>methyltransferase</t> enzyme in order to direct labeling. The image contains approximately 500 megabases of genomic material and took of the order of 10 min to acquire.
    M Taq I Dna Methyltransferase, supplied by New England Biolabs, used in various techniques. Bioz Stars score: 94/100, based on 7 PubMed citations. ZERO BIAS - scores, article reviews, protocol conditions and more
    https://www.bioz.com/result/m taq i dna methyltransferase/product/New England Biolabs
    Average 94 stars, based on 7 article reviews
    Price from $9.99 to $1999.99
    m taq i dna methyltransferase - by Bioz Stars, 2020-09
    94/100 stars
      Buy from Supplier

    Image Search Results


    C-technology application and preliminary assessment in Hi-C. ( A ) DNA library (572 ng) linear noise elimination for C-technologies, after proximal-ligation. M (left), 1 kb DNA ladder; 1: LRL, LRL used for linear noise elimination. 2: LRC, LRC used for linear noise elimination; 3: LIC, LIC used for linear noise elimination; 4: I+IIIC, I+IIIC used for linear noise elimination; C: Co, without exonucleases digestion; M (right): 100 bp DNA ladder. ( B ) The yield ratio of remaining DNA after four linear elimination treatments, which was consistent to (A). The remaining ratio (gray) and eliminated ratio (purple) are shown together in the bar chart. ( C ) A 40 ng library was given four exonuclease treatment combinations, along with addition of plasmid chaperon carrier, as indicated. M: 1 kb + 100 bp DNA ladder. 1′: LRLP1, LRL with P1 chaperon used for linear noise elimination; 2′: LRC with P1 chaperon used for linear noise elimination; 3′: LICP1, LIC with P1 chaperon used for linear noise elimination; 4′: I+IIICP1, I+IIIC with P1 chaperon used for linear noise elimination; C’: P1 chaperon added, without exonucleases digestion. ( D ) The yield ratio of remaining DNA, after four linear DNA elimination treatments, which was consistent to ( C ). ( E ) HiC-Pro filtering results of Hi-C with exonuclease elimination LIC, compared with standard Hi-C in Figure 1B . LIC-Hi-C had three experimental replicates (LIC-Hi-C 1; LIC-Hi-C 2; and LIC-Hi-C 3). HiC-Pro terms are as indicated in Supplemental S.3.

    Journal: Nucleic Acids Research

    Article Title: Exonuclease combinations reduce noises in 3D genomics technologies

    doi: 10.1093/nar/gkaa106

    Figure Lengend Snippet: C-technology application and preliminary assessment in Hi-C. ( A ) DNA library (572 ng) linear noise elimination for C-technologies, after proximal-ligation. M (left), 1 kb DNA ladder; 1: LRL, LRL used for linear noise elimination. 2: LRC, LRC used for linear noise elimination; 3: LIC, LIC used for linear noise elimination; 4: I+IIIC, I+IIIC used for linear noise elimination; C: Co, without exonucleases digestion; M (right): 100 bp DNA ladder. ( B ) The yield ratio of remaining DNA after four linear elimination treatments, which was consistent to (A). The remaining ratio (gray) and eliminated ratio (purple) are shown together in the bar chart. ( C ) A 40 ng library was given four exonuclease treatment combinations, along with addition of plasmid chaperon carrier, as indicated. M: 1 kb + 100 bp DNA ladder. 1′: LRLP1, LRL with P1 chaperon used for linear noise elimination; 2′: LRC with P1 chaperon used for linear noise elimination; 3′: LICP1, LIC with P1 chaperon used for linear noise elimination; 4′: I+IIICP1, I+IIIC with P1 chaperon used for linear noise elimination; C’: P1 chaperon added, without exonucleases digestion. ( D ) The yield ratio of remaining DNA, after four linear DNA elimination treatments, which was consistent to ( C ). ( E ) HiC-Pro filtering results of Hi-C with exonuclease elimination LIC, compared with standard Hi-C in Figure 1B . LIC-Hi-C had three experimental replicates (LIC-Hi-C 1; LIC-Hi-C 2; and LIC-Hi-C 3). HiC-Pro terms are as indicated in Supplemental S.3.

    Article Snippet: After LRL (Lambda and RecJF within Lambda buffer) (NEB), LRC (Lambda and RecJF within Cutsmart buffer) (NEB), LIC (Lambda and Exonuclease I within Cutsmart buffer) (NEB) and I+IIIC (I+III or IIIIC) (Exonuclease I and Exonuclease III within Cutsmart buffer) (NEB) elimination, qPCR was performed.

