agp (Alomone Labs)


Structured Review
Agp, supplied by Alomone Labs, used in various techniques. Bioz Stars score: 94/100, based on 1 PubMed citations. ZERO BIAS - scores, article reviews, protocol conditions and more
https://www.bioz.com/result/agp/product/Alomone Labs
Average 94 stars, based on 1 article reviews
Price from $9.99 to $1999.99
Images
agp (Alomone Labs)


Structured Review
Agp, supplied by Alomone Labs, used in various techniques. Bioz Stars score: 94/100, based on 1 PubMed citations. ZERO BIAS - scores, article reviews, protocol conditions and more
https://www.bioz.com/result/agp/product/Alomone Labs
Average 94 stars, based on 1 article reviews
Price from $9.99 to $1999.99
Images
guinea pig anti ampa receptor 2 subunit (Alomone Labs)


Structured Review

Guinea Pig Anti Ampa Receptor 2 Subunit, supplied by Alomone Labs, used in various techniques. Bioz Stars score: 94/100, based on 1 PubMed citations. ZERO BIAS - scores, article reviews, protocol conditions and more
https://www.bioz.com/result/guinea pig anti ampa receptor 2 subunit/product/Alomone Labs
Average 94 stars, based on 1 article reviews
Price from $9.99 to $1999.99
Images
1) Product Images from "α-Amino-3-hydroxyl-5-methyl-4-isoxazole-propionate receptor and RNA processing gene dysregulation are early determinants of selective motor neuron vulnerability in a mouse model of amyotrophic lateral sclerosis"
Article Title: α-Amino-3-hydroxyl-5-methyl-4-isoxazole-propionate receptor and RNA processing gene dysregulation are early determinants of selective motor neuron vulnerability in a mouse model of amyotrophic lateral sclerosis
Journal: Brain Communications
doi: 10.1093/braincomms/fcac081

Figure Legend Snippet: Validation of differentially expressed genes using qRT-PCR. ( A–E ) qPCR verification of the expression of genes involved in biological process identified as enriched by GO analysis compared with WT control. (F) Fold change expression of Ca 2+ -permeable AMPAR subunit Gria1 , Gria3 and Gria4 mRNAs, relative to WT motor neurons at E12.5. (G) Relative expression of Adarb1 mRNA in SOD1 G93A motor neurons at E12.5. ( H ) Schema showing the position of the fully complementary miR-124 target site at the 5′-end of the mouse Gria2 , 3′-UTR. The seed region of miR-124 is shown. Data represent mean ± SEM, unpaired student t -test, n = 5–7 biological replicates, * P < 0.05.
Techniques Used: Quantitative RT-PCR, Expressing

Figure Legend Snippet: Expression of GluA2 in spinal cords of embryonic SOD1 G93A mice. Cross-sections of lumbar spinal cord from WT (HB9:GFP; WT) and SOD1 G93A (SOD1 G93A ; HB9:GFP) mice at (A–J) E12.5 and ( K–T ) E17.5. Double-immunolabelling for GFP, GluA2 and NeuN (Neuronal nuclei). Plots represent quantification analysis of GluA2 signal intensity in HB9:GFP motor neurons at ( U ) E12.5 and ( V ) E17.5. Data represent mean ± SEM, unpaired student t -test performed on n = 4 biological replicates, ∼50 neurons analysed per biological replicate, * P < 0.05. Scale bars 50 μm.
Techniques Used: Expressing

Figure Legend Snippet: Expression of GRIA2 and ADAR2 in iPSC motor neurons derived from ALS patients with SOD1 mutations and healthy control lines. Representative images of iPSC mature motor neurons derived from ( A–E ) healthy control line and ( F–J ) SOD1 I114T line, immunolabelled with ChAT, GluA2 and TUJ1, counterstained with Hoechst. ( K ) Plot represents quantification analysis of GluA2 signal intensity in iPSC motor neurons. Data represent mean ± SEM, unpaired student t -test performed on n = 3 biological replicates, 50 neurons analysed per biological replicate. (L) Fold change expression of GRIA2 in SOD1 lines, compared with healthy control line determined by qRT-PCR. ( M ) Fold change expression of ADAR2 in SOD1 lines, compared with healthy control line determined by qRT-PCR. Data represent mean ± SEM, n = 3 biological replicates, one-way ANOVA with Dunnett's multiple comparison test, * P < 0.01, ** P < 0.005. Scale bars 50 μm.
Techniques Used: Expressing, Derivative Assay, Quantitative RT-PCR
glur2 knockout mice (Alomone Labs)


Structured Review

Glur2 Knockout Mice, supplied by Alomone Labs, used in various techniques. Bioz Stars score: 94/100, based on 1 PubMed citations. ZERO BIAS - scores, article reviews, protocol conditions and more
https://www.bioz.com/result/glur2 knockout mice/product/Alomone Labs
Average 94 stars, based on 1 article reviews
Price from $9.99 to $1999.99
Images
1) Product Images from "Single-Molecule Imaging Reveals Rapid Estradiol Action on the Surface Movement of AMPA Receptors in Live Neurons"
Article Title: Single-Molecule Imaging Reveals Rapid Estradiol Action on the Surface Movement of AMPA Receptors in Live Neurons
Journal: Frontiers in Cell and Developmental Biology
doi: 10.3389/fcell.2021.708715

Figure Legend Snippet: Characterization of differentiated PC12 cells and validation of single-molecule labeling. (A,B) Left, Intensity profiles of a single ATTO 488-labeled GluR2-AMPAR (A) and mGluR1 (B) signal. The arrows indicate single-step photobleaching. Right, Histogram showing the intensity value of every spot found in a recording of ATTO 488-labeled GluR2-AMPAR (A) and mGluR1 (B) , superimposed with a single fitted lognormal curve (blue line). (C) Representative trajectories of AMPAR molecules on somas and neurites. Scale bar = 2 μm. (D) The mean square displacement functions and trajectories represent AMPAR molecules with Brownian motion (red) and confined motion (blue). Scale bar = 0.1 μm. (E,F) The cumulative probability functions of D values of AMPAR (E) and mGluR1 (F) on neurites and somas ( n = 510–676 trajectories). *** p < 0.001.
Techniques Used: Labeling

Figure Legend Snippet: Effect of E2 on the surface movement of GluR2-AMPAR and mGluR1. (A) Effect of different concentrations of E2 on the diffusion coefficient (D, μm 2 /s) of GluR2-AMPAR (A) and mGluR1 (B) (% of vehicle treatment as the mean ± SEM, n = 425–1145 trajectories per group). (C,D) Line graphs depict changes in D of GluR2-AMPAR (C) and mGluR1 (D) molecules at different time points after the administration of the most effective concentration of E2 (% of vehicle treatment as the mean D ± SEM, n = 117–187 trajectories per time point). * p < 0.05; ** p < 0.01; *** p < 0.001.
Techniques Used: Diffusion-based Assay, Concentration Assay

Figure Legend Snippet: Effect of estrogen receptor modulation on the surface movement of GluR2-AMPAR. (A) Representative PCR gel electrophoresis image depicting the expression of estrogen receptor beta (ERβ) and G protein-coupled estrogen receptor 1 (GPER1) mRNA in dPC12. Estrogen receptor alpha (ERα) mRNA was not detected. (B) Histograms demonstrate the mean D AMPAR as a percentage of vehicle control on somas and neurites in the presence of the estrogen receptor, β (ERβ) agonist diarylpropionitrile (DPN), a GPER1 agonist (G1), G1+DPN together, a GPER1 antagonist (G15) and G15+E2 (with 100 pM of E2 on the somas and 100 nM of E2 on the neurites) (mean ± SEM; n = 215–641 trajectories). *** p < 0.001.
Techniques Used: Nucleic Acid Electrophoresis, Expressing

Figure Legend Snippet: The GluR2-AMPAR/GPER1 ratio and molecular distance between GPER1 and GluR2-AMPAR in the membrane. (A) STORM images depicting immunolabeled AMPAR (magenta) and GPER1 (cyan) molecules on dPC12. Dashed lines delineate the borders of the neurites and somas. Scale bar = 2 μm; inset Scale bar = 0.5 μm. (B) The ratio between the number of GPER1 and AMPAR molecules (GPER1/GluR2-AMPAR) on the neurites and somas ( n = 11 somas or neurites). (C1) Photomicrographs depict GPER1 immunoreactivity (visualized with STED microscopy) in dPC12 after 10 min of vehicle (left) or of 100 nM of E2 treatment (right). Scale bar = 2 μm. (C2) One 2 μm 2 (between parallel white bars) and one 10 μm 2 (to the left) areas were selected within each ROI for the membrane and cytoplasmic regions of each cell, respectively. Integrated density was calculated and normalized to the area. Scale bar = 0.5 μm. (D) Dual labeling of plasma membrane and GPER1 molecules defines the membrane regions (approximately 1 μm wide). Scale bar = 0.5 μm. (E) Line graph of the fluorescent intensity calculated from the magnified STED inserts (C2). (F) Integrated density graphs of GPER1 show the effect of vehicle and 100 nM of E2 treatment in the membrane and in the cytoplasm ( n = 15 cells were evaluated in each group). * p < 0.05.
Techniques Used: Immunolabeling, Microscopy, Labeling

Figure Legend Snippet: Effect of E2 on the surface movement of GluR2-AMPA on primary hippocampal neurons. (A) Photomicrograph shows a primary hippocampal neuron labeled with homer-1 (synapse) and β-III tubulin (neuron). Scale bar = 10 μm, insert Scale bar = 2 μm. (B) Dual color STED image of a hippocampal neuron overlayed to differential interference contrast microscopy image depicts live-cell synapse labeling MitoTracker Deep Red (red) and presynaptic protein bassoon (green). Scale bar = 1 μm. (C) Distribution of D values of extrasynaptic and synaptic GluR2-AMPAR under control conditions (median ± IQR, n = 754 extrasynaptic trajectories and n = 104 synaptic trajectories). (D) Effect of E2 (100 pM and 100 nM) on D of extrasynaptic and synaptic GluR2-AMPA with or without chemical LTP (cLTP) induced by glycine/picrotoxin (gly/pic) (% of vehicle treatment as the mean ± SEM; n = 742–928 extrasynaptic trajectories and n = 104–155 synaptic trajectories). (E,F) Effect of vehicle, E2 (100 n, 100 pM) with or without cLTP (gly/pic) on synaptic dwell time (mean ± SEM (s); n = 104–155) (E) and relative surface distribution of synaptic GluR2-AMPAR content (synaptic/total GluR2-AMPA molecule trajectories) (mean ± SEM, n = 8–18 recordings) (F) . * p < 0.05; ** p < 0.01; *** p < 0.001.
Techniques Used: Labeling, Microscopy