dnase i rnase free  (Thermo Fisher)


Bioz Verified Symbol Thermo Fisher is a verified supplier  
  • Logo
  • About
  • News
  • Press Release
  • Team
  • Advisors
  • Partners
  • Contact
  • Bioz Stars
  • Bioz vStars
  • 94

    Structured Review

    Thermo Fisher dnase i rnase free
    Dnase I Rnase Free, supplied by Thermo Fisher, used in various techniques. Bioz Stars score: 94/100, based on 22 PubMed citations. ZERO BIAS - scores, article reviews, protocol conditions and more
    https://www.bioz.com/result/dnase i rnase free/product/Thermo Fisher
    Average 94 stars, based on 22 article reviews
    Price from $9.99 to $1999.99
    dnase i rnase free - by Bioz Stars, 2020-05
    94/100 stars

    Images

    Related Articles

    Real-time Polymerase Chain Reaction:

    Article Title: Loss of Human TGS1 Hypermethylase Promotes Increased Telomerase RNA and Telomere Elongation
    Article Snippet: .. Quantitative Real Time PCR (qRTPCR) Total RNA was extracted with Trizol reagent (Ambion), treated with Ambion DNase I (RNase-free) extracted with phenol/chloroform. .. The integrity of RNA samples was evaluated by gel electrophoresis.

    Similar Products

  • Logo
  • About
  • News
  • Press Release
  • Team
  • Advisors
  • Partners
  • Contact
  • Bioz Stars
  • Bioz vStars
  • 99
    Thermo Fisher rnase free
    IR induces RIG-I binding to endogenous double-stranded RNAs A. HEK293 reporter cells were irradiated after transfection with either an empty vector, a full length human RIG-I, a RIG-I lacking CARD domains (RIG-I helicase/CTD), or a RIG-I harboring K858A and K861A mutations in the C-terminal domain (RIG-I K858A-K861A), in addition to an IFN-beta promoter-driven luciferase construct. A Renilla reporter construct served as a transfection control. Data are presented as mean fold-change relative to the non-irradiated empty vector control. B. Donor HEK293 cells were either unirradiated or treated with IR (3 or 6 Gy). Total RNA was purified and transferred to independent batches of HEK293 reporter cells transfected by RIG-I constructs as described in (A). A synthetic double-stranded RNA construct comprised of 5′-triphosphorylated dsRNA and an unphosphorylated counterpart served as positive and negative controls, respectively (inset). C. Experimental design for isolation and purification of RNA bound to RIG-I after exposure to IR. *To validate RNA sequencing data by qPCR experiments, UV crosslinking was performed prior to cell lysis and immunoprecipitation of RIG-I. See methods for further details. D. Purified RNA from total cellular extracts (Lanes 2 and 3) and complexes with RIG-I (Lanes 4 and 5). Lane 1 is the marker. Data are representative of at least 3 independent experiments. E. HEK293 cells over-expressing the HA-tagged full length RIG-I (Lanes 2 and 3), the RIG-I helicase-CTD mutant (Lanes 4 and 5) and the RIG-I K858A-K861A CTD mutant (Lanes 6 and 7) were either un-irradiated or exposed to IR (6 Gy), lysed and incubated with anti-HA monoclonal antibody to pulldown the respective WT and mutant RIG-I proteins. RIG-I diagrams illustrate the mechanism of RIG-I activation (adapted from [ 57 ]). In the inactive/unbound conformation, the CARD domain of RIG-I is folded to block the helicase domain from RNA binding RNA, but allows the CTD to search for its ligand. Upon binding of the blunt end of a dsRNA molecule to the CTD, the CARD domain opens to allow the helicase domain to bind the remaining dsRNA molecule. Absence of the CARD domain in the helicase/CTD mutant enables higher affinity binding to dsRNA ligands as compared to the full length RIG-I. The lysine residues at amino acid positions 858 and 861 have previously demonstrated importance in latching onto the 5′-triphosphorylated end of viral dsRNA ligands. F. RNA bound to RIG-I after exposure to IR (6 Gy) was treated with: <t>RNase</t> A (lane 3), dsRNA-specific RNase III (lane 4), single-strand specific nuclease S1 (lane 5) and <t>DNase</t> I (lane 7). Lane 2 shows the input and lanes 1 and 6 display markers.
    Rnase Free, supplied by Thermo Fisher, used in various techniques. Bioz Stars score: 99/100, based on 22 PubMed citations. ZERO BIAS - scores, article reviews, protocol conditions and more
    https://www.bioz.com/result/rnase free/product/Thermo Fisher
    Average 99 stars, based on 22 article reviews
    Price from $9.99 to $1999.99
    rnase free - by Bioz Stars, 2020-05
    99/100 stars
      Buy from Supplier

