m13mp18 dna sequencing standard m13mp18 dsdna  (New England Biolabs)


Bioz Verified Symbol New England Biolabs is a verified supplier
Bioz Manufacturer Symbol New England Biolabs manufactures this product  
  • Logo
  • About
  • News
  • Press Release
  • Team
  • Advisors
  • Partners
  • Contact
  • Bioz Stars
  • Bioz vStars
  • 77

    Structured Review

    New England Biolabs m13mp18 dna sequencing standard m13mp18 dsdna
    Molecular events and ionic current trace for a 2D read of a 7.25 kb M13 phage <t>dsDNA</t> molecule. (a) Schematic for the steps in <t>DNA</t> translocation through the nanopore. (i) Open channel; (ii) dsDNA with a ligated lead adaptor (blue), with a molecular motor bound to it (orange), and a hairpin adaptor (red), is captured by the nanopore. DNA translocation through the nanopore begins through the effect of an applied voltage across the membrane and the action of a molecular motor; (iii) Translocation of the lead adaptor (blue); (iv) Translocation of the template strand (gold); (v) Translocation of the hairpin adaptor (red); (vi) Translocation of the complement strand (dark blue); (vii) Translocation of the trailing adaptor (brown); (viii) Return to open channel. (b) Raw current trace for the passage of the M13 dsDNA construct through the nanopore. Regions of the ionic current trace corresponding to steps i-viii are labeled. (c) Expanded time and current scale for raw current traces corresponding to steps i–viii. Each adaptor generates a unique current signal used to aid base calling.
    M13mp18 Dna Sequencing Standard M13mp18 Dsdna, supplied by New England Biolabs, used in various techniques. Bioz Stars score: 77/100, based on 1 PubMed citations. ZERO BIAS - scores, article reviews, protocol conditions and more
    https://www.bioz.com/result/m13mp18 dna sequencing standard m13mp18 dsdna/product/New England Biolabs
    Average 77 stars, based on 1 article reviews
    Price from $9.99 to $1999.99
    m13mp18 dna sequencing standard m13mp18 dsdna - by Bioz Stars, 2020-03
    77/100 stars

    Images

    1) Product Images from "Improved data analysis for the MinION nanopore sequencer"

    Article Title: Improved data analysis for the MinION nanopore sequencer

    Journal: Nature methods

    doi: 10.1038/nmeth.3290

    Molecular events and ionic current trace for a 2D read of a 7.25 kb M13 phage dsDNA molecule. (a) Schematic for the steps in DNA translocation through the nanopore. (i) Open channel; (ii) dsDNA with a ligated lead adaptor (blue), with a molecular motor bound to it (orange), and a hairpin adaptor (red), is captured by the nanopore. DNA translocation through the nanopore begins through the effect of an applied voltage across the membrane and the action of a molecular motor; (iii) Translocation of the lead adaptor (blue); (iv) Translocation of the template strand (gold); (v) Translocation of the hairpin adaptor (red); (vi) Translocation of the complement strand (dark blue); (vii) Translocation of the trailing adaptor (brown); (viii) Return to open channel. (b) Raw current trace for the passage of the M13 dsDNA construct through the nanopore. Regions of the ionic current trace corresponding to steps i-viii are labeled. (c) Expanded time and current scale for raw current traces corresponding to steps i–viii. Each adaptor generates a unique current signal used to aid base calling.
    Figure Legend Snippet: Molecular events and ionic current trace for a 2D read of a 7.25 kb M13 phage dsDNA molecule. (a) Schematic for the steps in DNA translocation through the nanopore. (i) Open channel; (ii) dsDNA with a ligated lead adaptor (blue), with a molecular motor bound to it (orange), and a hairpin adaptor (red), is captured by the nanopore. DNA translocation through the nanopore begins through the effect of an applied voltage across the membrane and the action of a molecular motor; (iii) Translocation of the lead adaptor (blue); (iv) Translocation of the template strand (gold); (v) Translocation of the hairpin adaptor (red); (vi) Translocation of the complement strand (dark blue); (vii) Translocation of the trailing adaptor (brown); (viii) Return to open channel. (b) Raw current trace for the passage of the M13 dsDNA construct through the nanopore. Regions of the ionic current trace corresponding to steps i-viii are labeled. (c) Expanded time and current scale for raw current traces corresponding to steps i–viii. Each adaptor generates a unique current signal used to aid base calling.

