mut probdnf  (Alomone Labs)


Bioz Verified Symbol Alomone Labs is a verified supplier
Bioz Manufacturer Symbol Alomone Labs manufactures this product  
  • Logo
  • About
  • News
  • Press Release
  • Team
  • Advisors
  • Partners
  • Contact
  • Bioz Stars
  • Bioz vStars
  • 86

    Structured Review

    Alomone Labs mut probdnf
    proBNDF-mediated p75NTR activation in cortical PV cells reduces their perisomatic boutons. A , Experimental approach. B , The intensity of perisomatic PV immunostaining (green) is reduced in the binocular visual cortex ipsilateral to the minipump-releasing <t>mut-proBDNF</t> (Ipsi) compared with the contralateral cortex (Contra) in the same animal. On the other hand, perisomatic PV intensity in the ipsilateral cortex of PV_Cre;p75 flx/flx mice is similar to that observed in the contralateral, untreated cortex. C , Low ( C1 ) and high ( C2 ) magnification of PNN (red, WFA staining) enwrapping PV cells (green) shows a dramatic reduction in both PNN density and intensity in the visual cortex infused with mut-proBFNF. This effect is abolished in PV_Cre;p75 flx/flx mice. Scale bars: C1 , 100 μm; B , C2 , 10 μm. D , Quantification of the mean intensity of perisomatic PV-positive puncta in ipsilateral compared with contralateral cortex. I/C ratio is obtained for each animal and then averaged between different animals. Mean I/C ratio is significantly reduced in Mut-proBDNF-infused p75 Ctrl mice compared with Mut-proBDNF-infused PV_Cre;p75 flx/flx mice (unpaired t test, df = 8, t = 6.077, p = 0.0003). E , The ratio of mean PNN intensity around PV cells in ipsilateral versus contralateral cortex is significantly lower in p75 Ctrl than PV_Cre;p75 flx/flx mice infused with mut-proBDNF (unpaired t test, df = 8, t = 15.33, p
    Mut Probdnf, supplied by Alomone Labs, used in various techniques. Bioz Stars score: 86/100, based on 1 PubMed citations. ZERO BIAS - scores, article reviews, protocol conditions and more
    https://www.bioz.com/result/mut probdnf/product/Alomone Labs
    Average 86 stars, based on 1 article reviews
    Price from $9.99 to $1999.99
    mut probdnf - by Bioz Stars, 2022-05
    86/100 stars

    Images

    1) Product Images from "p75 Neurotrophin Receptor Activation Regulates the Timing of the Maturation of Cortical Parvalbumin Interneuron Connectivity and Promotes Juvenile-like Plasticity in Adult Visual Cortex"

    Article Title: p75 Neurotrophin Receptor Activation Regulates the Timing of the Maturation of Cortical Parvalbumin Interneuron Connectivity and Promotes Juvenile-like Plasticity in Adult Visual Cortex

    Journal: The Journal of Neuroscience

    doi: 10.1523/JNEUROSCI.2881-18.2019

    proBNDF-mediated p75NTR activation in cortical PV cells reduces their perisomatic boutons. A , Experimental approach. B , The intensity of perisomatic PV immunostaining (green) is reduced in the binocular visual cortex ipsilateral to the minipump-releasing mut-proBDNF (Ipsi) compared with the contralateral cortex (Contra) in the same animal. On the other hand, perisomatic PV intensity in the ipsilateral cortex of PV_Cre;p75 flx/flx mice is similar to that observed in the contralateral, untreated cortex. C , Low ( C1 ) and high ( C2 ) magnification of PNN (red, WFA staining) enwrapping PV cells (green) shows a dramatic reduction in both PNN density and intensity in the visual cortex infused with mut-proBFNF. This effect is abolished in PV_Cre;p75 flx/flx mice. Scale bars: C1 , 100 μm; B , C2 , 10 μm. D , Quantification of the mean intensity of perisomatic PV-positive puncta in ipsilateral compared with contralateral cortex. I/C ratio is obtained for each animal and then averaged between different animals. Mean I/C ratio is significantly reduced in Mut-proBDNF-infused p75 Ctrl mice compared with Mut-proBDNF-infused PV_Cre;p75 flx/flx mice (unpaired t test, df = 8, t = 6.077, p = 0.0003). E , The ratio of mean PNN intensity around PV cells in ipsilateral versus contralateral cortex is significantly lower in p75 Ctrl than PV_Cre;p75 flx/flx mice infused with mut-proBDNF (unpaired t test, df = 8, t = 15.33, p
    Figure Legend Snippet: proBNDF-mediated p75NTR activation in cortical PV cells reduces their perisomatic boutons. A , Experimental approach. B , The intensity of perisomatic PV immunostaining (green) is reduced in the binocular visual cortex ipsilateral to the minipump-releasing mut-proBDNF (Ipsi) compared with the contralateral cortex (Contra) in the same animal. On the other hand, perisomatic PV intensity in the ipsilateral cortex of PV_Cre;p75 flx/flx mice is similar to that observed in the contralateral, untreated cortex. C , Low ( C1 ) and high ( C2 ) magnification of PNN (red, WFA staining) enwrapping PV cells (green) shows a dramatic reduction in both PNN density and intensity in the visual cortex infused with mut-proBFNF. This effect is abolished in PV_Cre;p75 flx/flx mice. Scale bars: C1 , 100 μm; B , C2 , 10 μm. D , Quantification of the mean intensity of perisomatic PV-positive puncta in ipsilateral compared with contralateral cortex. I/C ratio is obtained for each animal and then averaged between different animals. Mean I/C ratio is significantly reduced in Mut-proBDNF-infused p75 Ctrl mice compared with Mut-proBDNF-infused PV_Cre;p75 flx/flx mice (unpaired t test, df = 8, t = 6.077, p = 0.0003). E , The ratio of mean PNN intensity around PV cells in ipsilateral versus contralateral cortex is significantly lower in p75 Ctrl than PV_Cre;p75 flx/flx mice infused with mut-proBDNF (unpaired t test, df = 8, t = 15.33, p

    Techniques Used: Activation Assay, Immunostaining, Mouse Assay, Staining

    Modulation of tPA activity affects the formation of PV cell innervations during early postnatal development. A , Control EP18 PV cell ( A1 , green represents Ctrl). B , PV cell treated with the tPA inhibitor PPACK from EP10–EP18 shows simpler axonal arborization, contacting less potential targets ( B2 , blue represents NeuN-positive somata). C , PV cell treated with tPA in the same time window shows a very complex axonal arbor ( C2 ) and an increase in both terminal branching and perisomatic boutons ( C3 , arrowheads) compared with control cells ( A2 , A3 ). D , PV cell treated simultaneously with tPA and mut-proBDNF shows axonal branching and perisomatic innervation more similar to those formed by PV cell treated with mut-proBDNF alone, suggesting that the effects of tPA application may be mediated by a decrease in endogenous proBDNF/mBDNF ratio. Stars indicate NeuN-positive somata that are not innervated. Scale bars: A1–D1 , 50 μm; A2–D2 , 10 μm; A3–D3 , 5 μm. E , Perisomatic boutons density (one-way ANOVA, F (3,20) = 121.2, p
    Figure Legend Snippet: Modulation of tPA activity affects the formation of PV cell innervations during early postnatal development. A , Control EP18 PV cell ( A1 , green represents Ctrl). B , PV cell treated with the tPA inhibitor PPACK from EP10–EP18 shows simpler axonal arborization, contacting less potential targets ( B2 , blue represents NeuN-positive somata). C , PV cell treated with tPA in the same time window shows a very complex axonal arbor ( C2 ) and an increase in both terminal branching and perisomatic boutons ( C3 , arrowheads) compared with control cells ( A2 , A3 ). D , PV cell treated simultaneously with tPA and mut-proBDNF shows axonal branching and perisomatic innervation more similar to those formed by PV cell treated with mut-proBDNF alone, suggesting that the effects of tPA application may be mediated by a decrease in endogenous proBDNF/mBDNF ratio. Stars indicate NeuN-positive somata that are not innervated. Scale bars: A1–D1 , 50 μm; A2–D2 , 10 μm; A3–D3 , 5 μm. E , Perisomatic boutons density (one-way ANOVA, F (3,20) = 121.2, p