    99
    Thermo Fisher rnase free dnasei isolated rna
    IR induces RIG-I binding to endogenous double-stranded RNAs A. HEK293 reporter cells were irradiated after transfection with either an empty vector, a full length human RIG-I, a RIG-I lacking CARD domains (RIG-I helicase/CTD), or a RIG-I harboring K858A and K861A mutations in the C-terminal domain (RIG-I K858A-K861A), in addition to an IFN-beta promoter-driven luciferase construct. A Renilla reporter construct served as a transfection control. Data are presented as mean fold-change relative to the non-irradiated empty vector control. B. Donor HEK293 cells were either unirradiated or treated with IR (3 or 6 Gy). Total RNA was purified and transferred to independent batches of HEK293 reporter cells transfected by RIG-I constructs as described in (A). A synthetic double-stranded RNA construct comprised of 5′-triphosphorylated dsRNA and an unphosphorylated counterpart served as positive and negative controls, respectively (inset). C. Experimental design for isolation and purification of RNA bound to RIG-I after exposure to IR. *To validate RNA sequencing data by qPCR experiments, UV crosslinking was performed prior to cell lysis and immunoprecipitation of RIG-I. See methods for further details. D. Purified RNA from total cellular extracts (Lanes 2 and 3) and complexes with RIG-I (Lanes 4 and 5). Lane 1 is the marker. Data are representative of at least 3 independent experiments. E. HEK293 cells over-expressing the HA-tagged full length RIG-I (Lanes 2 and 3), the RIG-I helicase-CTD mutant (Lanes 4 and 5) and the RIG-I K858A-K861A CTD mutant (Lanes 6 and 7) were either un-irradiated or exposed to IR (6 Gy), lysed and incubated with anti-HA monoclonal antibody to pulldown the respective WT and mutant RIG-I proteins. RIG-I diagrams illustrate the mechanism of RIG-I activation (adapted from [ 57 ]). In the inactive/unbound conformation, the CARD domain of RIG-I is folded to block the helicase domain from RNA binding RNA, but allows the CTD to search for its ligand. Upon binding of the blunt end of a dsRNA molecule to the CTD, the CARD domain opens to allow the helicase domain to bind the remaining dsRNA molecule. Absence of the CARD domain in the helicase/CTD mutant enables higher affinity binding to dsRNA ligands as compared to the full length RIG-I. The lysine residues at amino acid positions 858 and 861 have previously demonstrated importance in latching onto the 5′-triphosphorylated end of viral dsRNA ligands. F. RNA bound to RIG-I after exposure to IR (6 Gy) was treated with: <t>RNase</t> A (lane 3), dsRNA-specific RNase III (lane 4), single-strand specific nuclease S1 (lane 5) and <t>DNase</t> I (lane 7). Lane 2 shows the input and lanes 1 and 6 display markers.
    Rnase Free Dnasei Isolated Rna, supplied by Thermo Fisher, used in various techniques. Bioz Stars score: 99/100, based on 1 PubMed citations. ZERO BIAS - scores, article reviews, protocol conditions and more
    https://www.bioz.com/result/rnase free dnasei isolated rna/product/Thermo Fisher
    Average 99 stars, based on 1 article reviews
    Price from $9.99 to $1999.99
    rnase free dnasei isolated rna - by Bioz Stars, 2020-05
    99/100 stars
      Buy from Supplier