    Techniques Used: Translocation Assay, Construct, Labeling

    Related Articles

    DNA Sequencing:

    Article Title: Improved data analysis for the MinION nanopore sequencer
    Article Snippet: .. M13mp18 DNA sequencing standard M13mp18 dsDNA was obtained from New England Biolabs (Cat No. N4018S). ..

    Similar Products

  • Logo
  • About
  • News
  • Press Release
  • Team
  • Advisors
  • Partners
  • Contact
  • Bioz Stars
  • Bioz vStars
  • 77
    New England Biolabs m13mp18 dna sequencing standard m13mp18 dsdna
    Molecular events and ionic current trace for a 2D read of a 7.25 kb M13 phage <t>dsDNA</t> molecule. (a) Schematic for the steps in <t>DNA</t> translocation through the nanopore. (i) Open channel; (ii) dsDNA with a ligated lead adaptor (blue), with a molecular motor bound to it (orange), and a hairpin adaptor (red), is captured by the nanopore. DNA translocation through the nanopore begins through the effect of an applied voltage across the membrane and the action of a molecular motor; (iii) Translocation of the lead adaptor (blue); (iv) Translocation of the template strand (gold); (v) Translocation of the hairpin adaptor (red); (vi) Translocation of the complement strand (dark blue); (vii) Translocation of the trailing adaptor (brown); (viii) Return to open channel. (b) Raw current trace for the passage of the M13 dsDNA construct through the nanopore. Regions of the ionic current trace corresponding to steps i-viii are labeled. (c) Expanded time and current scale for raw current traces corresponding to steps i–viii. Each adaptor generates a unique current signal used to aid base calling.
    M13mp18 Dna Sequencing Standard M13mp18 Dsdna, supplied by New England Biolabs, used in various techniques. Bioz Stars score: 77/100, based on 1 PubMed citations. ZERO BIAS - scores, article reviews, protocol conditions and more
    https://www.bioz.com/result/m13mp18 dna sequencing standard m13mp18 dsdna/product/New England Biolabs
    Average 77 stars, based on 1 article reviews
    Price from $9.99 to $1999.99
    m13mp18 dna sequencing standard m13mp18 dsdna - by Bioz Stars, 2020-03
    77/100 stars
      Buy from Supplier

    Image Search Results


    Molecular events and ionic current trace for a 2D read of a 7.25 kb M13 phage dsDNA molecule. (a) Schematic for the steps in DNA translocation through the nanopore. (i) Open channel; (ii) dsDNA with a ligated lead adaptor (blue), with a molecular motor bound to it (orange), and a hairpin adaptor (red), is captured by the nanopore. DNA translocation through the nanopore begins through the effect of an applied voltage across the membrane and the action of a molecular motor; (iii) Translocation of the lead adaptor (blue); (iv) Translocation of the template strand (gold); (v) Translocation of the hairpin adaptor (red); (vi) Translocation of the complement strand (dark blue); (vii) Translocation of the trailing adaptor (brown); (viii) Return to open channel. (b) Raw current trace for the passage of the M13 dsDNA construct through the nanopore. Regions of the ionic current trace corresponding to steps i-viii are labeled. (c) Expanded time and current scale for raw current traces corresponding to steps i–viii. Each adaptor generates a unique current signal used to aid base calling.

    Journal: Nature methods

    Article Title: Improved data analysis for the MinION nanopore sequencer

    doi: 10.1038/nmeth.3290

    Figure Lengend Snippet: Molecular events and ionic current trace for a 2D read of a 7.25 kb M13 phage dsDNA molecule. (a) Schematic for the steps in DNA translocation through the nanopore. (i) Open channel; (ii) dsDNA with a ligated lead adaptor (blue), with a molecular motor bound to it (orange), and a hairpin adaptor (red), is captured by the nanopore. DNA translocation through the nanopore begins through the effect of an applied voltage across the membrane and the action of a molecular motor; (iii) Translocation of the lead adaptor (blue); (iv) Translocation of the template strand (gold); (v) Translocation of the hairpin adaptor (red); (vi) Translocation of the complement strand (dark blue); (vii) Translocation of the trailing adaptor (brown); (viii) Return to open channel. (b) Raw current trace for the passage of the M13 dsDNA construct through the nanopore. Regions of the ionic current trace corresponding to steps i-viii are labeled. (c) Expanded time and current scale for raw current traces corresponding to steps i–viii. Each adaptor generates a unique current signal used to aid base calling.

    Article Snippet: M13mp18 DNA sequencing standard M13mp18 dsDNA was obtained from New England Biolabs (Cat No. N4018S).

    Techniques: Translocation Assay, Construct, Labeling