    Techniques: Hi-C, Ligation, Plasmid Preparation

    Quantification effects for different combination treatments. ( A ) Results of every linear elimination treatment, measured by Qubit. Plasmid (250 ng) and linear DNA (250 ng) were mixed, as templates (X, Mixture). Linear DNA (500 ng) (3-L, LIC-Lin) was set as control treatments. Every treatment had three replicates. 1-X, LRL-Mixture; 2-X, LRC-Mixture; 3-X, LIC-Mixture; 4-X, I+III-Mixture; 5-X, VIII4-Mixture; 6-X, VIIIC-Mixture. ( B ) The qPCR results from three exonuclease combination treatments (in accordance with Figure 2B ). The primer BH2 was used across the plasmid BamHI site. Same quality (SQ): The Qubit amounts of qPCR input for all treatments were consistent (Supplemental S.1.2). Same volume (SV): The qPCR input volumes were consistent (Supplemental S.1.4 and Supplementary Figure S5 ). P, pGL4.23 plasmid; L, linearized plasmid; X, Mixture; 3-P, LIC to cut plasmid; 3-L, LIC to cut linearized plasmid. Three experiments for each treatment were combined for enlarging the volume before purification. ( C ) The qPCR results correspond with Figure 2C . The primer was BH2. Data are presented as mean ± SEM.

    Journal: Nucleic Acids Research

    Article Title: Exonuclease combinations reduce noises in 3D genomics technologies

    doi: 10.1093/nar/gkaa106

    Figure Lengend Snippet: Quantification effects for different combination treatments. ( A ) Results of every linear elimination treatment, measured by Qubit. Plasmid (250 ng) and linear DNA (250 ng) were mixed, as templates (X, Mixture). Linear DNA (500 ng) (3-L, LIC-Lin) was set as control treatments. Every treatment had three replicates. 1-X, LRL-Mixture; 2-X, LRC-Mixture; 3-X, LIC-Mixture; 4-X, I+III-Mixture; 5-X, VIII4-Mixture; 6-X, VIIIC-Mixture. ( B ) The qPCR results from three exonuclease combination treatments (in accordance with Figure 2B ). The primer BH2 was used across the plasmid BamHI site. Same quality (SQ): The Qubit amounts of qPCR input for all treatments were consistent (Supplemental S.1.2). Same volume (SV): The qPCR input volumes were consistent (Supplemental S.1.4 and Supplementary Figure S5 ). P, pGL4.23 plasmid; L, linearized plasmid; X, Mixture; 3-P, LIC to cut plasmid; 3-L, LIC to cut linearized plasmid. Three experiments for each treatment were combined for enlarging the volume before purification. ( C ) The qPCR results correspond with Figure 2C . The primer was BH2. Data are presented as mean ± SEM.

    Article Snippet: After LRL (Lambda and RecJF within Lambda buffer) (NEB), LRC (Lambda and RecJF within Cutsmart buffer) (NEB), LIC (Lambda and Exonuclease I within Cutsmart buffer) (NEB) and I+IIIC (I+III or IIIIC) (Exonuclease I and Exonuclease III within Cutsmart buffer) (NEB) elimination, qPCR was performed.

    Techniques: Plasmid Preparation, Real-time Polymerase Chain Reaction, Purification

    Experimental results for exonuclease combinations treatment. ( A ) The cleavage mechanism of Lamada and Exonuclease I combinations. Other exonuclease combinations (Lambda and RecJF; Exonuclease I and Exonuclease III) are shown in Supplementary Figure S1A and Supplementary Table S1 . ( B ) Three exonuclease combinations (LRL; LRC; LIC) removed linear DNA from a paradigm mixture. M, 1 kb DNA ladder; P, pGL4.23 plasmid; L, linearized plasmid; X, mixture (plasmid and linear DNA 1:1); 1-X, LRL-Mixture, LRL to cut mixture; 2-X, LRC-Mixture, LRC to cut mixture; 3-X, LIC-Mixture, LIC to cut mixture; 3-P, LIC to cut plasmid; 3-L, LIC-Lin, LIC to cut linearized plasmid; MS, supercoiled ladder. ( C ) I+III combination and Exonuclease VIII, truncated elimination tests. 5-X, VIII4-Mixture, Exonuclease VIII, truncated within Buffer 4 to remove mixture; 6-X, VIIIC-Mixture, Exonuclease VIII, truncated within CutSmart buffer to remove mixture; 4-X: I+III-Mixture, I+III to remove mixture. Loading samples for agarose gel electrophoresis were purified by phenol-chloroform.

