rip3 antibody  (ProSci Incorporated)


Bioz Verified Symbol ProSci Incorporated is a verified supplier
Bioz Manufacturer Symbol ProSci Incorporated manufactures this product  
  • Logo
  • About
  • News
  • Press Release
  • Team
  • Advisors
  • Partners
  • Contact
  • Bioz Stars
  • Bioz vStars
  • 90

    Structured Review

    ProSci Incorporated rip3 antibody
    Rip3 Antibody, supplied by ProSci Incorporated, used in various techniques. Bioz Stars score: 90/100, based on 1 PubMed citations. ZERO BIAS - scores, article reviews, protocol conditions and more
    https://www.bioz.com/result/rip3 antibody/product/ProSci Incorporated
    Average 90 stars, based on 1 article reviews
    Price from $9.99 to $1999.99
    rip3 antibody - by Bioz Stars, 2023-09
    90/100 stars

    Images

    mouse ripk3 cetsa  (ProSci Incorporated)


    Bioz Verified Symbol ProSci Incorporated is a verified supplier
    Bioz Manufacturer Symbol ProSci Incorporated manufactures this product  
  • Logo
  • About
  • News
  • Press Release
  • Team
  • Advisors
  • Partners
  • Contact
  • Bioz Stars
  • Bioz vStars
  • 86

    Structured Review

    ProSci Incorporated mouse ripk3 cetsa
    ( A ) Schematic of the necroptosis pathway. TNF (T) activates TNFR1, the Smac-mimetic Compound A (S) blocks cIAP activity and the pan-caspase inhibitor Q-VD-OPh (Q) blocks caspase-8 activity. This TSQ stimulus results in activation of RIPK1 and <t>RIPK3,</t> and subsequent phosphorylation and activation of MLKL, which causes MLKL-mediated membrane disruption and cell death. ( B ) Schematic of the constitutively activated mouse MLKL mutant, Q343A. Expression of MLKL Q343A using doxycycline causes cell death in the absence of upstream necroptotic stimuli. This enabled a cell-based phenotypic screen for small molecules that modulate necroptosis at the level or downstream of MLKL activation. The skull and crossbones image (Mycomorphbox_Deadly.png; by Sven Manguard) in ( A , B ) was used under a Creative Commons Attribution-Share Alike 4.0 license. ( C ) Schematic of the cell-based phenotypic screen. A total of 5632 compounds from the WEHI small molecule library along with 40 kinase inhibitors were screened against wild-type or Mlkl −/− mouse dermal fibroblast (MDF) cells expressing the MLKL Q343A mutant. The ability of the small molecules to inhibit cell death was measured by CellTiter-Glo cell viability assays. ABT-869, a VEGF and PDGF receptor tyrosine kinase inhibitor, was identified as a hit. See also Supplementary Figure S1A. ( D ) Chemical structure of ABT-869 and its analogue WEHI-615. ( E ) Wild-type mouse dermal fibroblast (MDF) cells expressing the doxycycline-inducible MLKL Q343A mutant to trigger constitutive necroptosis were treated with DMSO alone, doxycycline (Dox; 1 µg/ml) and DMSO, or Dox and ABT-869 (1 µM). Cell viability was quantified by CellTiter-Glo. Data represent the mean of ≥2 technical replicates from a single experiment, with individual data points shown. See also Supplementary Figure S1A. ( F ) Mlkl −/− mouse dermal fibroblast (MDF) cells expressing the doxycycline-inducible MLKL Q343A mutant to trigger constitutive necroptosis were treated with DMSO alone, doxycycline (Dox; 1 µg/ml) and DMSO, or Dox and ABT-869 (1 µM). Cell viability was quantified by CellTiter-Glo. Data represent the mean of ≥2 technical replicates from a single experiment, with individual data points shown. See also Supplementary Figure S1A. ( G ) Wild-type mouse dermal fibroblast (MDF) cells were stimulated with TSQ (TNF, Smac-mimetic, Q-VD-OPh) to induce necroptosis and treated with increasing concentrations of ABT-869 or WEHI-615. Cell death was quantified by propidium iodide (PI) staining using flow cytometry. Data represent the mean of n = 4 independent experiments and errors bars represent SEM.
    Mouse Ripk3 Cetsa, supplied by ProSci Incorporated, used in various techniques. Bioz Stars score: 86/100, based on 1 PubMed citations. ZERO BIAS - scores, article reviews, protocol conditions and more
    https://www.bioz.com/result/mouse ripk3 cetsa/product/ProSci Incorporated
    Average 86 stars, based on 1 article reviews
    Price from $9.99 to $1999.99
    mouse ripk3 cetsa - by Bioz Stars, 2023-09
    86/100 stars

    Images

    1) Product Images from "The VEGFR/PDGFR tyrosine kinase inhibitor, ABT-869, blocks necroptosis by targeting RIPK1 kinase"

    Article Title: The VEGFR/PDGFR tyrosine kinase inhibitor, ABT-869, blocks necroptosis by targeting RIPK1 kinase