    Techniques Used: Activity Assay

    proBNDF-mediated p75NTR activation in cortical PV cells restores ocular dominance plasticity in adult visual cortex in vivo . A , Typical VEP responses to the stimulation of either contralateral (blue) or ipsilateral (red) eye to the cortex in which the recording is performed in p75NTR Ctrl mice infused with either vehicle or mut-proBDNF, and PV_Cre;p75NTR flx/flx mice infused with mut-proBDNF. Calibration bars: 50 μV, 100 ms. B , C/I VEP ratio mean values. Three days of monocular deprivation do not affect the C/I VEP ratio in adult mice, although it leads to a significant decrease in the C/I VEP ratio in animals treated with mut-proBDNF. Mut-proBDNF effects are, however, abolished in PV_Cre;p75 flx/flx mice (one-way ANOVA, F (2,18) = 8.903, p = 0.0021). p75NTR Ctrl + vehicle: n = 9 mice; p75NTR Ctrl + mut-proBDNF: n = 5 mice; PV_Cre;p75 flx/flx +mut-proBDNF: n = 7 mice. C , ODI of p75NTR Ctrl mice infused with vehicle solution and PV_Cre;p75 flx/flx mice infused with mut-proBDNF are not significantly different from those of undeprived animals, whereas ODIs in p75 Ctrl mice treated with mut-proBDNF are significantly shifted toward the open eye (one-way ANOVA, F (2,443) = 5.203, p = 0.0058). D , Mean spontaneous discharge is significantly increased only in p75 Ctrl mice treated with mut-proBDNF (one-way ANOVA, F (2,443) = 4.580, p = 0.0107). p75NTR Ctrl + vehicle: n = 9 mice, 174 cells; p75NTR Ctrl + mut-proBDNF: n = 5 mice, 147 cells; PV_Cre;p75 flx/flx +mut-proBDNF: n = 6 mice, 125 cells. Gray area represents the C/I VEP ratio ( B ) or the ODI range ( C ) (mean ± SEM) in adult nondeprived animals ( n = 5 mice, 99 cells). * indicate p
    Figure Legend Snippet: proBNDF-mediated p75NTR activation in cortical PV cells restores ocular dominance plasticity in adult visual cortex in vivo . A , Typical VEP responses to the stimulation of either contralateral (blue) or ipsilateral (red) eye to the cortex in which the recording is performed in p75NTR Ctrl mice infused with either vehicle or mut-proBDNF, and PV_Cre;p75NTR flx/flx mice infused with mut-proBDNF. Calibration bars: 50 μV, 100 ms. B , C/I VEP ratio mean values. Three days of monocular deprivation do not affect the C/I VEP ratio in adult mice, although it leads to a significant decrease in the C/I VEP ratio in animals treated with mut-proBDNF. Mut-proBDNF effects are, however, abolished in PV_Cre;p75 flx/flx mice (one-way ANOVA, F (2,18) = 8.903, p = 0.0021). p75NTR Ctrl + vehicle: n = 9 mice; p75NTR Ctrl + mut-proBDNF: n = 5 mice; PV_Cre;p75 flx/flx +mut-proBDNF: n = 7 mice. C , ODI of p75NTR Ctrl mice infused with vehicle solution and PV_Cre;p75 flx/flx mice infused with mut-proBDNF are not significantly different from those of undeprived animals, whereas ODIs in p75 Ctrl mice treated with mut-proBDNF are significantly shifted toward the open eye (one-way ANOVA, F (2,443) = 5.203, p = 0.0058). D , Mean spontaneous discharge is significantly increased only in p75 Ctrl mice treated with mut-proBDNF (one-way ANOVA, F (2,443) = 4.580, p = 0.0107). p75NTR Ctrl + vehicle: n = 9 mice, 174 cells; p75NTR Ctrl + mut-proBDNF: n = 5 mice, 147 cells; PV_Cre;p75 flx/flx +mut-proBDNF: n = 6 mice, 125 cells. Gray area represents the C/I VEP ratio ( B ) or the ODI range ( C ) (mean ± SEM) in adult nondeprived animals ( n = 5 mice, 99 cells). * indicate p

    Techniques Used: Activation Assay, In Vivo, Mouse Assay, Mass Spectrometry

    mut-proBDNF destabilizes PV cell innervation, even after it has reached maturity. A , Control PV cell ( A1 , Ctrl, green) at EP32 with exuberant innervation field characterized by extensive branching contacting the majority of potential targets, dense boutons along axons ( A2 ), and terminal branches with prominent and clustered boutons ( A3 ; arrowheads) around NeuN-positive somata (blue). B , PV cell treated with wt-proBDNF from EP26-EP32 shows overall similar axon size ( B1 ), percentage of potentially targeted neurons ( B2 ), and perisomatic innervations ( B3 ) as control, untreated PV cells. C , PV cell treated with mut-proBDNF from EP26-EP32 shows a drastic reduction both in percentage of innervated cells ( C2 ) and perisomatic innervation ( C3 ). Stars indicate NeuN-positive somata that are not innervated. Scale bars: A1–C1 , 50 μm; A2–C2 , 10 μm; A3–C3 , 5 μm. D , Perisomatic bouton density (one-way ANOVA, F (2,18) = 93.34, p
    Figure Legend Snippet: mut-proBDNF destabilizes PV cell innervation, even after it has reached maturity. A , Control PV cell ( A1 , Ctrl, green) at EP32 with exuberant innervation field characterized by extensive branching contacting the majority of potential targets, dense boutons along axons ( A2 ), and terminal branches with prominent and clustered boutons ( A3 ; arrowheads) around NeuN-positive somata (blue). B , PV cell treated with wt-proBDNF from EP26-EP32 shows overall similar axon size ( B1 ), percentage of potentially targeted neurons ( B2 ), and perisomatic innervations ( B3 ) as control, untreated PV cells. C , PV cell treated with mut-proBDNF from EP26-EP32 shows a drastic reduction both in percentage of innervated cells ( C2 ) and perisomatic innervation ( C3 ). Stars indicate NeuN-positive somata that are not innervated. Scale bars: A1–C1 , 50 μm; A2–C2 , 10 μm; A3–C3 , 5 μm. D , Perisomatic bouton density (one-way ANOVA, F (2,18) = 93.34, p

    Techniques Used:

    2) Product Images from "p75 Neurotrophin Receptor Regulates the Timing of the Maturation of Cortical Parvalbumin Cell Connectivity and Promotes Ocular Dominance Plasticity in Adult Visual Cortex"

    Article Title: p75 Neurotrophin Receptor Regulates the Timing of the Maturation of Cortical Parvalbumin Cell Connectivity and Promotes Ocular Dominance Plasticity in Adult Visual Cortex

    Journal: bioRxiv

    doi: 10.1101/392159

    proBNDF-mediated p75NTR activation in cortical PV cells reduces their perisomatic boutons and restores ocular dominance plasticity in adult visual cortex in vivo . (a) Experimental approach. (b) The number of immunolabeled PV-positive puncta (green) surrounding NeuN-positive neuronal somata (red) is reduced in the binocular visual cortex ipsilateral to the minipump releasing mut-proBDNF (Ipsi) compared to the contralateral cortex (Contra) in the same animal. On the other hand, the number of PV-positive puncta per NeuN-positive profile in the ipsilateral cortex of PV-CRE; p75 flx/flx mice is similar to that observed in the contralateral, untreated cortex. (c) Low (c1) and high (c2) magnification of PNN (red, WFA staining) enwrapping PV cells (green) show a dramatic reduction in both PNN density and intensity in the visual cortex infused with mut-proBFNF. This effects is abolished in PV-CRE; p75 flx/flx mice. Scale bar, c1: 100µm; b, c2: 10µm. (d) Quantification of the mean number of PV-positive puncta per NeuN-positive profile in ipsilateral compared to contralateral cortex. Ipsi/Contra ratio is obtained for each animal, and then averaged between different animals. Mean Ipsi/Contra ratio is significantly reduced in Mut-proBDNF infused p75 Ctrl but not in PV-CRE; p75 flx/flx mice (t-test, p
    Figure Legend Snippet: proBNDF-mediated p75NTR activation in cortical PV cells reduces their perisomatic boutons and restores ocular dominance plasticity in adult visual cortex in vivo . (a) Experimental approach. (b) The number of immunolabeled PV-positive puncta (green) surrounding NeuN-positive neuronal somata (red) is reduced in the binocular visual cortex ipsilateral to the minipump releasing mut-proBDNF (Ipsi) compared to the contralateral cortex (Contra) in the same animal. On the other hand, the number of PV-positive puncta per NeuN-positive profile in the ipsilateral cortex of PV-CRE; p75 flx/flx mice is similar to that observed in the contralateral, untreated cortex. (c) Low (c1) and high (c2) magnification of PNN (red, WFA staining) enwrapping PV cells (green) show a dramatic reduction in both PNN density and intensity in the visual cortex infused with mut-proBFNF. This effects is abolished in PV-CRE; p75 flx/flx mice. Scale bar, c1: 100µm; b, c2: 10µm. (d) Quantification of the mean number of PV-positive puncta per NeuN-positive profile in ipsilateral compared to contralateral cortex. Ipsi/Contra ratio is obtained for each animal, and then averaged between different animals. Mean Ipsi/Contra ratio is significantly reduced in Mut-proBDNF infused p75 Ctrl but not in PV-CRE; p75 flx/flx mice (t-test, p