    99
    Thermo Fisher ambion dnase i
    IR induces RIG-I binding to endogenous double-stranded RNAs A. HEK293 reporter cells were irradiated after transfection with either an empty vector, a full length human RIG-I, a RIG-I lacking CARD domains (RIG-I helicase/CTD), or a RIG-I harboring K858A and K861A mutations in the C-terminal domain (RIG-I K858A-K861A), in addition to an IFN-beta promoter-driven luciferase construct. A Renilla reporter construct served as a transfection control. Data are presented as mean fold-change relative to the non-irradiated empty vector control. B. Donor HEK293 cells were either unirradiated or treated with IR (3 or 6 Gy). Total RNA was purified and transferred to independent batches of HEK293 reporter cells transfected by RIG-I constructs as described in (A). A synthetic double-stranded RNA construct comprised of 5′-triphosphorylated dsRNA and an unphosphorylated counterpart served as positive and negative controls, respectively (inset). C. Experimental design for isolation and purification of RNA bound to RIG-I after exposure to IR. *To validate RNA sequencing data by qPCR experiments, UV crosslinking was performed prior to cell lysis and immunoprecipitation of RIG-I. See methods for further details. D. Purified RNA from total cellular extracts (Lanes 2 and 3) and complexes with RIG-I (Lanes 4 and 5). Lane 1 is the marker. Data are representative of at least 3 independent experiments. E. HEK293 cells over-expressing the HA-tagged full length RIG-I (Lanes 2 and 3), the RIG-I helicase-CTD mutant (Lanes 4 and 5) and the RIG-I K858A-K861A CTD mutant (Lanes 6 and 7) were either un-irradiated or exposed to IR (6 Gy), lysed and incubated with anti-HA monoclonal antibody to pulldown the respective WT and mutant RIG-I proteins. RIG-I diagrams illustrate the mechanism of RIG-I activation (adapted from [ 57 ]). In the inactive/unbound conformation, the CARD domain of RIG-I is folded to block the helicase domain from RNA binding RNA, but allows the CTD to search for its ligand. Upon binding of the blunt end of a dsRNA molecule to the CTD, the CARD domain opens to allow the helicase domain to bind the remaining dsRNA molecule. Absence of the CARD domain in the helicase/CTD mutant enables higher affinity binding to dsRNA ligands as compared to the full length RIG-I. The lysine residues at amino acid positions 858 and 861 have previously demonstrated importance in latching onto the 5′-triphosphorylated end of viral dsRNA ligands. F. RNA bound to RIG-I after exposure to IR (6 Gy) was treated with: <t>RNase</t> A (lane 3), dsRNA-specific RNase III (lane 4), single-strand specific nuclease S1 (lane 5) and <t>DNase</t> I (lane 7). Lane 2 shows the input and lanes 1 and 6 display markers.
    Ambion Dnase I, supplied by Thermo Fisher, used in various techniques. Bioz Stars score: 99/100, based on 1 PubMed citations. ZERO BIAS - scores, article reviews, protocol conditions and more
    https://www.bioz.com/result/ambion dnase i/product/Thermo Fisher
    Average 99 stars, based on 1 article reviews
    Price from $9.99 to $1999.99
    ambion dnase i - by Bioz Stars, 2020-05
    99/100 stars
      Buy from Supplier

    Image Search Results


    IR induces RIG-I binding to endogenous double-stranded RNAs A. HEK293 reporter cells were irradiated after transfection with either an empty vector, a full length human RIG-I, a RIG-I lacking CARD domains (RIG-I helicase/CTD), or a RIG-I harboring K858A and K861A mutations in the C-terminal domain (RIG-I K858A-K861A), in addition to an IFN-beta promoter-driven luciferase construct. A Renilla reporter construct served as a transfection control. Data are presented as mean fold-change relative to the non-irradiated empty vector control. B. Donor HEK293 cells were either unirradiated or treated with IR (3 or 6 Gy). Total RNA was purified and transferred to independent batches of HEK293 reporter cells transfected by RIG-I constructs as described in (A). A synthetic double-stranded RNA construct comprised of 5′-triphosphorylated dsRNA and an unphosphorylated counterpart served as positive and negative controls, respectively (inset). C. Experimental design for isolation and purification of RNA bound to RIG-I after exposure to IR. *To validate RNA sequencing data by qPCR experiments, UV crosslinking was performed prior to cell lysis and immunoprecipitation of RIG-I. See methods for further details. D. Purified RNA from total cellular extracts (Lanes 2 and 3) and complexes with RIG-I (Lanes 4 and 5). Lane 1 is the marker. Data are representative of at least 3 independent experiments. E. HEK293 cells over-expressing the HA-tagged full length RIG-I (Lanes 2 and 3), the RIG-I helicase-CTD mutant (Lanes 4 and 5) and the RIG-I K858A-K861A CTD mutant (Lanes 6 and 7) were either un-irradiated or exposed to IR (6 Gy), lysed and incubated with anti-HA monoclonal antibody to pulldown the respective WT and mutant RIG-I proteins. RIG-I diagrams illustrate the mechanism of RIG-I activation (adapted from [ 57 ]). In the inactive/unbound conformation, the CARD domain of RIG-I is folded to block the helicase domain from RNA binding RNA, but allows the CTD to search for its ligand. Upon binding of the blunt end of a dsRNA molecule to the CTD, the CARD domain opens to allow the helicase domain to bind the remaining dsRNA molecule. Absence of the CARD domain in the helicase/CTD mutant enables higher affinity binding to dsRNA ligands as compared to the full length RIG-I. The lysine residues at amino acid positions 858 and 861 have previously demonstrated importance in latching onto the 5′-triphosphorylated end of viral dsRNA ligands. F. RNA bound to RIG-I after exposure to IR (6 Gy) was treated with: RNase A (lane 3), dsRNA-specific RNase III (lane 4), single-strand specific nuclease S1 (lane 5) and DNase I (lane 7). Lane 2 shows the input and lanes 1 and 6 display markers.