    Journal: Biochemical Journal

    doi: 10.1042/BCJ20230035

    ( A ) Schematic of the necroptosis pathway. TNF (T) activates TNFR1, the Smac-mimetic Compound A (S) blocks cIAP activity and the pan-caspase inhibitor Q-VD-OPh (Q) blocks caspase-8 activity. This TSQ stimulus results in activation of RIPK1 and RIPK3, and subsequent phosphorylation and activation of MLKL, which causes MLKL-mediated membrane disruption and cell death. ( B ) Schematic of the constitutively activated mouse MLKL mutant, Q343A. Expression of MLKL Q343A using doxycycline causes cell death in the absence of upstream necroptotic stimuli. This enabled a cell-based phenotypic screen for small molecules that modulate necroptosis at the level or downstream of MLKL activation. The skull and crossbones image (Mycomorphbox_Deadly.png; by Sven Manguard) in ( A , B ) was used under a Creative Commons Attribution-Share Alike 4.0 license. ( C ) Schematic of the cell-based phenotypic screen. A total of 5632 compounds from the WEHI small molecule library along with 40 kinase inhibitors were screened against wild-type or Mlkl −/− mouse dermal fibroblast (MDF) cells expressing the MLKL Q343A mutant. The ability of the small molecules to inhibit cell death was measured by CellTiter-Glo cell viability assays. ABT-869, a VEGF and PDGF receptor tyrosine kinase inhibitor, was identified as a hit. See also Supplementary Figure S1A. ( D ) Chemical structure of ABT-869 and its analogue WEHI-615. ( E ) Wild-type mouse dermal fibroblast (MDF) cells expressing the doxycycline-inducible MLKL Q343A mutant to trigger constitutive necroptosis were treated with DMSO alone, doxycycline (Dox; 1 µg/ml) and DMSO, or Dox and ABT-869 (1 µM). Cell viability was quantified by CellTiter-Glo. Data represent the mean of ≥2 technical replicates from a single experiment, with individual data points shown. See also Supplementary Figure S1A. ( F ) Mlkl −/− mouse dermal fibroblast (MDF) cells expressing the doxycycline-inducible MLKL Q343A mutant to trigger constitutive necroptosis were treated with DMSO alone, doxycycline (Dox; 1 µg/ml) and DMSO, or Dox and ABT-869 (1 µM). Cell viability was quantified by CellTiter-Glo. Data represent the mean of ≥2 technical replicates from a single experiment, with individual data points shown. See also Supplementary Figure S1A. ( G ) Wild-type mouse dermal fibroblast (MDF) cells were stimulated with TSQ (TNF, Smac-mimetic, Q-VD-OPh) to induce necroptosis and treated with increasing concentrations of ABT-869 or WEHI-615. Cell death was quantified by propidium iodide (PI) staining using flow cytometry. Data represent the mean of n = 4 independent experiments and errors bars represent SEM.
    Figure Legend Snippet: ( A ) Schematic of the necroptosis pathway. TNF (T) activates TNFR1, the Smac-mimetic Compound A (S) blocks cIAP activity and the pan-caspase inhibitor Q-VD-OPh (Q) blocks caspase-8 activity. This TSQ stimulus results in activation of RIPK1 and RIPK3, and subsequent phosphorylation and activation of MLKL, which causes MLKL-mediated membrane disruption and cell death. ( B ) Schematic of the constitutively activated mouse MLKL mutant, Q343A. Expression of MLKL Q343A using doxycycline causes cell death in the absence of upstream necroptotic stimuli. This enabled a cell-based phenotypic screen for small molecules that modulate necroptosis at the level or downstream of MLKL activation. The skull and crossbones image (Mycomorphbox_Deadly.png; by Sven Manguard) in ( A , B ) was used under a Creative Commons Attribution-Share Alike 4.0 license. ( C ) Schematic of the cell-based phenotypic screen. A total of 5632 compounds from the WEHI small molecule library along with 40 kinase inhibitors were screened against wild-type or Mlkl −/− mouse dermal fibroblast (MDF) cells expressing the MLKL Q343A mutant. The ability of the small molecules to inhibit cell death was measured by CellTiter-Glo cell viability assays. ABT-869, a VEGF and PDGF receptor tyrosine kinase inhibitor, was identified as a hit. See also Supplementary Figure S1A. ( D ) Chemical structure of ABT-869 and its analogue WEHI-615. ( E ) Wild-type mouse dermal fibroblast (MDF) cells expressing the doxycycline-inducible MLKL Q343A mutant to trigger constitutive necroptosis were treated with DMSO alone, doxycycline (Dox; 1 µg/ml) and DMSO, or Dox and ABT-869 (1 µM). Cell viability was quantified by CellTiter-Glo. Data represent the mean of ≥2 technical replicates from a single experiment, with individual data points shown. See also Supplementary Figure S1A. ( F ) Mlkl −/− mouse dermal fibroblast (MDF) cells expressing the doxycycline-inducible MLKL Q343A mutant to trigger constitutive necroptosis were treated with DMSO alone, doxycycline (Dox; 1 µg/ml) and DMSO, or Dox and ABT-869 (1 µM). Cell viability was quantified by CellTiter-Glo. Data represent the mean of ≥2 technical replicates from a single experiment, with individual data points shown. See also Supplementary Figure S1A. ( G ) Wild-type mouse dermal fibroblast (MDF) cells were stimulated with TSQ (TNF, Smac-mimetic, Q-VD-OPh) to induce necroptosis and treated with increasing concentrations of ABT-869 or WEHI-615. Cell death was quantified by propidium iodide (PI) staining using flow cytometry. Data represent the mean of n = 4 independent experiments and errors bars represent SEM.

    Techniques Used: Activity Assay, Activation Assay, Mutagenesis, Expressing, Staining, Flow Cytometry

    ( A , B ) Wild-type mouse dermal fibroblast (MDF) cells were treated with increasing concentrations of ABT-869 or control compounds, RIPK3 inhibitors GSK′872 and GSK′843, DMSO alone or left untreated (UT) for 1 h then stimulated with TSQ (TNF, Smac-mimetic, Q-VD-OPh) ( A ) or TSZ (TNF, Smac-mimetic, z-VAD-fmk) ( B ) for 24 h to induce necroptosis. Cell death was quantified by propidium iodide (PI) staining using flow cytometry. Data represent the mean of n = 3 ( A ) or n = 4 ( B ) independent experiments and error bars represent SEM. ( C – F ) Human U937 cells were treated with increasing concentrations of ABT-869 or control compounds, MLKL inhibitor NSA and RIPK1 inhibitor GSK′481, DMSO alone or left untreated (UT) for 1 h then stimulated with TSQ (TNF, Smac-mimetic, Q-VD-OPh) for 48 h ( C ) or TSI (TNF, Smac-mimetic, IDN-6556) for 24 h ( E ) to induce necroptosis. Parallel experiments were performed to assess protection of TSQ ( D ) or TSI ( F ) induced death in the presence of the ABT-869 analogue, WEHI-615. Cell death was monitored by SPY505 (live cells) and propidium iodide (PI; dead cells) uptake using IncuCyte live cell imaging. One representative result shown from n = 4 ( C , D ) or n = 3 ( E , F ) independent experiments. See also Supplementary Figure S2A–H.
    Figure Legend Snippet: ( A , B ) Wild-type mouse dermal fibroblast (MDF) cells were treated with increasing concentrations of ABT-869 or control compounds, RIPK3 inhibitors GSK′872 and GSK′843, DMSO alone or left untreated (UT) for 1 h then stimulated with TSQ (TNF, Smac-mimetic, Q-VD-OPh) ( A ) or TSZ (TNF, Smac-mimetic, z-VAD-fmk) ( B ) for 24 h to induce necroptosis. Cell death was quantified by propidium iodide (PI) staining using flow cytometry. Data represent the mean of n = 3 ( A ) or n = 4 ( B ) independent experiments and error bars represent SEM. ( C – F ) Human U937 cells were treated with increasing concentrations of ABT-869 or control compounds, MLKL inhibitor NSA and RIPK1 inhibitor GSK′481, DMSO alone or left untreated (UT) for 1 h then stimulated with TSQ (TNF, Smac-mimetic, Q-VD-OPh) for 48 h ( C ) or TSI (TNF, Smac-mimetic, IDN-6556) for 24 h ( E ) to induce necroptosis. Parallel experiments were performed to assess protection of TSQ ( D ) or TSI ( F ) induced death in the presence of the ABT-869 analogue, WEHI-615. Cell death was monitored by SPY505 (live cells) and propidium iodide (PI; dead cells) uptake using IncuCyte live cell imaging. One representative result shown from n = 4 ( C , D ) or n = 3 ( E , F ) independent experiments. See also Supplementary Figure S2A–H.