    Techniques Used: Activation Assay, In Vivo, Immunolabeling, Mouse Assay, Staining, T-Test

    mut-proBDNF can destabilize PV cell innervation even after it has reached maturity. (a) Control PV cell (a1, Ctrl, green) at EP32 with exuberant innervation field characterized by extensive branching contacting the majority of potential targets, dense boutons along axons (a2), and terminal branches with prominent and clustered boutons (a3; arrowheads) around pyramidal cell somata (NeuN immunostaining, blue). (b) PV cell treated with wt-proBDNF from EP26-32 shows overall similar axon size (b1), percentage of potentially targeted neurons (B2) and perisomatic innervations (b3) as control, untreated PV cells. (c) PV cell treated with mut-proBDNF from EP26-32 shows a drastic reduction both in percentage of innervated cells (c2) and perisomatic innervation (c3). Stars indicate pyramidal cells somata that are not innervated. Scale bar, a1-c1: 50µm; a2-c2: 10µm; a3-c3: 5µm. (d) Perisomatic bouton density (e) terminal branching and (f) percentage of innervated cells of the three experimental groups. One-way Anova, post hoc Tukey test, p
    Figure Legend Snippet: mut-proBDNF can destabilize PV cell innervation even after it has reached maturity. (a) Control PV cell (a1, Ctrl, green) at EP32 with exuberant innervation field characterized by extensive branching contacting the majority of potential targets, dense boutons along axons (a2), and terminal branches with prominent and clustered boutons (a3; arrowheads) around pyramidal cell somata (NeuN immunostaining, blue). (b) PV cell treated with wt-proBDNF from EP26-32 shows overall similar axon size (b1), percentage of potentially targeted neurons (B2) and perisomatic innervations (b3) as control, untreated PV cells. (c) PV cell treated with mut-proBDNF from EP26-32 shows a drastic reduction both in percentage of innervated cells (c2) and perisomatic innervation (c3). Stars indicate pyramidal cells somata that are not innervated. Scale bar, a1-c1: 50µm; a2-c2: 10µm; a3-c3: 5µm. (d) Perisomatic bouton density (e) terminal branching and (f) percentage of innervated cells of the three experimental groups. One-way Anova, post hoc Tukey test, p

    Techniques Used: Immunostaining

    3) Product Images from "p75 Neurotrophin Receptor Activation Regulates the Timing of the Maturation of Cortical Parvalbumin Interneuron Connectivity and Promotes Juvenile-like Plasticity in Adult Visual Cortex"

    Article Title: p75 Neurotrophin Receptor Activation Regulates the Timing of the Maturation of Cortical Parvalbumin Interneuron Connectivity and Promotes Juvenile-like Plasticity in Adult Visual Cortex

    Journal: The Journal of Neuroscience

    doi: 10.1523/JNEUROSCI.2881-18.2019

    proBNDF-mediated p75NTR activation in cortical PV cells reduces their perisomatic boutons. A , Experimental approach. B , The intensity of perisomatic PV immunostaining (green) is reduced in the binocular visual cortex ipsilateral to the minipump-releasing mut-proBDNF (Ipsi) compared with the contralateral cortex (Contra) in the same animal. On the other hand, perisomatic PV intensity in the ipsilateral cortex of PV_Cre;p75 flx/flx mice is similar to that observed in the contralateral, untreated cortex. C , Low ( C1 ) and high ( C2 ) magnification of PNN (red, WFA staining) enwrapping PV cells (green) shows a dramatic reduction in both PNN density and intensity in the visual cortex infused with mut-proBFNF. This effect is abolished in PV_Cre;p75 flx/flx mice. Scale bars: C1 , 100 μm; B , C2 , 10 μm. D , Quantification of the mean intensity of perisomatic PV-positive puncta in ipsilateral compared with contralateral cortex. I/C ratio is obtained for each animal and then averaged between different animals. Mean I/C ratio is significantly reduced in Mut-proBDNF-infused p75 Ctrl mice compared with Mut-proBDNF-infused PV_Cre;p75 flx/flx mice (unpaired t test, df = 8, t = 6.077, p = 0.0003). E , The ratio of mean PNN intensity around PV cells in ipsilateral versus contralateral cortex is significantly lower in p75 Ctrl than PV_Cre;p75 flx/flx mice infused with mut-proBDNF (unpaired t test, df = 8, t = 15.33, p
    Figure Legend Snippet: proBNDF-mediated p75NTR activation in cortical PV cells reduces their perisomatic boutons. A , Experimental approach. B , The intensity of perisomatic PV immunostaining (green) is reduced in the binocular visual cortex ipsilateral to the minipump-releasing mut-proBDNF (Ipsi) compared with the contralateral cortex (Contra) in the same animal. On the other hand, perisomatic PV intensity in the ipsilateral cortex of PV_Cre;p75 flx/flx mice is similar to that observed in the contralateral, untreated cortex. C , Low ( C1 ) and high ( C2 ) magnification of PNN (red, WFA staining) enwrapping PV cells (green) shows a dramatic reduction in both PNN density and intensity in the visual cortex infused with mut-proBFNF. This effect is abolished in PV_Cre;p75 flx/flx mice. Scale bars: C1 , 100 μm; B , C2 , 10 μm. D , Quantification of the mean intensity of perisomatic PV-positive puncta in ipsilateral compared with contralateral cortex. I/C ratio is obtained for each animal and then averaged between different animals. Mean I/C ratio is significantly reduced in Mut-proBDNF-infused p75 Ctrl mice compared with Mut-proBDNF-infused PV_Cre;p75 flx/flx mice (unpaired t test, df = 8, t = 6.077, p = 0.0003). E , The ratio of mean PNN intensity around PV cells in ipsilateral versus contralateral cortex is significantly lower in p75 Ctrl than PV_Cre;p75 flx/flx mice infused with mut-proBDNF (unpaired t test, df = 8, t = 15.33, p

    Techniques Used: Activation Assay, Immunostaining, Mouse Assay, Staining

    Modulation of tPA activity affects the formation of PV cell innervations during early postnatal development. A , Control EP18 PV cell ( A1 , green represents Ctrl). B , PV cell treated with the tPA inhibitor PPACK from EP10–EP18 shows simpler axonal arborization, contacting less potential targets ( B2 , blue represents NeuN-positive somata). C , PV cell treated with tPA in the same time window shows a very complex axonal arbor ( C2 ) and an increase in both terminal branching and perisomatic boutons ( C3 , arrowheads) compared with control cells ( A2 , A3 ). D , PV cell treated simultaneously with tPA and mut-proBDNF shows axonal branching and perisomatic innervation more similar to those formed by PV cell treated with mut-proBDNF alone, suggesting that the effects of tPA application may be mediated by a decrease in endogenous proBDNF/mBDNF ratio. Stars indicate NeuN-positive somata that are not innervated. Scale bars: A1–D1 , 50 μm; A2–D2 , 10 μm; A3–D3 , 5 μm. E , Perisomatic boutons density (one-way ANOVA, F (3,20) = 121.2, p
    Figure Legend Snippet: Modulation of tPA activity affects the formation of PV cell innervations during early postnatal development. A , Control EP18 PV cell ( A1 , green represents Ctrl). B , PV cell treated with the tPA inhibitor PPACK from EP10–EP18 shows simpler axonal arborization, contacting less potential targets ( B2 , blue represents NeuN-positive somata). C , PV cell treated with tPA in the same time window shows a very complex axonal arbor ( C2 ) and an increase in both terminal branching and perisomatic boutons ( C3 , arrowheads) compared with control cells ( A2 , A3 ). D , PV cell treated simultaneously with tPA and mut-proBDNF shows axonal branching and perisomatic innervation more similar to those formed by PV cell treated with mut-proBDNF alone, suggesting that the effects of tPA application may be mediated by a decrease in endogenous proBDNF/mBDNF ratio. Stars indicate NeuN-positive somata that are not innervated. Scale bars: A1–D1 , 50 μm; A2–D2 , 10 μm; A3–D3 , 5 μm. E , Perisomatic boutons density (one-way ANOVA, F (3,20) = 121.2, p