    Journal: Oncotarget

    Article Title: Cancer therapies activate RIG-I-like receptor pathway through endogenous non-coding RNAs

    doi: 10.18632/oncotarget.8420

    Figure Lengend Snippet: IR induces RIG-I binding to endogenous double-stranded RNAs A. HEK293 reporter cells were irradiated after transfection with either an empty vector, a full length human RIG-I, a RIG-I lacking CARD domains (RIG-I helicase/CTD), or a RIG-I harboring K858A and K861A mutations in the C-terminal domain (RIG-I K858A-K861A), in addition to an IFN-beta promoter-driven luciferase construct. A Renilla reporter construct served as a transfection control. Data are presented as mean fold-change relative to the non-irradiated empty vector control. B. Donor HEK293 cells were either unirradiated or treated with IR (3 or 6 Gy). Total RNA was purified and transferred to independent batches of HEK293 reporter cells transfected by RIG-I constructs as described in (A). A synthetic double-stranded RNA construct comprised of 5′-triphosphorylated dsRNA and an unphosphorylated counterpart served as positive and negative controls, respectively (inset). C. Experimental design for isolation and purification of RNA bound to RIG-I after exposure to IR. *To validate RNA sequencing data by qPCR experiments, UV crosslinking was performed prior to cell lysis and immunoprecipitation of RIG-I. See methods for further details. D. Purified RNA from total cellular extracts (Lanes 2 and 3) and complexes with RIG-I (Lanes 4 and 5). Lane 1 is the marker. Data are representative of at least 3 independent experiments. E. HEK293 cells over-expressing the HA-tagged full length RIG-I (Lanes 2 and 3), the RIG-I helicase-CTD mutant (Lanes 4 and 5) and the RIG-I K858A-K861A CTD mutant (Lanes 6 and 7) were either un-irradiated or exposed to IR (6 Gy), lysed and incubated with anti-HA monoclonal antibody to pulldown the respective WT and mutant RIG-I proteins. RIG-I diagrams illustrate the mechanism of RIG-I activation (adapted from [ 57 ]). In the inactive/unbound conformation, the CARD domain of RIG-I is folded to block the helicase domain from RNA binding RNA, but allows the CTD to search for its ligand. Upon binding of the blunt end of a dsRNA molecule to the CTD, the CARD domain opens to allow the helicase domain to bind the remaining dsRNA molecule. Absence of the CARD domain in the helicase/CTD mutant enables higher affinity binding to dsRNA ligands as compared to the full length RIG-I. The lysine residues at amino acid positions 858 and 861 have previously demonstrated importance in latching onto the 5′-triphosphorylated end of viral dsRNA ligands. F. RNA bound to RIG-I after exposure to IR (6 Gy) was treated with: RNase A (lane 3), dsRNA-specific RNase III (lane 4), single-strand specific nuclease S1 (lane 5) and DNase I (lane 7). Lane 2 shows the input and lanes 1 and 6 display markers.