    Techniques Used: Staining, Flow Cytometry, Live Cell Imaging

    ( A ) Binding affinities ( K D ) of ABT-869 and WEHI-615 for human full-length MLKL, RIPK1 kinase domain and RIPK3 kinase domain measured by competition binding assays from the DiscoverX KINOME scan platform using the Kd ELECT service. Each value is the mean of two replicates. ( B – D ) Cellular Thermal Shift Assays (CETSA) in mouse and human cells. Mlkl −/− mouse dermal fibroblast (MDF) cells expressing MLKL Q343A ( B ), wild-type MDF cells ( C ) and human U937 cells ( D ) were treated with DMSO, ABT-869, WEHI-615, RIPK1 inhibitor Nec-1s, RIPK3 inhibitor GSK′872 or human RIPK1 inhibitor GSK′481 (all 20 µM). Cells were subjected to an increasing temperature gradient focused around the melting temperature of the protein of interest. Following the separation of soluble and insoluble proteins, the remaining soluble proteins were detected by Western blot. Red asterisks denote protein standards. One representative result shown from n = 3 ( B , C ) or n = 2–3 ( D ) independent experiments. See also Supplementary Figure S3A–C.
    Figure Legend Snippet: ( A ) Binding affinities ( K D ) of ABT-869 and WEHI-615 for human full-length MLKL, RIPK1 kinase domain and RIPK3 kinase domain measured by competition binding assays from the DiscoverX KINOME scan platform using the Kd ELECT service. Each value is the mean of two replicates. ( B – D ) Cellular Thermal Shift Assays (CETSA) in mouse and human cells. Mlkl −/− mouse dermal fibroblast (MDF) cells expressing MLKL Q343A ( B ), wild-type MDF cells ( C ) and human U937 cells ( D ) were treated with DMSO, ABT-869, WEHI-615, RIPK1 inhibitor Nec-1s, RIPK3 inhibitor GSK′872 or human RIPK1 inhibitor GSK′481 (all 20 µM). Cells were subjected to an increasing temperature gradient focused around the melting temperature of the protein of interest. Following the separation of soluble and insoluble proteins, the remaining soluble proteins were detected by Western blot. Red asterisks denote protein standards. One representative result shown from n = 3 ( B , C ) or n = 2–3 ( D ) independent experiments. See also Supplementary Figure S3A–C.

    Techniques Used: Binding Assay, Expressing, Western Blot

    Thermal Shift Assays (TSA) with mouse and human RIPK1 and RIPK3 kinase domains. Increasing concentrations of ABT-869 or WEHI-615 were tested for their ability to alter the melting temperature ( T M ) of mouse RIPK1 (9.5 µg) ( A , B ), human RIPK1 (12 µg) ( C , D ), mouse RIPK3 (10 µg) ( E , F ) and human RIPK3 (6.5 µg) ( G , H ) compared with the positive controls Compound 2 for mouse RIPK1, GSK′481 for human RIPK1 and GSK′872 for mouse and human RIPK3 (all 30 µM). Data represent the mean of n = 3 independent experiments and error bars represent SEM. See also Supplementary Figure S4A–H.
    Figure Legend Snippet: Thermal Shift Assays (TSA) with mouse and human RIPK1 and RIPK3 kinase domains. Increasing concentrations of ABT-869 or WEHI-615 were tested for their ability to alter the melting temperature ( T M ) of mouse RIPK1 (9.5 µg) ( A , B ), human RIPK1 (12 µg) ( C , D ), mouse RIPK3 (10 µg) ( E , F ) and human RIPK3 (6.5 µg) ( G , H ) compared with the positive controls Compound 2 for mouse RIPK1, GSK′481 for human RIPK1 and GSK′872 for mouse and human RIPK3 (all 30 µM). Data represent the mean of n = 3 independent experiments and error bars represent SEM. See also Supplementary Figure S4A–H.

    Techniques Used:

    ( A – H ) In vitro phosphorylation assays with mouse and human RIPK1 and RIPK3 kinase domains measured by ADP-Glo Kinase Assays. Increasing concentrations of ABT-869 or WEHI-615 were tested for their ability to inhibit the autophosphorylation (IC 50 ) of mouse RIPK1 (200 nM) ( A , B ), human RIPK1 (200 nM) ( C , D ), mouse RIPK3 (10 nM) ( E , F ) and human RIPK3 (10 nM) ( G , H ). Data represent the mean of n = 3 ( A , B , E , F ) or n = 2 ( C , D , G , H ) independent experiments and error bars represent SEM. ( I ) Cellular phosphorylation assays. Wild-type mouse dermal fibroblast (MDF) cells were treated with DMSO, ABT-869, WEHI-615, RIPK1 inhibitor Nec-1s or RIPK3 inhibitor GSK′872 for 2 h then stimulated with TSI (TNF, Smac-mimetic, IDN-6556) for 2 h to induce autophosphorylation of RIPK1 and RIPK3. Ripk1 −/− Mlkl −/− MDF cells and Ripk3 −/− MDF cells were included as controls. Phospho-RIPK1 and phospho-RIPK3 protein levels were detected from whole cell lysates by Western blot. Red asterisks denote protein standards. One representative result shown from n = 3 independent experiments. See also Supplementary Figure S5A–C.
    Figure Legend Snippet: ( A – H ) In vitro phosphorylation assays with mouse and human RIPK1 and RIPK3 kinase domains measured by ADP-Glo Kinase Assays. Increasing concentrations of ABT-869 or WEHI-615 were tested for their ability to inhibit the autophosphorylation (IC 50 ) of mouse RIPK1 (200 nM) ( A , B ), human RIPK1 (200 nM) ( C , D ), mouse RIPK3 (10 nM) ( E , F ) and human RIPK3 (10 nM) ( G , H ). Data represent the mean of n = 3 ( A , B , E , F ) or n = 2 ( C , D , G , H ) independent experiments and error bars represent SEM. ( I ) Cellular phosphorylation assays. Wild-type mouse dermal fibroblast (MDF) cells were treated with DMSO, ABT-869, WEHI-615, RIPK1 inhibitor Nec-1s or RIPK3 inhibitor GSK′872 for 2 h then stimulated with TSI (TNF, Smac-mimetic, IDN-6556) for 2 h to induce autophosphorylation of RIPK1 and RIPK3. Ripk1 −/− Mlkl −/− MDF cells and Ripk3 −/− MDF cells were included as controls. Phospho-RIPK1 and phospho-RIPK3 protein levels were detected from whole cell lysates by Western blot. Red asterisks denote protein standards. One representative result shown from n = 3 independent experiments. See also Supplementary Figure S5A–C.