    Techniques Used: Activity Assay

    proBNDF-mediated p75NTR activation in cortical PV cells restores ocular dominance plasticity in adult visual cortex in vivo . A , Typical VEP responses to the stimulation of either contralateral (blue) or ipsilateral (red) eye to the cortex in which the recording is performed in p75NTR Ctrl mice infused with either vehicle or mut-proBDNF, and PV_Cre;p75NTR flx/flx mice infused with mut-proBDNF. Calibration bars: 50 μV, 100 ms. B , C/I VEP ratio mean values. Three days of monocular deprivation do not affect the C/I VEP ratio in adult mice, although it leads to a significant decrease in the C/I VEP ratio in animals treated with mut-proBDNF. Mut-proBDNF effects are, however, abolished in PV_Cre;p75 flx/flx mice (one-way ANOVA, F (2,18) = 8.903, p = 0.0021). p75NTR Ctrl + vehicle: n = 9 mice; p75NTR Ctrl + mut-proBDNF: n = 5 mice; PV_Cre;p75 flx/flx +mut-proBDNF: n = 7 mice. C , ODI of p75NTR Ctrl mice infused with vehicle solution and PV_Cre;p75 flx/flx mice infused with mut-proBDNF are not significantly different from those of undeprived animals, whereas ODIs in p75 Ctrl mice treated with mut-proBDNF are significantly shifted toward the open eye (one-way ANOVA, F (2,443) = 5.203, p = 0.0058). D , Mean spontaneous discharge is significantly increased only in p75 Ctrl mice treated with mut-proBDNF (one-way ANOVA, F (2,443) = 4.580, p = 0.0107). p75NTR Ctrl + vehicle: n = 9 mice, 174 cells; p75NTR Ctrl + mut-proBDNF: n = 5 mice, 147 cells; PV_Cre;p75 flx/flx +mut-proBDNF: n = 6 mice, 125 cells. Gray area represents the C/I VEP ratio ( B ) or the ODI range ( C ) (mean ± SEM) in adult nondeprived animals ( n = 5 mice, 99 cells). * indicate p
    Figure Legend Snippet: proBNDF-mediated p75NTR activation in cortical PV cells restores ocular dominance plasticity in adult visual cortex in vivo . A , Typical VEP responses to the stimulation of either contralateral (blue) or ipsilateral (red) eye to the cortex in which the recording is performed in p75NTR Ctrl mice infused with either vehicle or mut-proBDNF, and PV_Cre;p75NTR flx/flx mice infused with mut-proBDNF. Calibration bars: 50 μV, 100 ms. B , C/I VEP ratio mean values. Three days of monocular deprivation do not affect the C/I VEP ratio in adult mice, although it leads to a significant decrease in the C/I VEP ratio in animals treated with mut-proBDNF. Mut-proBDNF effects are, however, abolished in PV_Cre;p75 flx/flx mice (one-way ANOVA, F (2,18) = 8.903, p = 0.0021). p75NTR Ctrl + vehicle: n = 9 mice; p75NTR Ctrl + mut-proBDNF: n = 5 mice; PV_Cre;p75 flx/flx +mut-proBDNF: n = 7 mice. C , ODI of p75NTR Ctrl mice infused with vehicle solution and PV_Cre;p75 flx/flx mice infused with mut-proBDNF are not significantly different from those of undeprived animals, whereas ODIs in p75 Ctrl mice treated with mut-proBDNF are significantly shifted toward the open eye (one-way ANOVA, F (2,443) = 5.203, p = 0.0058). D , Mean spontaneous discharge is significantly increased only in p75 Ctrl mice treated with mut-proBDNF (one-way ANOVA, F (2,443) = 4.580, p = 0.0107). p75NTR Ctrl + vehicle: n = 9 mice, 174 cells; p75NTR Ctrl + mut-proBDNF: n = 5 mice, 147 cells; PV_Cre;p75 flx/flx +mut-proBDNF: n = 6 mice, 125 cells. Gray area represents the C/I VEP ratio ( B ) or the ODI range ( C ) (mean ± SEM) in adult nondeprived animals ( n = 5 mice, 99 cells). * indicate p

    Techniques Used: Activation Assay, In Vivo, Mouse Assay, Mass Spectrometry

    mut-proBDNF destabilizes PV cell innervation, even after it has reached maturity. A , Control PV cell ( A1 , Ctrl, green) at EP32 with exuberant innervation field characterized by extensive branching contacting the majority of potential targets, dense boutons along axons ( A2 ), and terminal branches with prominent and clustered boutons ( A3 ; arrowheads) around NeuN-positive somata (blue). B , PV cell treated with wt-proBDNF from EP26-EP32 shows overall similar axon size ( B1 ), percentage of potentially targeted neurons ( B2 ), and perisomatic innervations ( B3 ) as control, untreated PV cells. C , PV cell treated with mut-proBDNF from EP26-EP32 shows a drastic reduction both in percentage of innervated cells ( C2 ) and perisomatic innervation ( C3 ). Stars indicate NeuN-positive somata that are not innervated. Scale bars: A1–C1 , 50 μm; A2–C2 , 10 μm; A3–C3 , 5 μm. D , Perisomatic bouton density (one-way ANOVA, F (2,18) = 93.34, p
    Figure Legend Snippet: mut-proBDNF destabilizes PV cell innervation, even after it has reached maturity. A , Control PV cell ( A1 , Ctrl, green) at EP32 with exuberant innervation field characterized by extensive branching contacting the majority of potential targets, dense boutons along axons ( A2 ), and terminal branches with prominent and clustered boutons ( A3 ; arrowheads) around NeuN-positive somata (blue). B , PV cell treated with wt-proBDNF from EP26-EP32 shows overall similar axon size ( B1 ), percentage of potentially targeted neurons ( B2 ), and perisomatic innervations ( B3 ) as control, untreated PV cells. C , PV cell treated with mut-proBDNF from EP26-EP32 shows a drastic reduction both in percentage of innervated cells ( C2 ) and perisomatic innervation ( C3 ). Stars indicate NeuN-positive somata that are not innervated. Scale bars: A1–C1 , 50 μm; A2–C2 , 10 μm; A3–C3 , 5 μm. D , Perisomatic bouton density (one-way ANOVA, F (2,18) = 93.34, p

    Techniques Used:

    4) Product Images from "p75 Neurotrophin Receptor Regulates the Timing of the Maturation of Cortical Parvalbumin Cell Connectivity and Promotes Ocular Dominance Plasticity in Adult Visual Cortex"

    Article Title: p75 Neurotrophin Receptor Regulates the Timing of the Maturation of Cortical Parvalbumin Cell Connectivity and Promotes Ocular Dominance Plasticity in Adult Visual Cortex

    Journal: bioRxiv

    doi: 10.1101/392159

    proBNDF-mediated p75NTR activation in cortical PV cells reduces their perisomatic boutons and restores ocular dominance plasticity in adult visual cortex in vivo . (a) Experimental approach. (b) The number of immunolabeled PV-positive puncta (green) surrounding NeuN-positive neuronal somata (red) is reduced in the binocular visual cortex ipsilateral to the minipump releasing mut-proBDNF (Ipsi) compared to the contralateral cortex (Contra) in the same animal. On the other hand, the number of PV-positive puncta per NeuN-positive profile in the ipsilateral cortex of PV-CRE; p75 flx/flx mice is similar to that observed in the contralateral, untreated cortex. (c) Low (c1) and high (c2) magnification of PNN (red, WFA staining) enwrapping PV cells (green) show a dramatic reduction in both PNN density and intensity in the visual cortex infused with mut-proBFNF. This effects is abolished in PV-CRE; p75 flx/flx mice. Scale bar, c1: 100µm; b, c2: 10µm. (d) Quantification of the mean number of PV-positive puncta per NeuN-positive profile in ipsilateral compared to contralateral cortex. Ipsi/Contra ratio is obtained for each animal, and then averaged between different animals. Mean Ipsi/Contra ratio is significantly reduced in Mut-proBDNF infused p75 Ctrl but not in PV-CRE; p75 flx/flx mice (t-test, p
    Figure Legend Snippet: proBNDF-mediated p75NTR activation in cortical PV cells reduces their perisomatic boutons and restores ocular dominance plasticity in adult visual cortex in vivo . (a) Experimental approach. (b) The number of immunolabeled PV-positive puncta (green) surrounding NeuN-positive neuronal somata (red) is reduced in the binocular visual cortex ipsilateral to the minipump releasing mut-proBDNF (Ipsi) compared to the contralateral cortex (Contra) in the same animal. On the other hand, the number of PV-positive puncta per NeuN-positive profile in the ipsilateral cortex of PV-CRE; p75 flx/flx mice is similar to that observed in the contralateral, untreated cortex. (c) Low (c1) and high (c2) magnification of PNN (red, WFA staining) enwrapping PV cells (green) show a dramatic reduction in both PNN density and intensity in the visual cortex infused with mut-proBFNF. This effects is abolished in PV-CRE; p75 flx/flx mice. Scale bar, c1: 100µm; b, c2: 10µm. (d) Quantification of the mean number of PV-positive puncta per NeuN-positive profile in ipsilateral compared to contralateral cortex. Ipsi/Contra ratio is obtained for each animal, and then averaged between different animals. Mean Ipsi/Contra ratio is significantly reduced in Mut-proBDNF infused p75 Ctrl but not in PV-CRE; p75 flx/flx mice (t-test, p