    Journal: Nucleic Acids Research

    Article Title: Exonuclease combinations reduce noises in 3D genomics technologies

    doi: 10.1093/nar/gkaa106

    Figure Lengend Snippet: Experimental results for exonuclease combinations treatment. ( A ) The cleavage mechanism of Lamada and Exonuclease I combinations. Other exonuclease combinations (Lambda and RecJF; Exonuclease I and Exonuclease III) are shown in Supplementary Figure S1A and Supplementary Table S1 . ( B ) Three exonuclease combinations (LRL; LRC; LIC) removed linear DNA from a paradigm mixture. M, 1 kb DNA ladder; P, pGL4.23 plasmid; L, linearized plasmid; X, mixture (plasmid and linear DNA 1:1); 1-X, LRL-Mixture, LRL to cut mixture; 2-X, LRC-Mixture, LRC to cut mixture; 3-X, LIC-Mixture, LIC to cut mixture; 3-P, LIC to cut plasmid; 3-L, LIC-Lin, LIC to cut linearized plasmid; MS, supercoiled ladder. ( C ) I+III combination and Exonuclease VIII, truncated elimination tests. 5-X, VIII4-Mixture, Exonuclease VIII, truncated within Buffer 4 to remove mixture; 6-X, VIIIC-Mixture, Exonuclease VIII, truncated within CutSmart buffer to remove mixture; 4-X: I+III-Mixture, I+III to remove mixture. Loading samples for agarose gel electrophoresis were purified by phenol-chloroform.

    Article Snippet: After LRL (Lambda and RecJF within Lambda buffer) (NEB), LRC (Lambda and RecJF within Cutsmart buffer) (NEB), LIC (Lambda and Exonuclease I within Cutsmart buffer) (NEB) and I+IIIC (I+III or IIIIC) (Exonuclease I and Exonuclease III within Cutsmart buffer) (NEB) elimination, qPCR was performed.

    Techniques: Plasmid Preparation, Agarose Gel Electrophoresis, Purification

    Workflow for constructing expression clone containing two target-sgRNA expression cassettes with Golden Gate clone. Primers containing adaptors for Golden Gate cloning (OJH307 and OJH308) were used in the amplification with PJG090 as the template. The reagents were recommended as following: one ul of PCR product, 50 ng of PJG112, one ul of Cutsmart Buffer (NEB), 0.4 ul of T4 ligase buffer (NEB), 5 U of Bsa I (NEB), 20 U of T4 DNA ligase (NEB) and add ddH 2 O to 10 ul. The reaction was incubated for 20–25 cycles (37 °C 2 min, 20 °C 5 min), followed by incubation at 50 °C and 80 °C for 5 min, respectively. Subsequently, one ul of the product was introduced into Trans T1 competent cells. Positive clones were identified by clone PCR and sequenced.

    Journal: PeerJ

    Article Title: A simple and efficient cloning system for CRISPR/Cas9-mediated genome editing in rice

    doi: 10.7717/peerj.8491

    Figure Lengend Snippet: Workflow for constructing expression clone containing two target-sgRNA expression cassettes with Golden Gate clone. Primers containing adaptors for Golden Gate cloning (OJH307 and OJH308) were used in the amplification with PJG090 as the template. The reagents were recommended as following: one ul of PCR product, 50 ng of PJG112, one ul of Cutsmart Buffer (NEB), 0.4 ul of T4 ligase buffer (NEB), 5 U of Bsa I (NEB), 20 U of T4 DNA ligase (NEB) and add ddH 2 O to 10 ul. The reaction was incubated for 20–25 cycles (37 °C 2 min, 20 °C 5 min), followed by incubation at 50 °C and 80 °C for 5 min, respectively. Subsequently, one ul of the product was introduced into Trans T1 competent cells. Positive clones were identified by clone PCR and sequenced.

    Article Snippet: The reagents were recommended as following: one ul of PCR product, 50 ng of PJG112, 1 ul of Cutsmart Buffer (NEB), 0.4 ul of T4 ligase buffer (NEB), 5 U of Bsa I (NEB), 20 U of T4 DNA ligase (NEB) and add ddH2 O to 10 ul.

    Techniques: Expressing, Clone Assay, Amplification, Polymerase Chain Reaction, Incubation

    A total of 1225 tiled fluorescence microscopy images of a sample of E. coli genomic DNA labeled with Atto647N at sites reading 5′-TCGA-3′ using the M. Taq I DNA methyltransferase enzyme in order to direct labeling. The image contains approximately 500 megabases of genomic material and took of the order of 10 min to acquire.

    Journal: ACS Nano

    Article Title: Combing of Genomic DNA from Droplets Containing Picograms of Material

    doi: 10.1021/nn5063497

    Figure Lengend Snippet: A total of 1225 tiled fluorescence microscopy images of a sample of E. coli genomic DNA labeled with Atto647N at sites reading 5′-TCGA-3′ using the M. Taq I DNA methyltransferase enzyme in order to direct labeling. The image contains approximately 500 megabases of genomic material and took of the order of 10 min to acquire.

    Article Snippet: To the molten agarose we added 10 μL of NEB cutsmart buffer, 10 μL of M.Taq I DNA methyltransferase (New England Biolabs) and 10 μL of 1 mM AdoEnYn cofactor (5′-[(S )-[(3S )-3-amino-3-carboxylpropyl](E )-pent-2-en-4-ynylsulfonio]-5′-deoxyadenosine).

    Techniques: Fluorescence, Microscopy, Labeling