    Techniques Used: In Vitro, Western Blot


    Figure Legend Snippet:

    Techniques Used: Western Blot, Produced, Transduction


    Figure Legend Snippet:

    Techniques Used:

    rip3 antibody  (ProSci Incorporated)


    Bioz Verified Symbol ProSci Incorporated is a verified supplier
    Bioz Manufacturer Symbol ProSci Incorporated manufactures this product  
  • Logo
  • About
  • News
  • Press Release
  • Team
  • Advisors
  • Partners
  • Contact
  • Bioz Stars
  • Bioz vStars
  • 90

    Structured Review

    ProSci Incorporated rip3 antibody
    Rip3 Antibody, supplied by ProSci Incorporated, used in various techniques. Bioz Stars score: 90/100, based on 1 PubMed citations. ZERO BIAS - scores, article reviews, protocol conditions and more
    https://www.bioz.com/result/rip3 antibody/product/ProSci Incorporated
    Average 90 stars, based on 1 article reviews
    Price from $9.99 to $1999.99
    rip3 antibody - by Bioz Stars, 2023-09
    90/100 stars

    Images

    rip3 antibody  (ProSci Incorporated)


    Bioz Verified Symbol ProSci Incorporated is a verified supplier
    Bioz Manufacturer Symbol ProSci Incorporated manufactures this product  
  • Logo
  • About
  • News
  • Press Release
  • Team
  • Advisors
  • Partners
  • Contact
  • Bioz Stars
  • Bioz vStars
  • 90

    Structured Review

    ProSci Incorporated rip3 antibody
    Rip3 Antibody, supplied by ProSci Incorporated, used in various techniques. Bioz Stars score: 90/100, based on 1 PubMed citations. ZERO BIAS - scores, article reviews, protocol conditions and more
    https://www.bioz.com/result/rip3 antibody/product/ProSci Incorporated
    Average 90 stars, based on 1 article reviews
    Price from $9.99 to $1999.99
    rip3 antibody - by Bioz Stars, 2023-09
    90/100 stars

    Images

    rip3 antibody  (ProSci Incorporated)


    Bioz Verified Symbol ProSci Incorporated is a verified supplier
    Bioz Manufacturer Symbol ProSci Incorporated manufactures this product  
  • Logo
  • About
  • News
  • Press Release
  • Team
  • Advisors
  • Partners
  • Contact
  • Bioz Stars
  • Bioz vStars
  • 90

    Structured Review

    ProSci Incorporated rip3 antibody
    Rip3 Antibody, supplied by ProSci Incorporated, used in various techniques. Bioz Stars score: 90/100, based on 1 PubMed citations. ZERO BIAS - scores, article reviews, protocol conditions and more
    https://www.bioz.com/result/rip3 antibody/product/ProSci Incorporated
    Average 90 stars, based on 1 article reviews
    Price from $9.99 to $1999.99
    rip3 antibody - by Bioz Stars, 2023-09
    90/100 stars

    Images

    rip3 antibody  (ProSci Incorporated)


    Bioz Verified Symbol ProSci Incorporated is a verified supplier
    Bioz Manufacturer Symbol ProSci Incorporated manufactures this product  
  • Logo
  • About
  • News
  • Press Release
  • Team
  • Advisors
  • Partners
  • Contact
  • Bioz Stars
  • Bioz vStars
  • 90

    Structured Review

    ProSci Incorporated rip3 antibody
    Rip3 Antibody, supplied by ProSci Incorporated, used in various techniques. Bioz Stars score: 90/100, based on 1 PubMed citations. ZERO BIAS - scores, article reviews, protocol conditions and more
    https://www.bioz.com/result/rip3 antibody/product/ProSci Incorporated
    Average 90 stars, based on 1 article reviews
    Price from $9.99 to $1999.99
    rip3 antibody - by Bioz Stars, 2023-09
    90/100 stars

    Images

    rip3 antibody  (ProSci Incorporated)


    Bioz Verified Symbol ProSci Incorporated is a verified supplier
    Bioz Manufacturer Symbol ProSci Incorporated manufactures this product  
  • Logo
  • About
  • News
  • Press Release
  • Team
  • Advisors
  • Partners
  • Contact
  • Bioz Stars
  • Bioz vStars
  • 90

    Structured Review

    ProSci Incorporated rip3 antibody
    Rip3 Antibody, supplied by ProSci Incorporated, used in various techniques. Bioz Stars score: 90/100, based on 1 PubMed citations. ZERO BIAS - scores, article reviews, protocol conditions and more
    https://www.bioz.com/result/rip3 antibody/product/ProSci Incorporated
    Average 90 stars, based on 1 article reviews
    Price from $9.99 to $1999.99
    rip3 antibody - by Bioz Stars, 2023-09
    90/100 stars

    Images

    rip3 antibody  (ProSci Incorporated)


    Bioz Verified Symbol ProSci Incorporated is a verified supplier
    Bioz Manufacturer Symbol ProSci Incorporated manufactures this product  
  • Logo
  • About
  • News
  • Press Release
  • Team
  • Advisors
  • Partners
  • Contact
  • Bioz Stars
  • Bioz vStars
  • 90