    Techniques Used: Activation Assay, In Vivo, Immunolabeling, Mouse Assay, Staining, T-Test

    mut-proBDNF can destabilize PV cell innervation even after it has reached maturity. (a) Control PV cell (a1, Ctrl, green) at EP32 with exuberant innervation field characterized by extensive branching contacting the majority of potential targets, dense boutons along axons (a2), and terminal branches with prominent and clustered boutons (a3; arrowheads) around pyramidal cell somata (NeuN immunostaining, blue). (b) PV cell treated with wt-proBDNF from EP26-32 shows overall similar axon size (b1), percentage of potentially targeted neurons (B2) and perisomatic innervations (b3) as control, untreated PV cells. (c) PV cell treated with mut-proBDNF from EP26-32 shows a drastic reduction both in percentage of innervated cells (c2) and perisomatic innervation (c3). Stars indicate pyramidal cells somata that are not innervated. Scale bar, a1-c1: 50µm; a2-c2: 10µm; a3-c3: 5µm. (d) Perisomatic bouton density (e) terminal branching and (f) percentage of innervated cells of the three experimental groups. One-way Anova, post hoc Tukey test, p
    Figure Legend Snippet: mut-proBDNF can destabilize PV cell innervation even after it has reached maturity. (a) Control PV cell (a1, Ctrl, green) at EP32 with exuberant innervation field characterized by extensive branching contacting the majority of potential targets, dense boutons along axons (a2), and terminal branches with prominent and clustered boutons (a3; arrowheads) around pyramidal cell somata (NeuN immunostaining, blue). (b) PV cell treated with wt-proBDNF from EP26-32 shows overall similar axon size (b1), percentage of potentially targeted neurons (B2) and perisomatic innervations (b3) as control, untreated PV cells. (c) PV cell treated with mut-proBDNF from EP26-32 shows a drastic reduction both in percentage of innervated cells (c2) and perisomatic innervation (c3). Stars indicate pyramidal cells somata that are not innervated. Scale bar, a1-c1: 50µm; a2-c2: 10µm; a3-c3: 5µm. (d) Perisomatic bouton density (e) terminal branching and (f) percentage of innervated cells of the three experimental groups. One-way Anova, post hoc Tukey test, p

    Techniques Used: Immunostaining

    5) Product Images from "p75 Neurotrophin Receptor Activation Regulates the Timing of the Maturation of Cortical Parvalbumin Interneuron Connectivity and Promotes Juvenile-like Plasticity in Adult Visual Cortex"

    Article Title: p75 Neurotrophin Receptor Activation Regulates the Timing of the Maturation of Cortical Parvalbumin Interneuron Connectivity and Promotes Juvenile-like Plasticity in Adult Visual Cortex

    Journal: The Journal of Neuroscience

    doi: 10.1523/JNEUROSCI.2881-18.2019

    proBNDF-mediated p75NTR activation in cortical PV cells reduces their perisomatic boutons. A , Experimental approach. B , The intensity of perisomatic PV immunostaining (green) is reduced in the binocular visual cortex ipsilateral to the minipump-releasing mut-proBDNF (Ipsi) compared with the contralateral cortex (Contra) in the same animal. On the other hand, perisomatic PV intensity in the ipsilateral cortex of PV_Cre;p75 flx/flx mice is similar to that observed in the contralateral, untreated cortex. C , Low ( C1 ) and high ( C2 ) magnification of PNN (red, WFA staining) enwrapping PV cells (green) shows a dramatic reduction in both PNN density and intensity in the visual cortex infused with mut-proBFNF. This effect is abolished in PV_Cre;p75 flx/flx mice. Scale bars: C1 , 100 μm; B , C2 , 10 μm. D , Quantification of the mean intensity of perisomatic PV-positive puncta in ipsilateral compared with contralateral cortex. I/C ratio is obtained for each animal and then averaged between different animals. Mean I/C ratio is significantly reduced in Mut-proBDNF-infused p75 Ctrl mice compared with Mut-proBDNF-infused PV_Cre;p75 flx/flx mice (unpaired t test, df = 8, t = 6.077, p = 0.0003). E , The ratio of mean PNN intensity around PV cells in ipsilateral versus contralateral cortex is significantly lower in p75 Ctrl than PV_Cre;p75 flx/flx mice infused with mut-proBDNF (unpaired t test, df = 8, t = 15.33, p
    Figure Legend Snippet: proBNDF-mediated p75NTR activation in cortical PV cells reduces their perisomatic boutons. A , Experimental approach. B , The intensity of perisomatic PV immunostaining (green) is reduced in the binocular visual cortex ipsilateral to the minipump-releasing mut-proBDNF (Ipsi) compared with the contralateral cortex (Contra) in the same animal. On the other hand, perisomatic PV intensity in the ipsilateral cortex of PV_Cre;p75 flx/flx mice is similar to that observed in the contralateral, untreated cortex. C , Low ( C1 ) and high ( C2 ) magnification of PNN (red, WFA staining) enwrapping PV cells (green) shows a dramatic reduction in both PNN density and intensity in the visual cortex infused with mut-proBFNF. This effect is abolished in PV_Cre;p75 flx/flx mice. Scale bars: C1 , 100 μm; B , C2 , 10 μm. D , Quantification of the mean intensity of perisomatic PV-positive puncta in ipsilateral compared with contralateral cortex. I/C ratio is obtained for each animal and then averaged between different animals. Mean I/C ratio is significantly reduced in Mut-proBDNF-infused p75 Ctrl mice compared with Mut-proBDNF-infused PV_Cre;p75 flx/flx mice (unpaired t test, df = 8, t = 6.077, p = 0.0003). E , The ratio of mean PNN intensity around PV cells in ipsilateral versus contralateral cortex is significantly lower in p75 Ctrl than PV_Cre;p75 flx/flx mice infused with mut-proBDNF (unpaired t test, df = 8, t = 15.33, p

    Techniques Used: Activation Assay, Immunostaining, Mouse Assay, Staining

    Modulation of tPA activity affects the formation of PV cell innervations during early postnatal development. A , Control EP18 PV cell ( A1 , green represents Ctrl). B , PV cell treated with the tPA inhibitor PPACK from EP10–EP18 shows simpler axonal arborization, contacting less potential targets ( B2 , blue represents NeuN-positive somata). C , PV cell treated with tPA in the same time window shows a very complex axonal arbor ( C2 ) and an increase in both terminal branching and perisomatic boutons ( C3 , arrowheads) compared with control cells ( A2 , A3 ). D , PV cell treated simultaneously with tPA and mut-proBDNF shows axonal branching and perisomatic innervation more similar to those formed by PV cell treated with mut-proBDNF alone, suggesting that the effects of tPA application may be mediated by a decrease in endogenous proBDNF/mBDNF ratio. Stars indicate NeuN-positive somata that are not innervated. Scale bars: A1–D1 , 50 μm; A2–D2 , 10 μm; A3–D3 , 5 μm. E , Perisomatic boutons density (one-way ANOVA, F (3,20) = 121.2, p
    Figure Legend Snippet: Modulation of tPA activity affects the formation of PV cell innervations during early postnatal development. A , Control EP18 PV cell ( A1 , green represents Ctrl). B , PV cell treated with the tPA inhibitor PPACK from EP10–EP18 shows simpler axonal arborization, contacting less potential targets ( B2 , blue represents NeuN-positive somata). C , PV cell treated with tPA in the same time window shows a very complex axonal arbor ( C2 ) and an increase in both terminal branching and perisomatic boutons ( C3 , arrowheads) compared with control cells ( A2 , A3 ). D , PV cell treated simultaneously with tPA and mut-proBDNF shows axonal branching and perisomatic innervation more similar to those formed by PV cell treated with mut-proBDNF alone, suggesting that the effects of tPA application may be mediated by a decrease in endogenous proBDNF/mBDNF ratio. Stars indicate NeuN-positive somata that are not innervated. Scale bars: A1–D1 , 50 μm; A2–D2 , 10 μm; A3–D3 , 5 μm. E , Perisomatic boutons density (one-way ANOVA, F (3,20) = 121.2, p

    Techniques Used: Activity Assay

    proBNDF-mediated p75NTR activation in cortical PV cells restores ocular dominance plasticity in adult visual cortex in vivo . A , Typical VEP responses to the stimulation of either contralateral (blue) or ipsilateral (red) eye to the cortex in which the recording is performed in p75NTR Ctrl mice infused with either vehicle or mut-proBDNF, and PV_Cre;p75NTR flx/flx mice infused with mut-proBDNF. Calibration bars: 50 μV, 100 ms. B , C/I VEP ratio mean values. Three days of monocular deprivation do not affect the C/I VEP ratio in adult mice, although it leads to a significant decrease in the C/I VEP ratio in animals treated with mut-proBDNF. Mut-proBDNF effects are, however, abolished in PV_Cre;p75 flx/flx mice (one-way ANOVA, F (2,18) = 8.903, p = 0.0021). p75NTR Ctrl + vehicle: n = 9 mice; p75NTR Ctrl + mut-proBDNF: n = 5 mice; PV_Cre;p75 flx/flx +mut-proBDNF: n = 7 mice. C , ODI of p75NTR Ctrl mice infused with vehicle solution and PV_Cre;p75 flx/flx mice infused with mut-proBDNF are not significantly different from those of undeprived animals, whereas ODIs in p75 Ctrl mice treated with mut-proBDNF are significantly shifted toward the open eye (one-way ANOVA, F (2,443) = 5.203, p = 0.0058). D , Mean spontaneous discharge is significantly increased only in p75 Ctrl mice treated with mut-proBDNF (one-way ANOVA, F (2,443) = 4.580, p = 0.0107). p75NTR Ctrl + vehicle: n = 9 mice, 174 cells; p75NTR Ctrl + mut-proBDNF: n = 5 mice, 147 cells; PV_Cre;p75 flx/flx +mut-proBDNF: n = 6 mice, 125 cells. Gray area represents the C/I VEP ratio ( B ) or the ODI range ( C ) (mean ± SEM) in adult nondeprived animals ( n = 5 mice, 99 cells). * indicate p
    Figure Legend Snippet: proBNDF-mediated p75NTR activation in cortical PV cells restores ocular dominance plasticity in adult visual cortex in vivo . A , Typical VEP responses to the stimulation of either contralateral (blue) or ipsilateral (red) eye to the cortex in which the recording is performed in p75NTR Ctrl mice infused with either vehicle or mut-proBDNF, and PV_Cre;p75NTR flx/flx mice infused with mut-proBDNF. Calibration bars: 50 μV, 100 ms. B , C/I VEP ratio mean values. Three days of monocular deprivation do not affect the C/I VEP ratio in adult mice, although it leads to a significant decrease in the C/I VEP ratio in animals treated with mut-proBDNF. Mut-proBDNF effects are, however, abolished in PV_Cre;p75 flx/flx mice (one-way ANOVA, F (2,18) = 8.903, p = 0.0021). p75NTR Ctrl + vehicle: n = 9 mice; p75NTR Ctrl + mut-proBDNF: n = 5 mice; PV_Cre;p75 flx/flx +mut-proBDNF: n = 7 mice. C , ODI of p75NTR Ctrl mice infused with vehicle solution and PV_Cre;p75 flx/flx mice infused with mut-proBDNF are not significantly different from those of undeprived animals, whereas ODIs in p75 Ctrl mice treated with mut-proBDNF are significantly shifted toward the open eye (one-way ANOVA, F (2,443) = 5.203, p = 0.0058). D , Mean spontaneous discharge is significantly increased only in p75 Ctrl mice treated with mut-proBDNF (one-way ANOVA, F (2,443) = 4.580, p = 0.0107). p75NTR Ctrl + vehicle: n = 9 mice, 174 cells; p75NTR Ctrl + mut-proBDNF: n = 5 mice, 147 cells; PV_Cre;p75 flx/flx +mut-proBDNF: n = 6 mice, 125 cells. Gray area represents the C/I VEP ratio ( B ) or the ODI range ( C ) (mean ± SEM) in adult nondeprived animals ( n = 5 mice, 99 cells). * indicate p

    Techniques Used: Activation Assay, In Vivo, Mouse Assay

    mut-proBDNF destabilizes PV cell innervation, even after it has reached maturity. A , Control PV cell ( A1 , Ctrl, green) at EP32 with exuberant innervation field characterized by extensive branching contacting the majority of potential targets, dense boutons along axons ( A2 ), and terminal branches with prominent and clustered boutons ( A3 ; arrowheads) around NeuN-positive somata (blue). B , PV cell treated with wt-proBDNF from EP26-EP32 shows overall similar axon size ( B1 ), percentage of potentially targeted neurons ( B2 ), and perisomatic innervations ( B3 ) as control, untreated PV cells. C , PV cell treated with mut-proBDNF from EP26-EP32 shows a drastic reduction both in percentage of innervated cells ( C2 ) and perisomatic innervation ( C3 ). Stars indicate NeuN-positive somata that are not innervated. Scale bars: A1–C1 , 50 μm; A2–C2 , 10 μm; A3–C3 , 5 μm. D , Perisomatic bouton density (one-way ANOVA, F (2,18) = 93.34, p
    Figure Legend Snippet: mut-proBDNF destabilizes PV cell innervation, even after it has reached maturity. A , Control PV cell ( A1 , Ctrl, green) at EP32 with exuberant innervation field characterized by extensive branching contacting the majority of potential targets, dense boutons along axons ( A2 ), and terminal branches with prominent and clustered boutons ( A3 ; arrowheads) around NeuN-positive somata (blue). B , PV cell treated with wt-proBDNF from EP26-EP32 shows overall similar axon size ( B1 ), percentage of potentially targeted neurons ( B2 ), and perisomatic innervations ( B3 ) as control, untreated PV cells. C , PV cell treated with mut-proBDNF from EP26-EP32 shows a drastic reduction both in percentage of innervated cells ( C2 ) and perisomatic innervation ( C3 ). Stars indicate NeuN-positive somata that are not innervated. Scale bars: A1–C1 , 50 μm; A2–C2 , 10 μm; A3–C3 , 5 μm. D , Perisomatic bouton density (one-way ANOVA, F (2,18) = 93.34, p

    Techniques Used:

    Similar Products

  • Logo
  • About
  • News
  • Press Release
  • Team
  • Advisors
  • Partners
  • Contact
  • Bioz Stars
  • Bioz vStars
  • 86
    Alomone Labs mut probdnf
    proBNDF-mediated p75NTR activation in cortical PV cells reduces their perisomatic boutons. A , Experimental approach. B , The intensity of perisomatic PV immunostaining (green) is reduced in the binocular visual cortex ipsilateral to the minipump-releasing <t>mut-proBDNF</t> (Ipsi) compared with the contralateral cortex (Contra) in the same animal. On the other hand, perisomatic PV intensity in the ipsilateral cortex of PV_Cre;p75 flx/flx mice is similar to that observed in the contralateral, untreated cortex. C , Low ( C1 ) and high ( C2 ) magnification of PNN (red, WFA staining) enwrapping PV cells (green) shows a dramatic reduction in both PNN density and intensity in the visual cortex infused with mut-proBFNF. This effect is abolished in PV_Cre;p75 flx/flx mice. Scale bars: C1 , 100 μm; B , C2 , 10 μm. D , Quantification of the mean intensity of perisomatic PV-positive puncta in ipsilateral compared with contralateral cortex. I/C ratio is obtained for each animal and then averaged between different animals. Mean I/C ratio is significantly reduced in Mut-proBDNF-infused p75 Ctrl mice compared with Mut-proBDNF-infused PV_Cre;p75 flx/flx mice (unpaired t test, df = 8, t = 6.077, p = 0.0003). E , The ratio of mean PNN intensity around PV cells in ipsilateral versus contralateral cortex is significantly lower in p75 Ctrl than PV_Cre;p75 flx/flx mice infused with mut-proBDNF (unpaired t test, df = 8, t = 15.33, p
    Mut Probdnf, supplied by Alomone Labs, used in various techniques. Bioz Stars score: 86/100, based on 1 PubMed citations. ZERO BIAS - scores, article reviews, protocol conditions and more
    https://www.bioz.com/result/mut probdnf/product/Alomone Labs
    Average 86 stars, based on 1 article reviews
    Price from $9.99 to $1999.99
    mut probdnf - by Bioz Stars, 2022-05
    86/100 stars
      Buy from Supplier

    Image Search Results


    proBNDF-mediated p75NTR activation in cortical PV cells reduces their perisomatic boutons. A , Experimental approach. B , The intensity of perisomatic PV immunostaining (green) is reduced in the binocular visual cortex ipsilateral to the minipump-releasing mut-proBDNF (Ipsi) compared with the contralateral cortex (Contra) in the same animal. On the other hand, perisomatic PV intensity in the ipsilateral cortex of PV_Cre;p75 flx/flx mice is similar to that observed in the contralateral, untreated cortex. C , Low ( C1 ) and high ( C2 ) magnification of PNN (red, WFA staining) enwrapping PV cells (green) shows a dramatic reduction in both PNN density and intensity in the visual cortex infused with mut-proBFNF. This effect is abolished in PV_Cre;p75 flx/flx mice. Scale bars: C1 , 100 μm; B , C2 , 10 μm. D , Quantification of the mean intensity of perisomatic PV-positive puncta in ipsilateral compared with contralateral cortex. I/C ratio is obtained for each animal and then averaged between different animals. Mean I/C ratio is significantly reduced in Mut-proBDNF-infused p75 Ctrl mice compared with Mut-proBDNF-infused PV_Cre;p75 flx/flx mice (unpaired t test, df = 8, t = 6.077, p = 0.0003). E , The ratio of mean PNN intensity around PV cells in ipsilateral versus contralateral cortex is significantly lower in p75 Ctrl than PV_Cre;p75 flx/flx mice infused with mut-proBDNF (unpaired t test, df = 8, t = 15.33, p

    Journal: The Journal of Neuroscience

    Article Title: p75 Neurotrophin Receptor Activation Regulates the Timing of the Maturation of Cortical Parvalbumin Interneuron Connectivity and Promotes Juvenile-like Plasticity in Adult Visual Cortex

    doi: 10.1523/JNEUROSCI.2881-18.2019

    Figure Lengend Snippet: proBNDF-mediated p75NTR activation in cortical PV cells reduces their perisomatic boutons. A , Experimental approach. B , The intensity of perisomatic PV immunostaining (green) is reduced in the binocular visual cortex ipsilateral to the minipump-releasing mut-proBDNF (Ipsi) compared with the contralateral cortex (Contra) in the same animal. On the other hand, perisomatic PV intensity in the ipsilateral cortex of PV_Cre;p75 flx/flx mice is similar to that observed in the contralateral, untreated cortex. C , Low ( C1 ) and high ( C2 ) magnification of PNN (red, WFA staining) enwrapping PV cells (green) shows a dramatic reduction in both PNN density and intensity in the visual cortex infused with mut-proBFNF. This effect is abolished in PV_Cre;p75 flx/flx mice. Scale bars: C1 , 100 μm; B , C2 , 10 μm. D , Quantification of the mean intensity of perisomatic PV-positive puncta in ipsilateral compared with contralateral cortex. I/C ratio is obtained for each animal and then averaged between different animals. Mean I/C ratio is significantly reduced in Mut-proBDNF-infused p75 Ctrl mice compared with Mut-proBDNF-infused PV_Cre;p75 flx/flx mice (unpaired t test, df = 8, t = 6.077, p = 0.0003). E , The ratio of mean PNN intensity around PV cells in ipsilateral versus contralateral cortex is significantly lower in p75 Ctrl than PV_Cre;p75 flx/flx mice infused with mut-proBDNF (unpaired t test, df = 8, t = 15.33, p

    Article Snippet: Minipumps (model 1007D; flow rate 0.5 μl/h; Alzet) were filled with mut-proBDNF (1 μg/ml in filtered PBS, Alomone Labs) or vehicle solution and connected to a cannula (gauge 30) implanted directly in the primary visual cortex (2.5 mm lateral to the midline, 2.5 mm anterior to λ).

    Techniques: Activation Assay, Immunostaining, Mouse Assay, Staining

    Modulation of tPA activity affects the formation of PV cell innervations during early postnatal development. A , Control EP18 PV cell ( A1 , green represents Ctrl). B , PV cell treated with the tPA inhibitor PPACK from EP10–EP18 shows simpler axonal arborization, contacting less potential targets ( B2 , blue represents NeuN-positive somata). C , PV cell treated with tPA in the same time window shows a very complex axonal arbor ( C2 ) and an increase in both terminal branching and perisomatic boutons ( C3 , arrowheads) compared with control cells ( A2 , A3 ). D , PV cell treated simultaneously with tPA and mut-proBDNF shows axonal branching and perisomatic innervation more similar to those formed by PV cell treated with mut-proBDNF alone, suggesting that the effects of tPA application may be mediated by a decrease in endogenous proBDNF/mBDNF ratio. Stars indicate NeuN-positive somata that are not innervated. Scale bars: A1–D1 , 50 μm; A2–D2 , 10 μm; A3–D3 , 5 μm. E , Perisomatic boutons density (one-way ANOVA, F (3,20) = 121.2, p

    Journal: The Journal of Neuroscience

    Article Title: p75 Neurotrophin Receptor Activation Regulates the Timing of the Maturation of Cortical Parvalbumin Interneuron Connectivity and Promotes Juvenile-like Plasticity in Adult Visual Cortex

    doi: 10.1523/JNEUROSCI.2881-18.2019

    Figure Lengend Snippet: Modulation of tPA activity affects the formation of PV cell innervations during early postnatal development. A , Control EP18 PV cell ( A1 , green represents Ctrl). B , PV cell treated with the tPA inhibitor PPACK from EP10–EP18 shows simpler axonal arborization, contacting less potential targets ( B2 , blue represents NeuN-positive somata). C , PV cell treated with tPA in the same time window shows a very complex axonal arbor ( C2 ) and an increase in both terminal branching and perisomatic boutons ( C3 , arrowheads) compared with control cells ( A2 , A3 ). D , PV cell treated simultaneously with tPA and mut-proBDNF shows axonal branching and perisomatic innervation more similar to those formed by PV cell treated with mut-proBDNF alone, suggesting that the effects of tPA application may be mediated by a decrease in endogenous proBDNF/mBDNF ratio. Stars indicate NeuN-positive somata that are not innervated. Scale bars: A1–D1 , 50 μm; A2–D2 , 10 μm; A3–D3 , 5 μm. E , Perisomatic boutons density (one-way ANOVA, F (3,20) = 121.2, p

    Article Snippet: Minipumps (model 1007D; flow rate 0.5 μl/h; Alzet) were filled with mut-proBDNF (1 μg/ml in filtered PBS, Alomone Labs) or vehicle solution and connected to a cannula (gauge 30) implanted directly in the primary visual cortex (2.5 mm lateral to the midline, 2.5 mm anterior to λ).

    Techniques: Activity Assay

    proBNDF-mediated p75NTR activation in cortical PV cells restores ocular dominance plasticity in adult visual cortex in vivo . A , Typical VEP responses to the stimulation of either contralateral (blue) or ipsilateral (red) eye to the cortex in which the recording is performed in p75NTR Ctrl mice infused with either vehicle or mut-proBDNF, and PV_Cre;p75NTR flx/flx mice infused with mut-proBDNF. Calibration bars: 50 μV, 100 ms. B , C/I VEP ratio mean values. Three days of monocular deprivation do not affect the C/I VEP ratio in adult mice, although it leads to a significant decrease in the C/I VEP ratio in animals treated with mut-proBDNF. Mut-proBDNF effects are, however, abolished in PV_Cre;p75 flx/flx mice (one-way ANOVA, F (2,18) = 8.903, p = 0.0021). p75NTR Ctrl + vehicle: n = 9 mice; p75NTR Ctrl + mut-proBDNF: n = 5 mice; PV_Cre;p75 flx/flx +mut-proBDNF: n = 7 mice. C , ODI of p75NTR Ctrl mice infused with vehicle solution and PV_Cre;p75 flx/flx mice infused with mut-proBDNF are not significantly different from those of undeprived animals, whereas ODIs in p75 Ctrl mice treated with mut-proBDNF are significantly shifted toward the open eye (one-way ANOVA, F (2,443) = 5.203, p = 0.0058). D , Mean spontaneous discharge is significantly increased only in p75 Ctrl mice treated with mut-proBDNF (one-way ANOVA, F (2,443) = 4.580, p = 0.0107). p75NTR Ctrl + vehicle: n = 9 mice, 174 cells; p75NTR Ctrl + mut-proBDNF: n = 5 mice, 147 cells; PV_Cre;p75 flx/flx +mut-proBDNF: n = 6 mice, 125 cells. Gray area represents the C/I VEP ratio ( B ) or the ODI range ( C ) (mean ± SEM) in adult nondeprived animals ( n = 5 mice, 99 cells). * indicate p

    Journal: The Journal of Neuroscience

    Article Title: p75 Neurotrophin Receptor Activation Regulates the Timing of the Maturation of Cortical Parvalbumin Interneuron Connectivity and Promotes Juvenile-like Plasticity in Adult Visual Cortex

    doi: 10.1523/JNEUROSCI.2881-18.2019

    Figure Lengend Snippet: proBNDF-mediated p75NTR activation in cortical PV cells restores ocular dominance plasticity in adult visual cortex in vivo . A , Typical VEP responses to the stimulation of either contralateral (blue) or ipsilateral (red) eye to the cortex in which the recording is performed in p75NTR Ctrl mice infused with either vehicle or mut-proBDNF, and PV_Cre;p75NTR flx/flx mice infused with mut-proBDNF. Calibration bars: 50 μV, 100 ms. B , C/I VEP ratio mean values. Three days of monocular deprivation do not affect the C/I VEP ratio in adult mice, although it leads to a significant decrease in the C/I VEP ratio in animals treated with mut-proBDNF. Mut-proBDNF effects are, however, abolished in PV_Cre;p75 flx/flx mice (one-way ANOVA, F (2,18) = 8.903, p = 0.0021). p75NTR Ctrl + vehicle: n = 9 mice; p75NTR Ctrl + mut-proBDNF: n = 5 mice; PV_Cre;p75 flx/flx +mut-proBDNF: n = 7 mice. C , ODI of p75NTR Ctrl mice infused with vehicle solution and PV_Cre;p75 flx/flx mice infused with mut-proBDNF are not significantly different from those of undeprived animals, whereas ODIs in p75 Ctrl mice treated with mut-proBDNF are significantly shifted toward the open eye (one-way ANOVA, F (2,443) = 5.203, p = 0.0058). D , Mean spontaneous discharge is significantly increased only in p75 Ctrl mice treated with mut-proBDNF (one-way ANOVA, F (2,443) = 4.580, p = 0.0107). p75NTR Ctrl + vehicle: n = 9 mice, 174 cells; p75NTR Ctrl + mut-proBDNF: n = 5 mice, 147 cells; PV_Cre;p75 flx/flx +mut-proBDNF: n = 6 mice, 125 cells. Gray area represents the C/I VEP ratio ( B ) or the ODI range ( C ) (mean ± SEM) in adult nondeprived animals ( n = 5 mice, 99 cells). * indicate p

    Article Snippet: Minipumps (model 1007D; flow rate 0.5 μl/h; Alzet) were filled with mut-proBDNF (1 μg/ml in filtered PBS, Alomone Labs) or vehicle solution and connected to a cannula (gauge 30) implanted directly in the primary visual cortex (2.5 mm lateral to the midline, 2.5 mm anterior to λ).

    Techniques: Activation Assay, In Vivo, Mouse Assay, Mass Spectrometry

    mut-proBDNF destabilizes PV cell innervation, even after it has reached maturity. A , Control PV cell ( A1 , Ctrl, green) at EP32 with exuberant innervation field characterized by extensive branching contacting the majority of potential targets, dense boutons along axons ( A2 ), and terminal branches with prominent and clustered boutons ( A3 ; arrowheads) around NeuN-positive somata (blue). B , PV cell treated with wt-proBDNF from EP26-EP32 shows overall similar axon size ( B1 ), percentage of potentially targeted neurons ( B2 ), and perisomatic innervations ( B3 ) as control, untreated PV cells. C , PV cell treated with mut-proBDNF from EP26-EP32 shows a drastic reduction both in percentage of innervated cells ( C2 ) and perisomatic innervation ( C3 ). Stars indicate NeuN-positive somata that are not innervated. Scale bars: A1–C1 , 50 μm; A2–C2 , 10 μm; A3–C3 , 5 μm. D , Perisomatic bouton density (one-way ANOVA, F (2,18) = 93.34, p

    Journal: The Journal of Neuroscience

    Article Title: p75 Neurotrophin Receptor Activation Regulates the Timing of the Maturation of Cortical Parvalbumin Interneuron Connectivity and Promotes Juvenile-like Plasticity in Adult Visual Cortex

    doi: 10.1523/JNEUROSCI.2881-18.2019

    Figure Lengend Snippet: mut-proBDNF destabilizes PV cell innervation, even after it has reached maturity. A , Control PV cell ( A1 , Ctrl, green) at EP32 with exuberant innervation field characterized by extensive branching contacting the majority of potential targets, dense boutons along axons ( A2 ), and terminal branches with prominent and clustered boutons ( A3 ; arrowheads) around NeuN-positive somata (blue). B , PV cell treated with wt-proBDNF from EP26-EP32 shows overall similar axon size ( B1 ), percentage of potentially targeted neurons ( B2 ), and perisomatic innervations ( B3 ) as control, untreated PV cells. C , PV cell treated with mut-proBDNF from EP26-EP32 shows a drastic reduction both in percentage of innervated cells ( C2 ) and perisomatic innervation ( C3 ). Stars indicate NeuN-positive somata that are not innervated. Scale bars: A1–C1 , 50 μm; A2–C2 , 10 μm; A3–C3 , 5 μm. D , Perisomatic bouton density (one-way ANOVA, F (2,18) = 93.34, p

    Article Snippet: Minipumps (model 1007D; flow rate 0.5 μl/h; Alzet) were filled with mut-proBDNF (1 μg/ml in filtered PBS, Alomone Labs) or vehicle solution and connected to a cannula (gauge 30) implanted directly in the primary visual cortex (2.5 mm lateral to the midline, 2.5 mm anterior to λ).

    Techniques:

    proBNDF-mediated p75NTR activation in cortical PV cells reduces their perisomatic boutons and restores ocular dominance plasticity in adult visual cortex in vivo . (a) Experimental approach. (b) The number of immunolabeled PV-positive puncta (green) surrounding NeuN-positive neuronal somata (red) is reduced in the binocular visual cortex ipsilateral to the minipump releasing mut-proBDNF (Ipsi) compared to the contralateral cortex (Contra) in the same animal. On the other hand, the number of PV-positive puncta per NeuN-positive profile in the ipsilateral cortex of PV-CRE; p75 flx/flx mice is similar to that observed in the contralateral, untreated cortex. (c) Low (c1) and high (c2) magnification of PNN (red, WFA staining) enwrapping PV cells (green) show a dramatic reduction in both PNN density and intensity in the visual cortex infused with mut-proBFNF. This effects is abolished in PV-CRE; p75 flx/flx mice. Scale bar, c1: 100µm; b, c2: 10µm. (d) Quantification of the mean number of PV-positive puncta per NeuN-positive profile in ipsilateral compared to contralateral cortex. Ipsi/Contra ratio is obtained for each animal, and then averaged between different animals. Mean Ipsi/Contra ratio is significantly reduced in Mut-proBDNF infused p75 Ctrl but not in PV-CRE; p75 flx/flx mice (t-test, p

    Journal: bioRxiv

    Article Title: p75 Neurotrophin Receptor Regulates the Timing of the Maturation of Cortical Parvalbumin Cell Connectivity and Promotes Ocular Dominance Plasticity in Adult Visual Cortex

    doi: 10.1101/392159

    Figure Lengend Snippet: proBNDF-mediated p75NTR activation in cortical PV cells reduces their perisomatic boutons and restores ocular dominance plasticity in adult visual cortex in vivo . (a) Experimental approach. (b) The number of immunolabeled PV-positive puncta (green) surrounding NeuN-positive neuronal somata (red) is reduced in the binocular visual cortex ipsilateral to the minipump releasing mut-proBDNF (Ipsi) compared to the contralateral cortex (Contra) in the same animal. On the other hand, the number of PV-positive puncta per NeuN-positive profile in the ipsilateral cortex of PV-CRE; p75 flx/flx mice is similar to that observed in the contralateral, untreated cortex. (c) Low (c1) and high (c2) magnification of PNN (red, WFA staining) enwrapping PV cells (green) show a dramatic reduction in both PNN density and intensity in the visual cortex infused with mut-proBFNF. This effects is abolished in PV-CRE; p75 flx/flx mice. Scale bar, c1: 100µm; b, c2: 10µm. (d) Quantification of the mean number of PV-positive puncta per NeuN-positive profile in ipsilateral compared to contralateral cortex. Ipsi/Contra ratio is obtained for each animal, and then averaged between different animals. Mean Ipsi/Contra ratio is significantly reduced in Mut-proBDNF infused p75 Ctrl but not in PV-CRE; p75 flx/flx mice (t-test, p

    Article Snippet: To label control PV cells, slices were transfected with PG67 _GFP bullets, while for the p75NTR-/- PV cells were transfected with both PG67 _GFP and PG67_Cre. wt-proBDNF and mut-proBDNF (10 ng/ml, Alomone Labs) were respectively added with the culture medium during the specific time window indicated in the results section.

    Techniques: Activation Assay, In Vivo, Immunolabeling, Mouse Assay, Staining, T-Test

    mut-proBDNF can destabilize PV cell innervation even after it has reached maturity. (a) Control PV cell (a1, Ctrl, green) at EP32 with exuberant innervation field characterized by extensive branching contacting the majority of potential targets, dense boutons along axons (a2), and terminal branches with prominent and clustered boutons (a3; arrowheads) around pyramidal cell somata (NeuN immunostaining, blue). (b) PV cell treated with wt-proBDNF from EP26-32 shows overall similar axon size (b1), percentage of potentially targeted neurons (B2) and perisomatic innervations (b3) as control, untreated PV cells. (c) PV cell treated with mut-proBDNF from EP26-32 shows a drastic reduction both in percentage of innervated cells (c2) and perisomatic innervation (c3). Stars indicate pyramidal cells somata that are not innervated. Scale bar, a1-c1: 50µm; a2-c2: 10µm; a3-c3: 5µm. (d) Perisomatic bouton density (e) terminal branching and (f) percentage of innervated cells of the three experimental groups. One-way Anova, post hoc Tukey test, p

    Journal: bioRxiv

    Article Title: p75 Neurotrophin Receptor Regulates the Timing of the Maturation of Cortical Parvalbumin Cell Connectivity and Promotes Ocular Dominance Plasticity in Adult Visual Cortex

    doi: 10.1101/392159

    Figure Lengend Snippet: mut-proBDNF can destabilize PV cell innervation even after it has reached maturity. (a) Control PV cell (a1, Ctrl, green) at EP32 with exuberant innervation field characterized by extensive branching contacting the majority of potential targets, dense boutons along axons (a2), and terminal branches with prominent and clustered boutons (a3; arrowheads) around pyramidal cell somata (NeuN immunostaining, blue). (b) PV cell treated with wt-proBDNF from EP26-32 shows overall similar axon size (b1), percentage of potentially targeted neurons (B2) and perisomatic innervations (b3) as control, untreated PV cells. (c) PV cell treated with mut-proBDNF from EP26-32 shows a drastic reduction both in percentage of innervated cells (c2) and perisomatic innervation (c3). Stars indicate pyramidal cells somata that are not innervated. Scale bar, a1-c1: 50µm; a2-c2: 10µm; a3-c3: 5µm. (d) Perisomatic bouton density (e) terminal branching and (f) percentage of innervated cells of the three experimental groups. One-way Anova, post hoc Tukey test, p

    Article Snippet: To label control PV cells, slices were transfected with PG67 _GFP bullets, while for the p75NTR-/- PV cells were transfected with both PG67 _GFP and PG67_Cre. wt-proBDNF and mut-proBDNF (10 ng/ml, Alomone Labs) were respectively added with the culture medium during the specific time window indicated in the results section.

    Techniques: Immunostaining