    Article Snippet: qRT-PCR analysis 1 μg total RNA was subjected to DNase I treatment in a 30 μL reaction volume using DNase I, RNase-free (Thermo Scientific) following the manufacturer's protocol. cDNA was synthesized from 10 μL of the DNase treated RNA using the High-Capacity cDNA Reverse Transcription Kit (LifeTechnologies) following the manufacturer's protocol.

    Techniques: Binding Assay, Irradiation, Transfection, Plasmid Preparation, Luciferase, Construct, Purification, Isolation, RNA Sequencing Assay, Real-time Polymerase Chain Reaction, Lysis, Immunoprecipitation, Marker, Expressing, Mutagenesis, Incubation, Activation Assay, Blocking Assay, RNA Binding Assay

    alTERC gene is transcribed to RNA in vivo in mouse organs and in vitro in mouse cell lines A. RNA was extracted from adult mouse brain, n = 3, cDNA was generated and subjected to PCR analysis using the set 1 primers for mTERC and set 2 primers for alTERC. Two bands of ~220 bp for mTERC and ~150bp for alTERC were observed. NTC- control, no cDNA. (A is a representative picture of 3 independent experiments). B. The PCR reaction described in A was carried out in the presence of radioactive nucleotide (dCTP [αp 32 ] and the reaction products were analysed by 14% polyacrylamide gel electrophoresis following autoradiography. Two bands of ~230 bp and ~210 bp were observed with set 1 primers (Fpr1) for mTERC and one band of ~150 bp with set primers 2 (Fpr2) for alTERC were detected. C. RNA was extracted from mouse NSC-34 motor neurons like cells followed by cDNA production in the presence or absence of DNase or RNase and subjected to PCR amplification as described in A using the set1 and set 2 primers. D. RNA was extracted from mouse organs (brain and spleen) or from mouse neuroblastoma cell line (N2a) and subjected to sqPCR analysis using the set 1 and 2 primers for TERC and alTERC and GAPDH primers as control. A Representative picture of 3 independent experiments. E. The results of experiments described in D were quantified by densitometric analysis with the EZQuant software, calculated relatively to GAPDH and the alTERC/TERC expression ratio was estimated. The data are means ± SD of 3 independent experiments.

    Journal: Oncotarget

    Article Title: Expression of functional alternative telomerase RNA component gene in mouse brain and in motor neurons cells protects from oxidative stress

    doi: 10.18632/oncotarget.13049

    Figure Lengend Snippet: alTERC gene is transcribed to RNA in vivo in mouse organs and in vitro in mouse cell lines A. RNA was extracted from adult mouse brain, n = 3, cDNA was generated and subjected to PCR analysis using the set 1 primers for mTERC and set 2 primers for alTERC. Two bands of ~220 bp for mTERC and ~150bp for alTERC were observed. NTC- control, no cDNA. (A is a representative picture of 3 independent experiments). B. The PCR reaction described in A was carried out in the presence of radioactive nucleotide (dCTP [αp 32 ] and the reaction products were analysed by 14% polyacrylamide gel electrophoresis following autoradiography. Two bands of ~230 bp and ~210 bp were observed with set 1 primers (Fpr1) for mTERC and one band of ~150 bp with set primers 2 (Fpr2) for alTERC were detected. C. RNA was extracted from mouse NSC-34 motor neurons like cells followed by cDNA production in the presence or absence of DNase or RNase and subjected to PCR amplification as described in A using the set1 and set 2 primers. D. RNA was extracted from mouse organs (brain and spleen) or from mouse neuroblastoma cell line (N2a) and subjected to sqPCR analysis using the set 1 and 2 primers for TERC and alTERC and GAPDH primers as control. A Representative picture of 3 independent experiments. E. The results of experiments described in D were quantified by densitometric analysis with the EZQuant software, calculated relatively to GAPDH and the alTERC/TERC expression ratio was estimated. The data are means ± SD of 3 independent experiments.

    Article Snippet: In both cases DNA residues were removed using the “DNase I, RNase-free” kit (Thermo Fisher Scientific Inc, Pittsburgh PA, USA).

    Techniques: In Vivo, In Vitro, Generated, Polymerase Chain Reaction, Polyacrylamide Gel Electrophoresis, Autoradiography, Amplification, Software, Expressing