    Structured Review

    ProSci Incorporated rip3 antibody
    Rip3 Antibody, supplied by ProSci Incorporated, used in various techniques. Bioz Stars score: 90/100, based on 1 PubMed citations. ZERO BIAS - scores, article reviews, protocol conditions and more
    https://www.bioz.com/result/rip3 antibody/product/ProSci Incorporated
    Average 90 stars, based on 1 article reviews
    Price from $9.99 to $1999.99
    rip3 antibody - by Bioz Stars, 2023-09
    90/100 stars

    Images

    rip3 antibody  (ProSci Incorporated)


    Bioz Verified Symbol ProSci Incorporated is a verified supplier
    Bioz Manufacturer Symbol ProSci Incorporated manufactures this product  
  • Logo
  • About
  • News
  • Press Release
  • Team
  • Advisors
  • Partners
  • Contact
  • Bioz Stars
  • Bioz vStars
  • 90

    Structured Review

    ProSci Incorporated rip3 antibody
    Rip3 Antibody, supplied by ProSci Incorporated, used in various techniques. Bioz Stars score: 90/100, based on 1 PubMed citations. ZERO BIAS - scores, article reviews, protocol conditions and more
    https://www.bioz.com/result/rip3 antibody/product/ProSci Incorporated
    Average 90 stars, based on 1 article reviews
    Price from $9.99 to $1999.99
    rip3 antibody - by Bioz Stars, 2023-09
    90/100 stars

    Images

    rip3 antibody  (ProSci Incorporated)


    Bioz Verified Symbol ProSci Incorporated is a verified supplier
    Bioz Manufacturer Symbol ProSci Incorporated manufactures this product  
  • Logo
  • About
  • News
  • Press Release
  • Team
  • Advisors
  • Partners
  • Contact
  • Bioz Stars
  • Bioz vStars
  • 90

    Structured Review

    ProSci Incorporated rip3 antibody
    Rip3 Antibody, supplied by ProSci Incorporated, used in various techniques. Bioz Stars score: 90/100, based on 1 PubMed citations. ZERO BIAS - scores, article reviews, protocol conditions and more
    https://www.bioz.com/result/rip3 antibody/product/ProSci Incorporated
    Average 90 stars, based on 1 article reviews
    Price from $9.99 to $1999.99
    rip3 antibody - by Bioz Stars, 2023-09
    90/100 stars

    Images

    rip3 antibody  (ProSci Incorporated)


    Bioz Verified Symbol ProSci Incorporated is a verified supplier
    Bioz Manufacturer Symbol ProSci Incorporated manufactures this product  
  • Logo
  • About
  • News
  • Press Release
  • Team
  • Advisors
  • Partners
  • Contact
  • Bioz Stars
  • Bioz vStars
  • 90

    Structured Review

    ProSci Incorporated rip3 antibody
    Rip3 Antibody, supplied by ProSci Incorporated, used in various techniques. Bioz Stars score: 90/100, based on 1 PubMed citations. ZERO BIAS - scores, article reviews, protocol conditions and more
    https://www.bioz.com/result/rip3 antibody/product/ProSci Incorporated
    Average 90 stars, based on 1 article reviews
    Price from $9.99 to $1999.99
    rip3 antibody - by Bioz Stars, 2023-09
    90/100 stars

    Images

    Similar Products

  • Logo
  • About
  • News
  • Press Release
  • Team
  • Advisors
  • Partners
  • Contact
  • Bioz Stars
  • Bioz vStars
  • 90
    ProSci Incorporated rip3 antibody
    Rip3 Antibody, supplied by ProSci Incorporated, used in various techniques. Bioz Stars score: 90/100, based on 1 PubMed citations. ZERO BIAS - scores, article reviews, protocol conditions and more
    https://www.bioz.com/result/rip3 antibody/product/ProSci Incorporated
    Average 90 stars, based on 1 article reviews
    Price from $9.99 to $1999.99
    rip3 antibody - by Bioz Stars, 2023-09
    90/100 stars
      Buy from Supplier

    86
    ProSci Incorporated mouse ripk3 cetsa
    ( A ) Schematic of the necroptosis pathway. TNF (T) activates TNFR1, the Smac-mimetic Compound A (S) blocks cIAP activity and the pan-caspase inhibitor Q-VD-OPh (Q) blocks caspase-8 activity. This TSQ stimulus results in activation of RIPK1 and <t>RIPK3,</t> and subsequent phosphorylation and activation of MLKL, which causes MLKL-mediated membrane disruption and cell death. ( B ) Schematic of the constitutively activated mouse MLKL mutant, Q343A. Expression of MLKL Q343A using doxycycline causes cell death in the absence of upstream necroptotic stimuli. This enabled a cell-based phenotypic screen for small molecules that modulate necroptosis at the level or downstream of MLKL activation. The skull and crossbones image (Mycomorphbox_Deadly.png; by Sven Manguard) in ( A , B ) was used under a Creative Commons Attribution-Share Alike 4.0 license. ( C ) Schematic of the cell-based phenotypic screen. A total of 5632 compounds from the WEHI small molecule library along with 40 kinase inhibitors were screened against wild-type or Mlkl −/− mouse dermal fibroblast (MDF) cells expressing the MLKL Q343A mutant. The ability of the small molecules to inhibit cell death was measured by CellTiter-Glo cell viability assays. ABT-869, a VEGF and PDGF receptor tyrosine kinase inhibitor, was identified as a hit. See also Supplementary Figure S1A. ( D ) Chemical structure of ABT-869 and its analogue WEHI-615. ( E ) Wild-type mouse dermal fibroblast (MDF) cells expressing the doxycycline-inducible MLKL Q343A mutant to trigger constitutive necroptosis were treated with DMSO alone, doxycycline (Dox; 1 µg/ml) and DMSO, or Dox and ABT-869 (1 µM). Cell viability was quantified by CellTiter-Glo. Data represent the mean of ≥2 technical replicates from a single experiment, with individual data points shown. See also Supplementary Figure S1A. ( F ) Mlkl −/− mouse dermal fibroblast (MDF) cells expressing the doxycycline-inducible MLKL Q343A mutant to trigger constitutive necroptosis were treated with DMSO alone, doxycycline (Dox; 1 µg/ml) and DMSO, or Dox and ABT-869 (1 µM). Cell viability was quantified by CellTiter-Glo. Data represent the mean of ≥2 technical replicates from a single experiment, with individual data points shown. See also Supplementary Figure S1A. ( G ) Wild-type mouse dermal fibroblast (MDF) cells were stimulated with TSQ (TNF, Smac-mimetic, Q-VD-OPh) to induce necroptosis and treated with increasing concentrations of ABT-869 or WEHI-615. Cell death was quantified by propidium iodide (PI) staining using flow cytometry. Data represent the mean of n = 4 independent experiments and errors bars represent SEM.
    Mouse Ripk3 Cetsa, supplied by ProSci Incorporated, used in various techniques. Bioz Stars score: 86/100, based on 1 PubMed citations. ZERO BIAS - scores, article reviews, protocol conditions and more
    https://www.bioz.com/result/mouse ripk3 cetsa/product/ProSci Incorporated
    Average 86 stars, based on 1 article reviews
    Price from $9.99 to $1999.99
    mouse ripk3 cetsa - by Bioz Stars, 2023-09
    86/100 stars
      Buy from Supplier

    Image Search Results


    ( A ) Schematic of the necroptosis pathway. TNF (T) activates TNFR1, the Smac-mimetic Compound A (S) blocks cIAP activity and the pan-caspase inhibitor Q-VD-OPh (Q) blocks caspase-8 activity. This TSQ stimulus results in activation of RIPK1 and RIPK3, and subsequent phosphorylation and activation of MLKL, which causes MLKL-mediated membrane disruption and cell death. ( B ) Schematic of the constitutively activated mouse MLKL mutant, Q343A. Expression of MLKL Q343A using doxycycline causes cell death in the absence of upstream necroptotic stimuli. This enabled a cell-based phenotypic screen for small molecules that modulate necroptosis at the level or downstream of MLKL activation. The skull and crossbones image (Mycomorphbox_Deadly.png; by Sven Manguard) in ( A , B ) was used under a Creative Commons Attribution-Share Alike 4.0 license. ( C ) Schematic of the cell-based phenotypic screen. A total of 5632 compounds from the WEHI small molecule library along with 40 kinase inhibitors were screened against wild-type or Mlkl −/− mouse dermal fibroblast (MDF) cells expressing the MLKL Q343A mutant. The ability of the small molecules to inhibit cell death was measured by CellTiter-Glo cell viability assays. ABT-869, a VEGF and PDGF receptor tyrosine kinase inhibitor, was identified as a hit. See also Supplementary Figure S1A. ( D ) Chemical structure of ABT-869 and its analogue WEHI-615. ( E ) Wild-type mouse dermal fibroblast (MDF) cells expressing the doxycycline-inducible MLKL Q343A mutant to trigger constitutive necroptosis were treated with DMSO alone, doxycycline (Dox; 1 µg/ml) and DMSO, or Dox and ABT-869 (1 µM). Cell viability was quantified by CellTiter-Glo. Data represent the mean of ≥2 technical replicates from a single experiment, with individual data points shown. See also Supplementary Figure S1A. ( F ) Mlkl −/− mouse dermal fibroblast (MDF) cells expressing the doxycycline-inducible MLKL Q343A mutant to trigger constitutive necroptosis were treated with DMSO alone, doxycycline (Dox; 1 µg/ml) and DMSO, or Dox and ABT-869 (1 µM). Cell viability was quantified by CellTiter-Glo. Data represent the mean of ≥2 technical replicates from a single experiment, with individual data points shown. See also Supplementary Figure S1A. ( G ) Wild-type mouse dermal fibroblast (MDF) cells were stimulated with TSQ (TNF, Smac-mimetic, Q-VD-OPh) to induce necroptosis and treated with increasing concentrations of ABT-869 or WEHI-615. Cell death was quantified by propidium iodide (PI) staining using flow cytometry. Data represent the mean of n = 4 independent experiments and errors bars represent SEM.

    Journal: Biochemical Journal

    Article Title: The VEGFR/PDGFR tyrosine kinase inhibitor, ABT-869, blocks necroptosis by targeting RIPK1 kinase

    doi: 10.1042/BCJ20230035

    Figure Lengend Snippet: ( A ) Schematic of the necroptosis pathway. TNF (T) activates TNFR1, the Smac-mimetic Compound A (S) blocks cIAP activity and the pan-caspase inhibitor Q-VD-OPh (Q) blocks caspase-8 activity. This TSQ stimulus results in activation of RIPK1 and RIPK3, and subsequent phosphorylation and activation of MLKL, which causes MLKL-mediated membrane disruption and cell death. ( B ) Schematic of the constitutively activated mouse MLKL mutant, Q343A. Expression of MLKL Q343A using doxycycline causes cell death in the absence of upstream necroptotic stimuli. This enabled a cell-based phenotypic screen for small molecules that modulate necroptosis at the level or downstream of MLKL activation. The skull and crossbones image (Mycomorphbox_Deadly.png; by Sven Manguard) in ( A , B ) was used under a Creative Commons Attribution-Share Alike 4.0 license. ( C ) Schematic of the cell-based phenotypic screen. A total of 5632 compounds from the WEHI small molecule library along with 40 kinase inhibitors were screened against wild-type or Mlkl −/− mouse dermal fibroblast (MDF) cells expressing the MLKL Q343A mutant. The ability of the small molecules to inhibit cell death was measured by CellTiter-Glo cell viability assays. ABT-869, a VEGF and PDGF receptor tyrosine kinase inhibitor, was identified as a hit. See also Supplementary Figure S1A. ( D ) Chemical structure of ABT-869 and its analogue WEHI-615. ( E ) Wild-type mouse dermal fibroblast (MDF) cells expressing the doxycycline-inducible MLKL Q343A mutant to trigger constitutive necroptosis were treated with DMSO alone, doxycycline (Dox; 1 µg/ml) and DMSO, or Dox and ABT-869 (1 µM). Cell viability was quantified by CellTiter-Glo. Data represent the mean of ≥2 technical replicates from a single experiment, with individual data points shown. See also Supplementary Figure S1A. ( F ) Mlkl −/− mouse dermal fibroblast (MDF) cells expressing the doxycycline-inducible MLKL Q343A mutant to trigger constitutive necroptosis were treated with DMSO alone, doxycycline (Dox; 1 µg/ml) and DMSO, or Dox and ABT-869 (1 µM). Cell viability was quantified by CellTiter-Glo. Data represent the mean of ≥2 technical replicates from a single experiment, with individual data points shown. See also Supplementary Figure S1A. ( G ) Wild-type mouse dermal fibroblast (MDF) cells were stimulated with TSQ (TNF, Smac-mimetic, Q-VD-OPh) to induce necroptosis and treated with increasing concentrations of ABT-869 or WEHI-615. Cell death was quantified by propidium iodide (PI) staining using flow cytometry. Data represent the mean of n = 4 independent experiments and errors bars represent SEM.

    Article Snippet: Mouse RIPK3 (CETSA) , Rabbit anti-RIPK3 , ProSci , cat #2283 , 1 : 1000.

    Techniques: Activity Assay, Activation Assay, Mutagenesis, Expressing, Staining, Flow Cytometry

    ( A , B ) Wild-type mouse dermal fibroblast (MDF) cells were treated with increasing concentrations of ABT-869 or control compounds, RIPK3 inhibitors GSK′872 and GSK′843, DMSO alone or left untreated (UT) for 1 h then stimulated with TSQ (TNF, Smac-mimetic, Q-VD-OPh) ( A ) or TSZ (TNF, Smac-mimetic, z-VAD-fmk) ( B ) for 24 h to induce necroptosis. Cell death was quantified by propidium iodide (PI) staining using flow cytometry. Data represent the mean of n = 3 ( A ) or n = 4 ( B ) independent experiments and error bars represent SEM. ( C – F ) Human U937 cells were treated with increasing concentrations of ABT-869 or control compounds, MLKL inhibitor NSA and RIPK1 inhibitor GSK′481, DMSO alone or left untreated (UT) for 1 h then stimulated with TSQ (TNF, Smac-mimetic, Q-VD-OPh) for 48 h ( C ) or TSI (TNF, Smac-mimetic, IDN-6556) for 24 h ( E ) to induce necroptosis. Parallel experiments were performed to assess protection of TSQ ( D ) or TSI ( F ) induced death in the presence of the ABT-869 analogue, WEHI-615. Cell death was monitored by SPY505 (live cells) and propidium iodide (PI; dead cells) uptake using IncuCyte live cell imaging. One representative result shown from n = 4 ( C , D ) or n = 3 ( E , F ) independent experiments. See also Supplementary Figure S2A–H.

    Journal: Biochemical Journal

    Article Title: The VEGFR/PDGFR tyrosine kinase inhibitor, ABT-869, blocks necroptosis by targeting RIPK1 kinase

    doi: 10.1042/BCJ20230035

    Figure Lengend Snippet: ( A , B ) Wild-type mouse dermal fibroblast (MDF) cells were treated with increasing concentrations of ABT-869 or control compounds, RIPK3 inhibitors GSK′872 and GSK′843, DMSO alone or left untreated (UT) for 1 h then stimulated with TSQ (TNF, Smac-mimetic, Q-VD-OPh) ( A ) or TSZ (TNF, Smac-mimetic, z-VAD-fmk) ( B ) for 24 h to induce necroptosis. Cell death was quantified by propidium iodide (PI) staining using flow cytometry. Data represent the mean of n = 3 ( A ) or n = 4 ( B ) independent experiments and error bars represent SEM. ( C – F ) Human U937 cells were treated with increasing concentrations of ABT-869 or control compounds, MLKL inhibitor NSA and RIPK1 inhibitor GSK′481, DMSO alone or left untreated (UT) for 1 h then stimulated with TSQ (TNF, Smac-mimetic, Q-VD-OPh) for 48 h ( C ) or TSI (TNF, Smac-mimetic, IDN-6556) for 24 h ( E ) to induce necroptosis. Parallel experiments were performed to assess protection of TSQ ( D ) or TSI ( F ) induced death in the presence of the ABT-869 analogue, WEHI-615. Cell death was monitored by SPY505 (live cells) and propidium iodide (PI; dead cells) uptake using IncuCyte live cell imaging. One representative result shown from n = 4 ( C , D ) or n = 3 ( E , F ) independent experiments. See also Supplementary Figure S2A–H.

    Article Snippet: Mouse RIPK3 (CETSA) , Rabbit anti-RIPK3 , ProSci , cat #2283 , 1 : 1000.

    Techniques: Staining, Flow Cytometry, Live Cell Imaging

    ( A ) Binding affinities ( K D ) of ABT-869 and WEHI-615 for human full-length MLKL, RIPK1 kinase domain and RIPK3 kinase domain measured by competition binding assays from the DiscoverX KINOME scan platform using the Kd ELECT service. Each value is the mean of two replicates. ( B – D ) Cellular Thermal Shift Assays (CETSA) in mouse and human cells. Mlkl −/− mouse dermal fibroblast (MDF) cells expressing MLKL Q343A ( B ), wild-type MDF cells ( C ) and human U937 cells ( D ) were treated with DMSO, ABT-869, WEHI-615, RIPK1 inhibitor Nec-1s, RIPK3 inhibitor GSK′872 or human RIPK1 inhibitor GSK′481 (all 20 µM). Cells were subjected to an increasing temperature gradient focused around the melting temperature of the protein of interest. Following the separation of soluble and insoluble proteins, the remaining soluble proteins were detected by Western blot. Red asterisks denote protein standards. One representative result shown from n = 3 ( B , C ) or n = 2–3 ( D ) independent experiments. See also Supplementary Figure S3A–C.

    Journal: Biochemical Journal

    Article Title: The VEGFR/PDGFR tyrosine kinase inhibitor, ABT-869, blocks necroptosis by targeting RIPK1 kinase

    doi: 10.1042/BCJ20230035

    Figure Lengend Snippet: ( A ) Binding affinities ( K D ) of ABT-869 and WEHI-615 for human full-length MLKL, RIPK1 kinase domain and RIPK3 kinase domain measured by competition binding assays from the DiscoverX KINOME scan platform using the Kd ELECT service. Each value is the mean of two replicates. ( B – D ) Cellular Thermal Shift Assays (CETSA) in mouse and human cells. Mlkl −/− mouse dermal fibroblast (MDF) cells expressing MLKL Q343A ( B ), wild-type MDF cells ( C ) and human U937 cells ( D ) were treated with DMSO, ABT-869, WEHI-615, RIPK1 inhibitor Nec-1s, RIPK3 inhibitor GSK′872 or human RIPK1 inhibitor GSK′481 (all 20 µM). Cells were subjected to an increasing temperature gradient focused around the melting temperature of the protein of interest. Following the separation of soluble and insoluble proteins, the remaining soluble proteins were detected by Western blot. Red asterisks denote protein standards. One representative result shown from n = 3 ( B , C ) or n = 2–3 ( D ) independent experiments. See also Supplementary Figure S3A–C.

    Article Snippet: Mouse RIPK3 (CETSA) , Rabbit anti-RIPK3 , ProSci , cat #2283 , 1 : 1000.

    Techniques: Binding Assay, Expressing, Western Blot

    Thermal Shift Assays (TSA) with mouse and human RIPK1 and RIPK3 kinase domains. Increasing concentrations of ABT-869 or WEHI-615 were tested for their ability to alter the melting temperature ( T M ) of mouse RIPK1 (9.5 µg) ( A , B ), human RIPK1 (12 µg) ( C , D ), mouse RIPK3 (10 µg) ( E , F ) and human RIPK3 (6.5 µg) ( G , H ) compared with the positive controls Compound 2 for mouse RIPK1, GSK′481 for human RIPK1 and GSK′872 for mouse and human RIPK3 (all 30 µM). Data represent the mean of n = 3 independent experiments and error bars represent SEM. See also Supplementary Figure S4A–H.

    Journal: Biochemical Journal

    Article Title: The VEGFR/PDGFR tyrosine kinase inhibitor, ABT-869, blocks necroptosis by targeting RIPK1 kinase

    doi: 10.1042/BCJ20230035

    Figure Lengend Snippet: Thermal Shift Assays (TSA) with mouse and human RIPK1 and RIPK3 kinase domains. Increasing concentrations of ABT-869 or WEHI-615 were tested for their ability to alter the melting temperature ( T M ) of mouse RIPK1 (9.5 µg) ( A , B ), human RIPK1 (12 µg) ( C , D ), mouse RIPK3 (10 µg) ( E , F ) and human RIPK3 (6.5 µg) ( G , H ) compared with the positive controls Compound 2 for mouse RIPK1, GSK′481 for human RIPK1 and GSK′872 for mouse and human RIPK3 (all 30 µM). Data represent the mean of n = 3 independent experiments and error bars represent SEM. See also Supplementary Figure S4A–H.

    Article Snippet: Mouse RIPK3 (CETSA) , Rabbit anti-RIPK3 , ProSci , cat #2283 , 1 : 1000.

    Techniques:

    ( A – H ) In vitro phosphorylation assays with mouse and human RIPK1 and RIPK3 kinase domains measured by ADP-Glo Kinase Assays. Increasing concentrations of ABT-869 or WEHI-615 were tested for their ability to inhibit the autophosphorylation (IC 50 ) of mouse RIPK1 (200 nM) ( A , B ), human RIPK1 (200 nM) ( C , D ), mouse RIPK3 (10 nM) ( E , F ) and human RIPK3 (10 nM) ( G , H ). Data represent the mean of n = 3 ( A , B , E , F ) or n = 2 ( C , D , G , H ) independent experiments and error bars represent SEM. ( I ) Cellular phosphorylation assays. Wild-type mouse dermal fibroblast (MDF) cells were treated with DMSO, ABT-869, WEHI-615, RIPK1 inhibitor Nec-1s or RIPK3 inhibitor GSK′872 for 2 h then stimulated with TSI (TNF, Smac-mimetic, IDN-6556) for 2 h to induce autophosphorylation of RIPK1 and RIPK3. Ripk1 −/− Mlkl −/− MDF cells and Ripk3 −/− MDF cells were included as controls. Phospho-RIPK1 and phospho-RIPK3 protein levels were detected from whole cell lysates by Western blot. Red asterisks denote protein standards. One representative result shown from n = 3 independent experiments. See also Supplementary Figure S5A–C.

    Journal: Biochemical Journal

    Article Title: The VEGFR/PDGFR tyrosine kinase inhibitor, ABT-869, blocks necroptosis by targeting RIPK1 kinase

    doi: 10.1042/BCJ20230035

    Figure Lengend Snippet: ( A – H ) In vitro phosphorylation assays with mouse and human RIPK1 and RIPK3 kinase domains measured by ADP-Glo Kinase Assays. Increasing concentrations of ABT-869 or WEHI-615 were tested for their ability to inhibit the autophosphorylation (IC 50 ) of mouse RIPK1 (200 nM) ( A , B ), human RIPK1 (200 nM) ( C , D ), mouse RIPK3 (10 nM) ( E , F ) and human RIPK3 (10 nM) ( G , H ). Data represent the mean of n = 3 ( A , B , E , F ) or n = 2 ( C , D , G , H ) independent experiments and error bars represent SEM. ( I ) Cellular phosphorylation assays. Wild-type mouse dermal fibroblast (MDF) cells were treated with DMSO, ABT-869, WEHI-615, RIPK1 inhibitor Nec-1s or RIPK3 inhibitor GSK′872 for 2 h then stimulated with TSI (TNF, Smac-mimetic, IDN-6556) for 2 h to induce autophosphorylation of RIPK1 and RIPK3. Ripk1 −/− Mlkl −/− MDF cells and Ripk3 −/− MDF cells were included as controls. Phospho-RIPK1 and phospho-RIPK3 protein levels were detected from whole cell lysates by Western blot. Red asterisks denote protein standards. One representative result shown from n = 3 independent experiments. See also Supplementary Figure S5A–C.

    Article Snippet: Mouse RIPK3 (CETSA) , Rabbit anti-RIPK3 , ProSci , cat #2283 , 1 : 1000.

    Techniques: In Vitro, Western Blot

    Journal: Biochemical Journal

    Article Title: The VEGFR/PDGFR tyrosine kinase inhibitor, ABT-869, blocks necroptosis by targeting RIPK1 kinase

    doi: 10.1042/BCJ20230035

    Figure Lengend Snippet:

    Article Snippet: Mouse RIPK3 (CETSA) , Rabbit anti-RIPK3 , ProSci , cat #2283 , 1 : 1000.

    Techniques: Western Blot, Produced, Transduction

    Journal: Biochemical Journal

    Article Title: The VEGFR/PDGFR tyrosine kinase inhibitor, ABT-869, blocks necroptosis by targeting RIPK1 kinase

    doi: 10.1042/BCJ20230035

    Figure Lengend Snippet:

    Article Snippet: Mouse RIPK3 (CETSA) , Rabbit anti-RIPK3 , ProSci , cat #2283 , 1 : 1000.

    Techniques: