cutsmart buffer  (New England Biolabs)


Bioz Verified Symbol New England Biolabs is a verified supplier
Bioz Manufacturer Symbol New England Biolabs manufactures this product  
  • Logo
  • About
  • News
  • Press Release
  • Team
  • Advisors
  • Partners
  • Contact
  • Bioz Stars
  • Bioz vStars
  • 99
    Name:
    CutSmart Buffer
    Description:
    CutSmart Buffer 5 0 ml
    Catalog Number:
    B7204S
    Price:
    24
    Category:
    Buffers
    Size:
    5 0 ml
    Buy from Supplier


    Structured Review

    New England Biolabs cutsmart buffer
    CutSmart Buffer
    CutSmart Buffer 5 0 ml
    https://www.bioz.com/result/cutsmart buffer/product/New England Biolabs
    Average 99 stars, based on 1 article reviews
    Price from $9.99 to $1999.99
    cutsmart buffer - by Bioz Stars, 2021-09
    99/100 stars

    Images

    1) Product Images from "Depurination of colibactin-derived interstrand cross-links."

    Article Title: Depurination of colibactin-derived interstrand cross-links.

    Journal: Biochemistry

    doi: 10.1021/acs.biochem.9b01070

    Analysis of pUC19 DNA following treatment with clb − or clb + E. coli and linearization with the restriction enzyme EcoRI. The cross-linked linearized pUC19 DNA isolated from a co-culture with clb + BW25113 E. coli was used a positive control. A . Analysis of DNA by native gel electrophoresis. B . Analysis of DNA by denaturing gel electrophoresis. For both A and B: DNA ladder (Lane #1); circular pUC19 DNA standard (Lane #2); linearized pUC19 DNA standard (Lane # 3); linearized pUC19 DNA co-cultured with clb + BW25113 E. coli (Lane #4); circular pUC19 DNA isolated from co-culture with clb − BW25113 E. coli (Lane #5), reacted with buffer (Lane #6), reacted with EcoRI restriction enzyme (Lane #7); circular pUC19 DNA isolated from co-culture with clb + BW25113 E. coli (Lane #8), reacted with buffer (Lane #9), reacted with EcoRI restriction enzyme (Lane #10). Conditions (Lane #4): linearized pUC19 DNA, clb + BW25113 E. coli , M9-CA media, 4 h at 37 °C. Conditions (Lane #5–#7): circular pUC19 DNA isolated from co-culture with clb − BW25113 E. coli in M9-CA media for 4 h at 37 °C (Lane #5); the DNA (15.4 μM base pair) was reacted with CutSmart Buffer® (New England Biolabs®), pH 7.9, at 37 °C for 30 minutes (Lane #6); the DNA (15.4 μM base pair) was reacted with 20 units of EcoRI-HF restriction enzyme in CutSmart Buffer® (New England Biolabs®), pH 7.9, at 37 °C for 30 minutes (Lane #7). Conditions (Lane #8–#10): circular pUC19 DNA isolated from co-culture with BW25113 clb + E. coli . in in M9-CA media for 4 h at 37 °C (Lane # 8); the DNA (15.4 μM base pair) was reacted with CutSmart Buffer® (New England Biolabs®), pH 7.9, at 37 °C for 30 minutes (Lane #9); the DNA (15.4 μM base pair) was reacted with 20 units of EcoRI-HF restriction enzyme in CutSmart Buffer® (New England Biolabs®), pH 7.9, at 37 °C for 30 minutes (Lane #10). The DNA was isolated and analyzed by native (Fig. 5A) or 0.4% NaOH denaturing (Fig. 5B) agarose gel electrophoresis (90 V, 1.5 h). SC = supercoiled, nicked = SSB, linear = DSB, SC-denat. = supercoiled DNA in denaturing form, linear-denat. = DSB/linearized DNA in denaturing form, nicked-XL = SSB DNA cross-linked by colibactin, linear-XL = DSB/linerized DNA cross-linked by colibactin.
    Figure Legend Snippet: Analysis of pUC19 DNA following treatment with clb − or clb + E. coli and linearization with the restriction enzyme EcoRI. The cross-linked linearized pUC19 DNA isolated from a co-culture with clb + BW25113 E. coli was used a positive control. A . Analysis of DNA by native gel electrophoresis. B . Analysis of DNA by denaturing gel electrophoresis. For both A and B: DNA ladder (Lane #1); circular pUC19 DNA standard (Lane #2); linearized pUC19 DNA standard (Lane # 3); linearized pUC19 DNA co-cultured with clb + BW25113 E. coli (Lane #4); circular pUC19 DNA isolated from co-culture with clb − BW25113 E. coli (Lane #5), reacted with buffer (Lane #6), reacted with EcoRI restriction enzyme (Lane #7); circular pUC19 DNA isolated from co-culture with clb + BW25113 E. coli (Lane #8), reacted with buffer (Lane #9), reacted with EcoRI restriction enzyme (Lane #10). Conditions (Lane #4): linearized pUC19 DNA, clb + BW25113 E. coli , M9-CA media, 4 h at 37 °C. Conditions (Lane #5–#7): circular pUC19 DNA isolated from co-culture with clb − BW25113 E. coli in M9-CA media for 4 h at 37 °C (Lane #5); the DNA (15.4 μM base pair) was reacted with CutSmart Buffer® (New England Biolabs®), pH 7.9, at 37 °C for 30 minutes (Lane #6); the DNA (15.4 μM base pair) was reacted with 20 units of EcoRI-HF restriction enzyme in CutSmart Buffer® (New England Biolabs®), pH 7.9, at 37 °C for 30 minutes (Lane #7). Conditions (Lane #8–#10): circular pUC19 DNA isolated from co-culture with BW25113 clb + E. coli . in in M9-CA media for 4 h at 37 °C (Lane # 8); the DNA (15.4 μM base pair) was reacted with CutSmart Buffer® (New England Biolabs®), pH 7.9, at 37 °C for 30 minutes (Lane #9); the DNA (15.4 μM base pair) was reacted with 20 units of EcoRI-HF restriction enzyme in CutSmart Buffer® (New England Biolabs®), pH 7.9, at 37 °C for 30 minutes (Lane #10). The DNA was isolated and analyzed by native (Fig. 5A) or 0.4% NaOH denaturing (Fig. 5B) agarose gel electrophoresis (90 V, 1.5 h). SC = supercoiled, nicked = SSB, linear = DSB, SC-denat. = supercoiled DNA in denaturing form, linear-denat. = DSB/linearized DNA in denaturing form, nicked-XL = SSB DNA cross-linked by colibactin, linear-XL = DSB/linerized DNA cross-linked by colibactin.

    Techniques Used: Isolation, Co-Culture Assay, Positive Control, Nucleic Acid Electrophoresis, Cell Culture, Agarose Gel Electrophoresis

    2) Product Images from "Depurination of colibactin-derived interstrand cross-links"

    Article Title: Depurination of colibactin-derived interstrand cross-links

    Journal: bioRxiv

    doi: 10.1101/869313

    Analysis of pUC19 DNA following treatment with clb − or clb + E. coli and linearization with the restriction enzyme EcoRI. The cross-linked linearized pUC19 DNA isolated from a co-culture with clb + BW25113 E. coli was used a positive control. A. Analysis of DNA by native gel electrophoresis. B. Analysis of DNA by denaturing gel electrophoresis. For both A and B: DNA ladder (Lane #1); circular pUC19 DNA standard (Lane #2); linearized pUC19 DNA standard (Lane # 3); linearized pUC19 DNA co-cultured with clb + BW25113 E. coli (Lane #4); circular pUC19 DNA isolated from co-culture with clb − BW25113 E. coli (Lane #5), reacted with buffer (Lane #6), reacted with EcoRI restriction enzyme (Lane #7); circular pUC19 DNA isolated from co-culture with clb + BW25113 E. coli (Lane #8), reacted with buffer (Lane #9), reacted with EcoRI restriction enzyme (Lane #10). Conditions (Lane #4): linearized pUC19 DNA, clb + BW25113 E. coli , M9-CA media, 4 h at 37 °C. Conditions (Lane #5–#7): circular pUC19 DNA isolated from co-culture with clb − BW25113 E. coli in M9-CA media for 4 h at 37 °C (Lane #5); the DNA (15.4 µM base pair) was reacted with CutSmart Buffer® (New England Biolabs®), pH 7.9, at 37 °C for 30 minutes (Lane #6); the DNA (15.4 µM base pair) was reacted with 20 units of EcoRI-HF restriction enzyme in CutSmart Buffer® (New England Biolabs®), pH 7.9, at 37 °C for 30 minutes (Lane #7). Conditions (Lane #8–#10): circular pUC19 DNA isolated from co-culture with BW25113 clb + E. coli. in in M9-CA media for 4 h at 37 °C (Lane # 8); the DNA (15.4 µM base pair) was reacted with CutSmart Buffer® (New England Biolabs®), pH 7.9, at 37 °C for 30 minutes (Lane #9); the DNA (15.4 µM base pair) was reacted with 20 units of EcoRI-HF restriction enzyme in CutSmart Buffer® (New England Biolabs®), pH 7.9, at 37 °C for 30 minutes (Lane #10). The DNA was isolated and analyzed by native ( Fig. 5A ) or 0.4% NaOH denaturing ( Fig. 5B ) agarose gel electrophoresis (90 V, 1.5 h).
    Figure Legend Snippet: Analysis of pUC19 DNA following treatment with clb − or clb + E. coli and linearization with the restriction enzyme EcoRI. The cross-linked linearized pUC19 DNA isolated from a co-culture with clb + BW25113 E. coli was used a positive control. A. Analysis of DNA by native gel electrophoresis. B. Analysis of DNA by denaturing gel electrophoresis. For both A and B: DNA ladder (Lane #1); circular pUC19 DNA standard (Lane #2); linearized pUC19 DNA standard (Lane # 3); linearized pUC19 DNA co-cultured with clb + BW25113 E. coli (Lane #4); circular pUC19 DNA isolated from co-culture with clb − BW25113 E. coli (Lane #5), reacted with buffer (Lane #6), reacted with EcoRI restriction enzyme (Lane #7); circular pUC19 DNA isolated from co-culture with clb + BW25113 E. coli (Lane #8), reacted with buffer (Lane #9), reacted with EcoRI restriction enzyme (Lane #10). Conditions (Lane #4): linearized pUC19 DNA, clb + BW25113 E. coli , M9-CA media, 4 h at 37 °C. Conditions (Lane #5–#7): circular pUC19 DNA isolated from co-culture with clb − BW25113 E. coli in M9-CA media for 4 h at 37 °C (Lane #5); the DNA (15.4 µM base pair) was reacted with CutSmart Buffer® (New England Biolabs®), pH 7.9, at 37 °C for 30 minutes (Lane #6); the DNA (15.4 µM base pair) was reacted with 20 units of EcoRI-HF restriction enzyme in CutSmart Buffer® (New England Biolabs®), pH 7.9, at 37 °C for 30 minutes (Lane #7). Conditions (Lane #8–#10): circular pUC19 DNA isolated from co-culture with BW25113 clb + E. coli. in in M9-CA media for 4 h at 37 °C (Lane # 8); the DNA (15.4 µM base pair) was reacted with CutSmart Buffer® (New England Biolabs®), pH 7.9, at 37 °C for 30 minutes (Lane #9); the DNA (15.4 µM base pair) was reacted with 20 units of EcoRI-HF restriction enzyme in CutSmart Buffer® (New England Biolabs®), pH 7.9, at 37 °C for 30 minutes (Lane #10). The DNA was isolated and analyzed by native ( Fig. 5A ) or 0.4% NaOH denaturing ( Fig. 5B ) agarose gel electrophoresis (90 V, 1.5 h).

    Techniques Used: Isolation, Co-Culture Assay, Positive Control, Nucleic Acid Electrophoresis, Cell Culture, Agarose Gel Electrophoresis

    3) Product Images from "Depurination of colibactin-derived interstrand cross-links"

    Article Title: Depurination of colibactin-derived interstrand cross-links

    Journal: bioRxiv

    doi: 10.1101/869313

    Analysis of pUC19 DNA following treatment with clb − or clb + E. coli and linearization with the restriction enzyme EcoRI. The cross-linked linearized pUC19 DNA isolated from a co-culture with clb + BW25113 E. coli was used a positive control. A. Analysis of DNA by native gel electrophoresis. B. Analysis of DNA by denaturing gel electrophoresis. For both A and B: DNA ladder (Lane #1); circular pUC19 DNA standard (Lane #2); linearized pUC19 DNA standard (Lane # 3); linearized pUC19 DNA co-cultured with clb + BW25113 E. coli (Lane #4); circular pUC19 DNA isolated from co-culture with clb − BW25113 E. coli (Lane #5), reacted with buffer (Lane #6), reacted with EcoRI restriction enzyme (Lane #7); circular pUC19 DNA isolated from co-culture with clb + BW25113 E. coli (Lane #8), reacted with buffer (Lane #9), reacted with EcoRI restriction enzyme (Lane #10). Conditions (Lane #4): linearized pUC19 DNA, clb + BW25113 E. coli , M9-CA media, 4 h at 37 °C. Conditions (Lane #5–#7): circular pUC19 DNA isolated from co-culture with clb − BW25113 E. coli in M9-CA media for 4 h at 37 °C (Lane #5); the DNA (15.4 µM base pair) was reacted with CutSmart Buffer® (New England Biolabs®), pH 7.9, at 37 °C for 30 minutes (Lane #6); the DNA (15.4 µM base pair) was reacted with 20 units of EcoRI-HF restriction enzyme in CutSmart Buffer® (New England Biolabs®), pH 7.9, at 37 °C for 30 minutes (Lane #7). Conditions (Lane #8–#10): circular pUC19 DNA isolated from co-culture with BW25113 clb + E. coli. in in M9-CA media for 4 h at 37 °C (Lane # 8); the DNA (15.4 µM base pair) was reacted with CutSmart Buffer® (New England Biolabs®), pH 7.9, at 37 °C for 30 minutes (Lane #9); the DNA (15.4 µM base pair) was reacted with 20 units of EcoRI-HF restriction enzyme in CutSmart Buffer® (New England Biolabs®), pH 7.9, at 37 °C for 30 minutes (Lane #10). The DNA was isolated and analyzed by native ( Fig. 5A ) or 0.4% NaOH denaturing ( Fig. 5B ) agarose gel electrophoresis (90 V, 1.5 h).
    Figure Legend Snippet: Analysis of pUC19 DNA following treatment with clb − or clb + E. coli and linearization with the restriction enzyme EcoRI. The cross-linked linearized pUC19 DNA isolated from a co-culture with clb + BW25113 E. coli was used a positive control. A. Analysis of DNA by native gel electrophoresis. B. Analysis of DNA by denaturing gel electrophoresis. For both A and B: DNA ladder (Lane #1); circular pUC19 DNA standard (Lane #2); linearized pUC19 DNA standard (Lane # 3); linearized pUC19 DNA co-cultured with clb + BW25113 E. coli (Lane #4); circular pUC19 DNA isolated from co-culture with clb − BW25113 E. coli (Lane #5), reacted with buffer (Lane #6), reacted with EcoRI restriction enzyme (Lane #7); circular pUC19 DNA isolated from co-culture with clb + BW25113 E. coli (Lane #8), reacted with buffer (Lane #9), reacted with EcoRI restriction enzyme (Lane #10). Conditions (Lane #4): linearized pUC19 DNA, clb + BW25113 E. coli , M9-CA media, 4 h at 37 °C. Conditions (Lane #5–#7): circular pUC19 DNA isolated from co-culture with clb − BW25113 E. coli in M9-CA media for 4 h at 37 °C (Lane #5); the DNA (15.4 µM base pair) was reacted with CutSmart Buffer® (New England Biolabs®), pH 7.9, at 37 °C for 30 minutes (Lane #6); the DNA (15.4 µM base pair) was reacted with 20 units of EcoRI-HF restriction enzyme in CutSmart Buffer® (New England Biolabs®), pH 7.9, at 37 °C for 30 minutes (Lane #7). Conditions (Lane #8–#10): circular pUC19 DNA isolated from co-culture with BW25113 clb + E. coli. in in M9-CA media for 4 h at 37 °C (Lane # 8); the DNA (15.4 µM base pair) was reacted with CutSmart Buffer® (New England Biolabs®), pH 7.9, at 37 °C for 30 minutes (Lane #9); the DNA (15.4 µM base pair) was reacted with 20 units of EcoRI-HF restriction enzyme in CutSmart Buffer® (New England Biolabs®), pH 7.9, at 37 °C for 30 minutes (Lane #10). The DNA was isolated and analyzed by native ( Fig. 5A ) or 0.4% NaOH denaturing ( Fig. 5B ) agarose gel electrophoresis (90 V, 1.5 h).

    Techniques Used: Isolation, Co-Culture Assay, Positive Control, Nucleic Acid Electrophoresis, Cell Culture, Agarose Gel Electrophoresis

    4) Product Images from "A simple and efficient cloning system for CRISPR/Cas9-mediated genome editing in rice"

    Article Title: A simple and efficient cloning system for CRISPR/Cas9-mediated genome editing in rice

    Journal: PeerJ

    doi: 10.7717/peerj.8491

    Workflow for constructing expression clone containing two target-sgRNA expression cassettes with Golden Gate clone. Primers containing adaptors for Golden Gate cloning (OJH307 and OJH308) were used in the amplification with PJG090 as the template. The reagents were recommended as following: one ul of PCR product, 50 ng of PJG112, one ul of Cutsmart Buffer (NEB), 0.4 ul of T4 ligase buffer (NEB), 5 U of Bsa I (NEB), 20 U of T4 DNA ligase (NEB) and add ddH 2 O to 10 ul. The reaction was incubated for 20–25 cycles (37 °C 2 min, 20 °C 5 min), followed by incubation at 50 °C and 80 °C for 5 min, respectively. Subsequently, one ul of the product was introduced into Trans T1 competent cells. Positive clones were identified by clone PCR and sequenced.
    Figure Legend Snippet: Workflow for constructing expression clone containing two target-sgRNA expression cassettes with Golden Gate clone. Primers containing adaptors for Golden Gate cloning (OJH307 and OJH308) were used in the amplification with PJG090 as the template. The reagents were recommended as following: one ul of PCR product, 50 ng of PJG112, one ul of Cutsmart Buffer (NEB), 0.4 ul of T4 ligase buffer (NEB), 5 U of Bsa I (NEB), 20 U of T4 DNA ligase (NEB) and add ddH 2 O to 10 ul. The reaction was incubated for 20–25 cycles (37 °C 2 min, 20 °C 5 min), followed by incubation at 50 °C and 80 °C for 5 min, respectively. Subsequently, one ul of the product was introduced into Trans T1 competent cells. Positive clones were identified by clone PCR and sequenced.

    Techniques Used: Expressing, Clone Assay, Amplification, Polymerase Chain Reaction, Incubation

    5) Product Images from "Restriction Endonucleases from Invasive Neisseria gonorrhoeae Cause Double-Strand Breaks and Distort Mitosis in Epithelial Cells during Infection"

    Article Title: Restriction Endonucleases from Invasive Neisseria gonorrhoeae Cause Double-Strand Breaks and Distort Mitosis in Epithelial Cells during Infection

    Journal: PLoS ONE

    doi: 10.1371/journal.pone.0114208

    Lysates of N. gonorrhoeae fragments pECFP-N1 and damage DNA from VK2/E6E7 cells. A. DNA agarose gel showing the digestion of pECFP-N1 plasmid by HindIII (positive control, lane 2), MS11 P+ lysate (lane 3), and MS11 P+ HI lysate (lane 5). Lane 5 shows bacterial MS11 P+ lysate without pECFP-N1 and lane 1 shows uncut circular pECFP-N1. B. PFGE analysis of purified VK2/E6E7 genomic DNA treated for 24 h with: lane 1: PBS (negative control), lane 2: MS11 P+ lysate, lane 3: MS11 P+ HI lysate. Lane 4 shows bacterial MS11 P+ lysate without VK2/E6E7 genomic DNA. C. Graph showing quantification of DNA smears (measured directly underneath and below the band). Shown are smear pixel intensities of cellular DNA alone and cellular DNA exposed to bacterial lysates and HI bacterial lysates. D. PFGE showing genomic DNA subjected to commercial restriction enzymes for 24 h. Lane 1: DNA incubated with CutSmart reaction buffer (negative control). Lane 2: DNA incubated with NgoMIV. Lane 3: DNA incubated with MfeI, Lane 4: DNA incubated with NgoMIV and MfeI Lane 5: DNA incubated with NgoMIV and BamHI/KpnI/MfeI (BKM).
    Figure Legend Snippet: Lysates of N. gonorrhoeae fragments pECFP-N1 and damage DNA from VK2/E6E7 cells. A. DNA agarose gel showing the digestion of pECFP-N1 plasmid by HindIII (positive control, lane 2), MS11 P+ lysate (lane 3), and MS11 P+ HI lysate (lane 5). Lane 5 shows bacterial MS11 P+ lysate without pECFP-N1 and lane 1 shows uncut circular pECFP-N1. B. PFGE analysis of purified VK2/E6E7 genomic DNA treated for 24 h with: lane 1: PBS (negative control), lane 2: MS11 P+ lysate, lane 3: MS11 P+ HI lysate. Lane 4 shows bacterial MS11 P+ lysate without VK2/E6E7 genomic DNA. C. Graph showing quantification of DNA smears (measured directly underneath and below the band). Shown are smear pixel intensities of cellular DNA alone and cellular DNA exposed to bacterial lysates and HI bacterial lysates. D. PFGE showing genomic DNA subjected to commercial restriction enzymes for 24 h. Lane 1: DNA incubated with CutSmart reaction buffer (negative control). Lane 2: DNA incubated with NgoMIV. Lane 3: DNA incubated with MfeI, Lane 4: DNA incubated with NgoMIV and MfeI Lane 5: DNA incubated with NgoMIV and BamHI/KpnI/MfeI (BKM).

    Techniques Used: Agarose Gel Electrophoresis, Plasmid Preparation, Positive Control, Purification, Negative Control, Incubation

    6) Product Images from "Depurination of colibactin-derived interstrand cross-links."

    Article Title: Depurination of colibactin-derived interstrand cross-links.

    Journal: Biochemistry

    doi: 10.1021/acs.biochem.9b01070

    Analysis of pUC19 DNA following treatment with clb − or clb + E. coli and linearization with the restriction enzyme EcoRI. The cross-linked linearized pUC19 DNA isolated from a co-culture with clb + BW25113 E. coli was used a positive control. A . Analysis of DNA by native gel electrophoresis. B . Analysis of DNA by denaturing gel electrophoresis. For both A and B: DNA ladder (Lane #1); circular pUC19 DNA standard (Lane #2); linearized pUC19 DNA standard (Lane # 3); linearized pUC19 DNA co-cultured with clb + BW25113 E. coli (Lane #4); circular pUC19 DNA isolated from co-culture with clb − BW25113 E. coli (Lane #5), reacted with buffer (Lane #6), reacted with EcoRI restriction enzyme (Lane #7); circular pUC19 DNA isolated from co-culture with clb + BW25113 E. coli (Lane #8), reacted with buffer (Lane #9), reacted with EcoRI restriction enzyme (Lane #10). Conditions (Lane #4): linearized pUC19 DNA, clb + BW25113 E. coli , M9-CA media, 4 h at 37 °C. Conditions (Lane #5–#7): circular pUC19 DNA isolated from co-culture with clb − BW25113 E. coli in M9-CA media for 4 h at 37 °C (Lane #5); the DNA (15.4 μM base pair) was reacted with CutSmart Buffer® (New England Biolabs®), pH 7.9, at 37 °C for 30 minutes (Lane #6); the DNA (15.4 μM base pair) was reacted with 20 units of EcoRI-HF restriction enzyme in CutSmart Buffer® (New England Biolabs®), pH 7.9, at 37 °C for 30 minutes (Lane #7). Conditions (Lane #8–#10): circular pUC19 DNA isolated from co-culture with BW25113 clb + E. coli . in in M9-CA media for 4 h at 37 °C (Lane # 8); the DNA (15.4 μM base pair) was reacted with CutSmart Buffer® (New England Biolabs®), pH 7.9, at 37 °C for 30 minutes (Lane #9); the DNA (15.4 μM base pair) was reacted with 20 units of EcoRI-HF restriction enzyme in CutSmart Buffer® (New England Biolabs®), pH 7.9, at 37 °C for 30 minutes (Lane #10). The DNA was isolated and analyzed by native (Fig. 5A) or 0.4% NaOH denaturing (Fig. 5B) agarose gel electrophoresis (90 V, 1.5 h). SC = supercoiled, nicked = SSB, linear = DSB, SC-denat. = supercoiled DNA in denaturing form, linear-denat. = DSB/linearized DNA in denaturing form, nicked-XL = SSB DNA cross-linked by colibactin, linear-XL = DSB/linerized DNA cross-linked by colibactin.
    Figure Legend Snippet: Analysis of pUC19 DNA following treatment with clb − or clb + E. coli and linearization with the restriction enzyme EcoRI. The cross-linked linearized pUC19 DNA isolated from a co-culture with clb + BW25113 E. coli was used a positive control. A . Analysis of DNA by native gel electrophoresis. B . Analysis of DNA by denaturing gel electrophoresis. For both A and B: DNA ladder (Lane #1); circular pUC19 DNA standard (Lane #2); linearized pUC19 DNA standard (Lane # 3); linearized pUC19 DNA co-cultured with clb + BW25113 E. coli (Lane #4); circular pUC19 DNA isolated from co-culture with clb − BW25113 E. coli (Lane #5), reacted with buffer (Lane #6), reacted with EcoRI restriction enzyme (Lane #7); circular pUC19 DNA isolated from co-culture with clb + BW25113 E. coli (Lane #8), reacted with buffer (Lane #9), reacted with EcoRI restriction enzyme (Lane #10). Conditions (Lane #4): linearized pUC19 DNA, clb + BW25113 E. coli , M9-CA media, 4 h at 37 °C. Conditions (Lane #5–#7): circular pUC19 DNA isolated from co-culture with clb − BW25113 E. coli in M9-CA media for 4 h at 37 °C (Lane #5); the DNA (15.4 μM base pair) was reacted with CutSmart Buffer® (New England Biolabs®), pH 7.9, at 37 °C for 30 minutes (Lane #6); the DNA (15.4 μM base pair) was reacted with 20 units of EcoRI-HF restriction enzyme in CutSmart Buffer® (New England Biolabs®), pH 7.9, at 37 °C for 30 minutes (Lane #7). Conditions (Lane #8–#10): circular pUC19 DNA isolated from co-culture with BW25113 clb + E. coli . in in M9-CA media for 4 h at 37 °C (Lane # 8); the DNA (15.4 μM base pair) was reacted with CutSmart Buffer® (New England Biolabs®), pH 7.9, at 37 °C for 30 minutes (Lane #9); the DNA (15.4 μM base pair) was reacted with 20 units of EcoRI-HF restriction enzyme in CutSmart Buffer® (New England Biolabs®), pH 7.9, at 37 °C for 30 minutes (Lane #10). The DNA was isolated and analyzed by native (Fig. 5A) or 0.4% NaOH denaturing (Fig. 5B) agarose gel electrophoresis (90 V, 1.5 h). SC = supercoiled, nicked = SSB, linear = DSB, SC-denat. = supercoiled DNA in denaturing form, linear-denat. = DSB/linearized DNA in denaturing form, nicked-XL = SSB DNA cross-linked by colibactin, linear-XL = DSB/linerized DNA cross-linked by colibactin.

    Techniques Used: Isolation, Co-Culture Assay, Positive Control, Nucleic Acid Electrophoresis, Cell Culture, Agarose Gel Electrophoresis

    7) Product Images from "Identification of an Intermediate in Hepatitis B Virus Covalently Closed Circular (CCC) DNA Formation and Sensitive and Selective CCC DNA Detection"

    Article Title: Identification of an Intermediate in Hepatitis B Virus Covalently Closed Circular (CCC) DNA Formation and Sensitive and Selective CCC DNA Detection

    Journal: Journal of Virology

    doi: 10.1128/JVI.00539-17

    Exo I III versus Exo T5 digestion of plasmid DNA. (A) Diagrams showing expected digestion results of various plasmid DNA species. A break in the circle denotes the nick on the DNA strand. (B and C) Plasmid pCI-HBc (2.5 ng) was mixed with 20 μl of mock PF DNA extracted from uninduced HepAD38 cells. The DNA mix was first treated with Nb.BbvCI (5 units) to nick the plasmid DNA specifically on the minus strand (B and C, lanes 5 to 8) or was left untreated (B and C, lanes 1 to 4) before digestion with Exo I III (5 units and 25 units, respectively) in two different buffers or with Exo T5 (5 units). The DNA samples were then resolved on an agarose gel, and HBc DNA was detected by Southern blotting using a riboprobe specific for the viral plus-strand (B) or minus-strand (C) DNA. The diagrams on the right of panel C depict the various DNA species and their migration on the gel. B3, 1× NEB buffer 3; BCS, 1× NEB buffer Cutsmart; PE, phenol extraction.
    Figure Legend Snippet: Exo I III versus Exo T5 digestion of plasmid DNA. (A) Diagrams showing expected digestion results of various plasmid DNA species. A break in the circle denotes the nick on the DNA strand. (B and C) Plasmid pCI-HBc (2.5 ng) was mixed with 20 μl of mock PF DNA extracted from uninduced HepAD38 cells. The DNA mix was first treated with Nb.BbvCI (5 units) to nick the plasmid DNA specifically on the minus strand (B and C, lanes 5 to 8) or was left untreated (B and C, lanes 1 to 4) before digestion with Exo I III (5 units and 25 units, respectively) in two different buffers or with Exo T5 (5 units). The DNA samples were then resolved on an agarose gel, and HBc DNA was detected by Southern blotting using a riboprobe specific for the viral plus-strand (B) or minus-strand (C) DNA. The diagrams on the right of panel C depict the various DNA species and their migration on the gel. B3, 1× NEB buffer 3; BCS, 1× NEB buffer Cutsmart; PE, phenol extraction.

    Techniques Used: Plasmid Preparation, Agarose Gel Electrophoresis, Southern Blot, Migration

    Exo I III versus Exo T5 digestion of HBV core and PF DNA. (A) Diagrams showing expected results of digestion with various HBV PF DNA species. Left, structures of known and potential HBV PF DNA species; middle and right, expected digestion products of the various DNA species. The DNA species in the rectangular box, with a covalently closed minus strand and an open plus strand, represents a potential intermediate during RC DNA to CCC DNA conversion that was identified in the current study (see the text for details). The black dot at the 5′ end of the minus strand of the PF-RC and PF-DSL DNA denotes the unknown modification of this end upon removal of the RT protein (deproteination; see the text for details). (B and C) HBV core DNA (0.3 μl) combined with mock PF DNA (20 μl) extracted from uninduced HepAD38 cells (B) or PF DNA (20 μl) extracted from induced HepAD38 cells (C) was treated with Exo I III (5 units and 25 units, respectively) (lanes 3 and 10) or Exo T5 (5 units) (lanes 6 and 13) in 1× NEB CutSmart buffer. Subsequently, MfeI-HF (10 units) was used to linearize CCC DNA (lanes 5, 7, 12, and 14) and Exo T5 (5 units) was used to digest the SS circular DNA (lanes 4 and 11). Heat treatment (95°C, 10 min) was used to denature RC DNA to SS linear DNA (lanes 2 and 9). The DNA samples were then resolved on an agarose gel, and the various HBV DNA species were detected by Southern blotting using a riboprobe specific for the plus-strand (lanes 1 to 7) or minus-strand (lanes 8 to 14) DNA. The diagrams on the sides depict the various DNA species and their migration on the gel. The positions of the various RC DNA species, CCC DNA species, and SS linear and circular DNA species are indicated by the schematic diagrams. Note that the linearized CCC DNA comigrates with the DSL DNA, a minor form present in both core DNA and PF DNA (lanes 1 and 8).
    Figure Legend Snippet: Exo I III versus Exo T5 digestion of HBV core and PF DNA. (A) Diagrams showing expected results of digestion with various HBV PF DNA species. Left, structures of known and potential HBV PF DNA species; middle and right, expected digestion products of the various DNA species. The DNA species in the rectangular box, with a covalently closed minus strand and an open plus strand, represents a potential intermediate during RC DNA to CCC DNA conversion that was identified in the current study (see the text for details). The black dot at the 5′ end of the minus strand of the PF-RC and PF-DSL DNA denotes the unknown modification of this end upon removal of the RT protein (deproteination; see the text for details). (B and C) HBV core DNA (0.3 μl) combined with mock PF DNA (20 μl) extracted from uninduced HepAD38 cells (B) or PF DNA (20 μl) extracted from induced HepAD38 cells (C) was treated with Exo I III (5 units and 25 units, respectively) (lanes 3 and 10) or Exo T5 (5 units) (lanes 6 and 13) in 1× NEB CutSmart buffer. Subsequently, MfeI-HF (10 units) was used to linearize CCC DNA (lanes 5, 7, 12, and 14) and Exo T5 (5 units) was used to digest the SS circular DNA (lanes 4 and 11). Heat treatment (95°C, 10 min) was used to denature RC DNA to SS linear DNA (lanes 2 and 9). The DNA samples were then resolved on an agarose gel, and the various HBV DNA species were detected by Southern blotting using a riboprobe specific for the plus-strand (lanes 1 to 7) or minus-strand (lanes 8 to 14) DNA. The diagrams on the sides depict the various DNA species and their migration on the gel. The positions of the various RC DNA species, CCC DNA species, and SS linear and circular DNA species are indicated by the schematic diagrams. Note that the linearized CCC DNA comigrates with the DSL DNA, a minor form present in both core DNA and PF DNA (lanes 1 and 8).

    Techniques Used: Countercurrent Chromatography, Modification, Agarose Gel Electrophoresis, Southern Blot, Migration

    Confirmation of the closed circular minus strand in the processed RC DNA by BmgBI or Nt.BbvCI and Exo I III digestion. (A and D) Diagrams showing expected results of digestion performed with various HBV PF DNA species. The short line intersecting the circle denotes the site of BmgBI digestion (A) or Nt.BbvCI nicking (D). The presence of the RNA (short gray line) at the 5′ end of the plus strand in RC DNA prevents BmgBI digestion (panel A; arrow blocked by a short line). The black dot at the 5′ end of the minus strand of the PF-RC DNA denotes the unknown modification of this end upon removal of the RT protein. The DNA species indicated in the rectangular box, with a covalently closed minus strand and an open plus strand, represents a potential intermediate during RC DNA to CCC DNA conversion that was identified in this study (see the text for details). (B and C) HBV core DNA (0.3 μl) combined with mock PF DNA (20 μl) extracted from uninduced HepAD38 cells (lanes 1 to 3) or PF DNA (lanes 4 to 6) extracted from induced HepAD38 cells was treated with BmgBI (5 units) in 1× NEB buffer 3 to linearize all supercoiled and nicked CCC DNA (lanes 2, 3, 5, and 6) or was mock treated (lanes 1 and 4). For lanes 3 and 6, the DNA samples were further digested with Exo I III after BmgBI treatment. The samples were then resolved on an agarose gel, and various HBV DNA species were detected by Southern blotting using a riboprobe specific for the viral plus-strand (B) or minus-strand (C) DNA. The diagrams on the right of panel C depict the various DNA species and their migration on the gel. (E) PF DNA extracted from induced HepAD38 cells was treated with Nt.BbvCI (5 units) in 1× NEB Cutsmart buffer to nick all CCC DNA (lanes 3, 4, 7, and 8) or mock treated (lanes 1 and 5). For lanes 4 and 8, the DNA samples were further digested with Exo I III after Nt.BbvCI treatment. The samples were then resolved on an agarose gel, and various HBV DNA species were detected by Southern blotting using a riboprobe specific for the viral plus-strand (lanes 1 to 4) or minus-strand (lanes 5 to 8) DNA. The diagrams on the right depict the various DNA species and their migration on the gel. Marker, the DNA marker lane. The size of the DNA markers is indicated (in kilobase pairs). The blank spaces between the lanes in panels B, C, and E indicate where other lanes from the same gel that were deemed nonessential for this work were cropped out during the preparation of the figure.
    Figure Legend Snippet: Confirmation of the closed circular minus strand in the processed RC DNA by BmgBI or Nt.BbvCI and Exo I III digestion. (A and D) Diagrams showing expected results of digestion performed with various HBV PF DNA species. The short line intersecting the circle denotes the site of BmgBI digestion (A) or Nt.BbvCI nicking (D). The presence of the RNA (short gray line) at the 5′ end of the plus strand in RC DNA prevents BmgBI digestion (panel A; arrow blocked by a short line). The black dot at the 5′ end of the minus strand of the PF-RC DNA denotes the unknown modification of this end upon removal of the RT protein. The DNA species indicated in the rectangular box, with a covalently closed minus strand and an open plus strand, represents a potential intermediate during RC DNA to CCC DNA conversion that was identified in this study (see the text for details). (B and C) HBV core DNA (0.3 μl) combined with mock PF DNA (20 μl) extracted from uninduced HepAD38 cells (lanes 1 to 3) or PF DNA (lanes 4 to 6) extracted from induced HepAD38 cells was treated with BmgBI (5 units) in 1× NEB buffer 3 to linearize all supercoiled and nicked CCC DNA (lanes 2, 3, 5, and 6) or was mock treated (lanes 1 and 4). For lanes 3 and 6, the DNA samples were further digested with Exo I III after BmgBI treatment. The samples were then resolved on an agarose gel, and various HBV DNA species were detected by Southern blotting using a riboprobe specific for the viral plus-strand (B) or minus-strand (C) DNA. The diagrams on the right of panel C depict the various DNA species and their migration on the gel. (E) PF DNA extracted from induced HepAD38 cells was treated with Nt.BbvCI (5 units) in 1× NEB Cutsmart buffer to nick all CCC DNA (lanes 3, 4, 7, and 8) or mock treated (lanes 1 and 5). For lanes 4 and 8, the DNA samples were further digested with Exo I III after Nt.BbvCI treatment. The samples were then resolved on an agarose gel, and various HBV DNA species were detected by Southern blotting using a riboprobe specific for the viral plus-strand (lanes 1 to 4) or minus-strand (lanes 5 to 8) DNA. The diagrams on the right depict the various DNA species and their migration on the gel. Marker, the DNA marker lane. The size of the DNA markers is indicated (in kilobase pairs). The blank spaces between the lanes in panels B, C, and E indicate where other lanes from the same gel that were deemed nonessential for this work were cropped out during the preparation of the figure.

    Techniques Used: Modification, Countercurrent Chromatography, Agarose Gel Electrophoresis, Southern Blot, Migration, Marker

    8) Product Images from "Exonuclease combinations reduce noises in 3D genomics technologies"

    Article Title: Exonuclease combinations reduce noises in 3D genomics technologies

    Journal: Nucleic Acids Research

    doi: 10.1093/nar/gkaa106

    Experimental results for exonuclease combinations treatment. ( A ) The cleavage mechanism of Lamada and Exonuclease I combinations. Other exonuclease combinations (Lambda and RecJF; Exonuclease I and Exonuclease III) are shown in Supplementary Figure S1A and Supplementary Table S1 . ( B ) Three exonuclease combinations (LRL; LRC; LIC) removed linear DNA from a paradigm mixture. M, 1 kb DNA ladder; P, pGL4.23 plasmid; L, linearized plasmid; X, mixture (plasmid and linear DNA 1:1); 1-X, LRL-Mixture, LRL to cut mixture; 2-X, LRC-Mixture, LRC to cut mixture; 3-X, LIC-Mixture, LIC to cut mixture; 3-P, LIC to cut plasmid; 3-L, LIC-Lin, LIC to cut linearized plasmid; MS, supercoiled ladder. ( C ) I+III combination and Exonuclease VIII, truncated elimination tests. 5-X, VIII4-Mixture, Exonuclease VIII, truncated within Buffer 4 to remove mixture; 6-X, VIIIC-Mixture, Exonuclease VIII, truncated within CutSmart buffer to remove mixture; 4-X: I+III-Mixture, I+III to remove mixture. Loading samples for agarose gel electrophoresis were purified by phenol-chloroform.
    Figure Legend Snippet: Experimental results for exonuclease combinations treatment. ( A ) The cleavage mechanism of Lamada and Exonuclease I combinations. Other exonuclease combinations (Lambda and RecJF; Exonuclease I and Exonuclease III) are shown in Supplementary Figure S1A and Supplementary Table S1 . ( B ) Three exonuclease combinations (LRL; LRC; LIC) removed linear DNA from a paradigm mixture. M, 1 kb DNA ladder; P, pGL4.23 plasmid; L, linearized plasmid; X, mixture (plasmid and linear DNA 1:1); 1-X, LRL-Mixture, LRL to cut mixture; 2-X, LRC-Mixture, LRC to cut mixture; 3-X, LIC-Mixture, LIC to cut mixture; 3-P, LIC to cut plasmid; 3-L, LIC-Lin, LIC to cut linearized plasmid; MS, supercoiled ladder. ( C ) I+III combination and Exonuclease VIII, truncated elimination tests. 5-X, VIII4-Mixture, Exonuclease VIII, truncated within Buffer 4 to remove mixture; 6-X, VIIIC-Mixture, Exonuclease VIII, truncated within CutSmart buffer to remove mixture; 4-X: I+III-Mixture, I+III to remove mixture. Loading samples for agarose gel electrophoresis were purified by phenol-chloroform.

    Techniques Used: Plasmid Preparation, Agarose Gel Electrophoresis, Purification

    9) Product Images from "Depurination of colibactin-derived interstrand cross-links."

    Article Title: Depurination of colibactin-derived interstrand cross-links.

    Journal: Biochemistry

    doi: 10.1021/acs.biochem.9b01070

    Analysis of pUC19 DNA following treatment with clb − or clb + E. coli and linearization with the restriction enzyme EcoRI. The cross-linked linearized pUC19 DNA isolated from a co-culture with clb + BW25113 E. coli was used a positive control. A . Analysis of DNA by native gel electrophoresis. B . Analysis of DNA by denaturing gel electrophoresis. For both A and B: DNA ladder (Lane #1); circular pUC19 DNA standard (Lane #2); linearized pUC19 DNA standard (Lane # 3); linearized pUC19 DNA co-cultured with clb + BW25113 E. coli (Lane #4); circular pUC19 DNA isolated from co-culture with clb − BW25113 E. coli (Lane #5), reacted with buffer (Lane #6), reacted with EcoRI restriction enzyme (Lane #7); circular pUC19 DNA isolated from co-culture with clb + BW25113 E. coli (Lane #8), reacted with buffer (Lane #9), reacted with EcoRI restriction enzyme (Lane #10). Conditions (Lane #4): linearized pUC19 DNA, clb + BW25113 E. coli , M9-CA media, 4 h at 37 °C. Conditions (Lane #5–#7): circular pUC19 DNA isolated from co-culture with clb − BW25113 E. coli in M9-CA media for 4 h at 37 °C (Lane #5); the DNA (15.4 μM base pair) was reacted with CutSmart Buffer® (New England Biolabs®), pH 7.9, at 37 °C for 30 minutes (Lane #6); the DNA (15.4 μM base pair) was reacted with 20 units of EcoRI-HF restriction enzyme in CutSmart Buffer® (New England Biolabs®), pH 7.9, at 37 °C for 30 minutes (Lane #7). Conditions (Lane #8–#10): circular pUC19 DNA isolated from co-culture with BW25113 clb + E. coli . in in M9-CA media for 4 h at 37 °C (Lane # 8); the DNA (15.4 μM base pair) was reacted with CutSmart Buffer® (New England Biolabs®), pH 7.9, at 37 °C for 30 minutes (Lane #9); the DNA (15.4 μM base pair) was reacted with 20 units of EcoRI-HF restriction enzyme in CutSmart Buffer® (New England Biolabs®), pH 7.9, at 37 °C for 30 minutes (Lane #10). The DNA was isolated and analyzed by native (Fig. 5A) or 0.4% NaOH denaturing (Fig. 5B) agarose gel electrophoresis (90 V, 1.5 h). SC = supercoiled, nicked = SSB, linear = DSB, SC-denat. = supercoiled DNA in denaturing form, linear-denat. = DSB/linearized DNA in denaturing form, nicked-XL = SSB DNA cross-linked by colibactin, linear-XL = DSB/linerized DNA cross-linked by colibactin.
    Figure Legend Snippet: Analysis of pUC19 DNA following treatment with clb − or clb + E. coli and linearization with the restriction enzyme EcoRI. The cross-linked linearized pUC19 DNA isolated from a co-culture with clb + BW25113 E. coli was used a positive control. A . Analysis of DNA by native gel electrophoresis. B . Analysis of DNA by denaturing gel electrophoresis. For both A and B: DNA ladder (Lane #1); circular pUC19 DNA standard (Lane #2); linearized pUC19 DNA standard (Lane # 3); linearized pUC19 DNA co-cultured with clb + BW25113 E. coli (Lane #4); circular pUC19 DNA isolated from co-culture with clb − BW25113 E. coli (Lane #5), reacted with buffer (Lane #6), reacted with EcoRI restriction enzyme (Lane #7); circular pUC19 DNA isolated from co-culture with clb + BW25113 E. coli (Lane #8), reacted with buffer (Lane #9), reacted with EcoRI restriction enzyme (Lane #10). Conditions (Lane #4): linearized pUC19 DNA, clb + BW25113 E. coli , M9-CA media, 4 h at 37 °C. Conditions (Lane #5–#7): circular pUC19 DNA isolated from co-culture with clb − BW25113 E. coli in M9-CA media for 4 h at 37 °C (Lane #5); the DNA (15.4 μM base pair) was reacted with CutSmart Buffer® (New England Biolabs®), pH 7.9, at 37 °C for 30 minutes (Lane #6); the DNA (15.4 μM base pair) was reacted with 20 units of EcoRI-HF restriction enzyme in CutSmart Buffer® (New England Biolabs®), pH 7.9, at 37 °C for 30 minutes (Lane #7). Conditions (Lane #8–#10): circular pUC19 DNA isolated from co-culture with BW25113 clb + E. coli . in in M9-CA media for 4 h at 37 °C (Lane # 8); the DNA (15.4 μM base pair) was reacted with CutSmart Buffer® (New England Biolabs®), pH 7.9, at 37 °C for 30 minutes (Lane #9); the DNA (15.4 μM base pair) was reacted with 20 units of EcoRI-HF restriction enzyme in CutSmart Buffer® (New England Biolabs®), pH 7.9, at 37 °C for 30 minutes (Lane #10). The DNA was isolated and analyzed by native (Fig. 5A) or 0.4% NaOH denaturing (Fig. 5B) agarose gel electrophoresis (90 V, 1.5 h). SC = supercoiled, nicked = SSB, linear = DSB, SC-denat. = supercoiled DNA in denaturing form, linear-denat. = DSB/linearized DNA in denaturing form, nicked-XL = SSB DNA cross-linked by colibactin, linear-XL = DSB/linerized DNA cross-linked by colibactin.

    Techniques Used: Isolation, Co-Culture Assay, Positive Control, Nucleic Acid Electrophoresis, Cell Culture, Agarose Gel Electrophoresis

    10) Product Images from "Depurination of colibactin-derived interstrand cross-links"

    Article Title: Depurination of colibactin-derived interstrand cross-links

    Journal: bioRxiv

    doi: 10.1101/869313

    Analysis of pUC19 DNA following treatment with clb − or clb + E. coli and linearization with the restriction enzyme EcoRI. The cross-linked linearized pUC19 DNA isolated from a co-culture with clb + BW25113 E. coli was used a positive control. A. Analysis of DNA by native gel electrophoresis. B. Analysis of DNA by denaturing gel electrophoresis. For both A and B: DNA ladder (Lane #1); circular pUC19 DNA standard (Lane #2); linearized pUC19 DNA standard (Lane # 3); linearized pUC19 DNA co-cultured with clb + BW25113 E. coli (Lane #4); circular pUC19 DNA isolated from co-culture with clb − BW25113 E. coli (Lane #5), reacted with buffer (Lane #6), reacted with EcoRI restriction enzyme (Lane #7); circular pUC19 DNA isolated from co-culture with clb + BW25113 E. coli (Lane #8), reacted with buffer (Lane #9), reacted with EcoRI restriction enzyme (Lane #10). Conditions (Lane #4): linearized pUC19 DNA, clb + BW25113 E. coli , M9-CA media, 4 h at 37 °C. Conditions (Lane #5–#7): circular pUC19 DNA isolated from co-culture with clb − BW25113 E. coli in M9-CA media for 4 h at 37 °C (Lane #5); the DNA (15.4 µM base pair) was reacted with CutSmart Buffer® (New England Biolabs®), pH 7.9, at 37 °C for 30 minutes (Lane #6); the DNA (15.4 µM base pair) was reacted with 20 units of EcoRI-HF restriction enzyme in CutSmart Buffer® (New England Biolabs®), pH 7.9, at 37 °C for 30 minutes (Lane #7). Conditions (Lane #8–#10): circular pUC19 DNA isolated from co-culture with BW25113 clb + E. coli. in in M9-CA media for 4 h at 37 °C (Lane # 8); the DNA (15.4 µM base pair) was reacted with CutSmart Buffer® (New England Biolabs®), pH 7.9, at 37 °C for 30 minutes (Lane #9); the DNA (15.4 µM base pair) was reacted with 20 units of EcoRI-HF restriction enzyme in CutSmart Buffer® (New England Biolabs®), pH 7.9, at 37 °C for 30 minutes (Lane #10). The DNA was isolated and analyzed by native ( Fig. 5A ) or 0.4% NaOH denaturing ( Fig. 5B ) agarose gel electrophoresis (90 V, 1.5 h).
    Figure Legend Snippet: Analysis of pUC19 DNA following treatment with clb − or clb + E. coli and linearization with the restriction enzyme EcoRI. The cross-linked linearized pUC19 DNA isolated from a co-culture with clb + BW25113 E. coli was used a positive control. A. Analysis of DNA by native gel electrophoresis. B. Analysis of DNA by denaturing gel electrophoresis. For both A and B: DNA ladder (Lane #1); circular pUC19 DNA standard (Lane #2); linearized pUC19 DNA standard (Lane # 3); linearized pUC19 DNA co-cultured with clb + BW25113 E. coli (Lane #4); circular pUC19 DNA isolated from co-culture with clb − BW25113 E. coli (Lane #5), reacted with buffer (Lane #6), reacted with EcoRI restriction enzyme (Lane #7); circular pUC19 DNA isolated from co-culture with clb + BW25113 E. coli (Lane #8), reacted with buffer (Lane #9), reacted with EcoRI restriction enzyme (Lane #10). Conditions (Lane #4): linearized pUC19 DNA, clb + BW25113 E. coli , M9-CA media, 4 h at 37 °C. Conditions (Lane #5–#7): circular pUC19 DNA isolated from co-culture with clb − BW25113 E. coli in M9-CA media for 4 h at 37 °C (Lane #5); the DNA (15.4 µM base pair) was reacted with CutSmart Buffer® (New England Biolabs®), pH 7.9, at 37 °C for 30 minutes (Lane #6); the DNA (15.4 µM base pair) was reacted with 20 units of EcoRI-HF restriction enzyme in CutSmart Buffer® (New England Biolabs®), pH 7.9, at 37 °C for 30 minutes (Lane #7). Conditions (Lane #8–#10): circular pUC19 DNA isolated from co-culture with BW25113 clb + E. coli. in in M9-CA media for 4 h at 37 °C (Lane # 8); the DNA (15.4 µM base pair) was reacted with CutSmart Buffer® (New England Biolabs®), pH 7.9, at 37 °C for 30 minutes (Lane #9); the DNA (15.4 µM base pair) was reacted with 20 units of EcoRI-HF restriction enzyme in CutSmart Buffer® (New England Biolabs®), pH 7.9, at 37 °C for 30 minutes (Lane #10). The DNA was isolated and analyzed by native ( Fig. 5A ) or 0.4% NaOH denaturing ( Fig. 5B ) agarose gel electrophoresis (90 V, 1.5 h).

    Techniques Used: Isolation, Co-Culture Assay, Positive Control, Nucleic Acid Electrophoresis, Cell Culture, Agarose Gel Electrophoresis

    Related Articles

    other:

    Article Title: Deciphering Multi-way Interactions in the Human Genome
    Article Snippet: Cells were centrifuged again at 500 × g for 10 min at 4°C, then aspirated and re-suspended in 300 μL of chilled 1.5X NEB cutsmart buffer.

    Article Title: Quantifying the phase separation property of chromatin-associated proteins under physiological conditions using an anti-1,6-hexanediol index
    Article Snippet: After washing cells with cutsmart buffer with 1%TX-100, the genome was then digested by HaeIII (NEB) into fragments with blunt-ends.

    Article Title: Deciphering Multi-way Interactions in the Human Genome
    Article Snippet: Cells were centrifuged at 500 × g for 10 min at 4°C after which the supernatant was aspirated and replaced with 200 μL of chilled 1.5X New England Biolabs (NEB) cutsmart buffer.

    Article Title: CRISPR-Cas9 bends and twists DNA to read its sequence
    Article Snippet: To this was added 15 µL 10X CutSmart buffer, 47.5 µL water, and 7.5 µL ClaI restriction enzyme (10,000 units/mL, New England BioLabs), and digestion was allowed to proceed overnight at 37°C.

    Injection:

    Article Title: A Time-Saving Strategy to Generate Double Maternal Mutants by an Oocyte-Specific Conditional Knockout System in Zebrafish
    Article Snippet: .. A mixture of I-Sce I (1 u/μL, NEB), plasmids (7.5 ng/μL), and CutSmart buffer (0.5×, NEB) was injected into 1-cell stage embryos from Tg(zpc :zcas9 ) or wild type background [ ]. ..

    Methylation:

    Article Title: Sequencing of methylase-accessible regions in integral circular extrachromosomal DNA reveals differences in chromatin structure
    Article Snippet: .. 1 × 10^6 intact nuclei were subjected to an m6A methylation reaction mixture containing 1 × Cutsmart buffer (NEB), 200U of non-specific adenine methyltransferase M.EcoGII (NEB, M0603S), 300 mM sucrose, and 96 μM S-adenosylmethionine (NEB, B9003S) in 500 μl volume. ..

    Polymerase Chain Reaction:

    Article Title: Defective Desmosomal Adhesion Causes Arrhythmogenic Cardiomyopathy by involving an Integrin-αVβ6/TGF-β Signaling Cascade
    Article Snippet: .. The PCR product was restricted with 66.7 U/ml AluI (R0137, New England Biolabs, Ipswich, MA, USA) in CutSmart buffer (New England Biolabs) overnight at 37 °C. ..

    Incubation:

    Article Title: Loops, TADs, Compartments, and Territories are Elastic and Robust to Dramatic Nuclear Volume Swelling
    Article Snippet: .. Nuclei were incubated with restriction enzyme in 1x CutSmart buffer (New England Biolabs) for 4 hr at 37 °C and then washed with 1xHBSS before expansion. ..

    Similar Products

  • Logo
  • About
  • News
  • Press Release
  • Team
  • Advisors
  • Partners
  • Contact
  • Bioz Stars
  • Bioz vStars
  • 94
    New England Biolabs nb btsi
    Library quality control and anticipated results. ( a ) Sonicated DNA separated by agarose gel electrophoresis (Step 25) shows an average fragment size of approximately 400 bp. ( b ) Bioanalyzer result (Step 84) for an emRiboSeq library shows a typical trace (left) and gel-like image (right) with a peak for fragments between ˜180 and ˜300 bp in size (black bar). Standards (green and purple bars) of defined size and amount allow quantification. FU, arbitrary fluorescence units. ( c ) Agarose gel electrophoresis of PCR products after 15, 16 and 17 cycles of amplification (Steps 81-83) of the same library shows product between 200 and 300 bp in size. ( d ) Sequencing results for libraries generated using <t>Nb.BtsI</t> are highly reproducibility between different strains (POL, wildtype polymerase; pol1-L868M, increased Pol-α ribonucleotide incorporation) after normalizing read counts to sequence tags per million (TPM). The majority of bona fide Nb.BtsI sites were present at maximal frequency, although some sites were present at lower frequencies. This is the result of partial loss during size selection because of their close proximity to other cleavage sites, a highly reproducible finding between independent libraries (Spearman's rho=0.82, p
    Nb Btsi, supplied by New England Biolabs, used in various techniques. Bioz Stars score: 94/100, based on 1 PubMed citations. ZERO BIAS - scores, article reviews, protocol conditions and more
    https://www.bioz.com/result/nb btsi/product/New England Biolabs
    Average 94 stars, based on 1 article reviews
    Price from $9.99 to $1999.99
    nb btsi - by Bioz Stars, 2021-09
    94/100 stars
      Buy from Supplier

    99
    New England Biolabs cutsmart buffer
    Analysis of pUC19 DNA following treatment with clb − or clb + E. coli and linearization with the restriction enzyme EcoRI. The cross-linked linearized pUC19 DNA isolated from a co-culture with clb + BW25113 E. coli was used a positive control. A . Analysis of DNA by native gel electrophoresis. B . Analysis of DNA by denaturing gel electrophoresis. For both A and B: DNA ladder (Lane #1); circular pUC19 DNA standard (Lane #2); linearized pUC19 DNA standard (Lane # 3); linearized pUC19 DNA co-cultured with clb + BW25113 E. coli (Lane #4); circular pUC19 DNA isolated from co-culture with clb − BW25113 E. coli (Lane #5), reacted with buffer (Lane #6), reacted with EcoRI restriction enzyme (Lane #7); circular pUC19 DNA isolated from co-culture with clb + BW25113 E. coli (Lane #8), reacted with buffer (Lane #9), reacted with EcoRI restriction enzyme (Lane #10). Conditions (Lane #4): linearized pUC19 DNA, clb + BW25113 E. coli , M9-CA media, 4 h at 37 °C. Conditions (Lane #5–#7): circular pUC19 DNA isolated from co-culture with clb − BW25113 E. coli in M9-CA media for 4 h at 37 °C (Lane #5); the DNA (15.4 μM base pair) was reacted with <t>CutSmart</t> Buffer® (New England Biolabs®), pH 7.9, at 37 °C for 30 minutes (Lane #6); the DNA (15.4 μM base pair) was reacted with 20 units of EcoRI-HF restriction enzyme in CutSmart Buffer® (New England Biolabs®), pH 7.9, at 37 °C for 30 minutes (Lane #7). Conditions (Lane #8–#10): circular pUC19 DNA isolated from co-culture with BW25113 clb + E. coli . in in M9-CA media for 4 h at 37 °C (Lane # 8); the DNA (15.4 μM base pair) was reacted with CutSmart Buffer® (New England Biolabs®), pH 7.9, at 37 °C for 30 minutes (Lane #9); the DNA (15.4 μM base pair) was reacted with 20 units of EcoRI-HF restriction enzyme in CutSmart Buffer® (New England Biolabs®), pH 7.9, at 37 °C for 30 minutes (Lane #10). The DNA was isolated and analyzed by native (Fig. 5A) or 0.4% NaOH denaturing (Fig. 5B) agarose gel electrophoresis (90 V, 1.5 h). SC = supercoiled, nicked = SSB, linear = DSB, SC-denat. = supercoiled DNA in denaturing form, linear-denat. = DSB/linearized DNA in denaturing form, nicked-XL = SSB DNA cross-linked by colibactin, linear-XL = DSB/linerized DNA cross-linked by colibactin.
    Cutsmart Buffer, supplied by New England Biolabs, used in various techniques. Bioz Stars score: 99/100, based on 1 PubMed citations. ZERO BIAS - scores, article reviews, protocol conditions and more
    https://www.bioz.com/result/cutsmart buffer/product/New England Biolabs
    Average 99 stars, based on 1 article reviews
    Price from $9.99 to $1999.99
    cutsmart buffer - by Bioz Stars, 2021-09
    99/100 stars
      Buy from Supplier

    Image Search Results


    Library quality control and anticipated results. ( a ) Sonicated DNA separated by agarose gel electrophoresis (Step 25) shows an average fragment size of approximately 400 bp. ( b ) Bioanalyzer result (Step 84) for an emRiboSeq library shows a typical trace (left) and gel-like image (right) with a peak for fragments between ˜180 and ˜300 bp in size (black bar). Standards (green and purple bars) of defined size and amount allow quantification. FU, arbitrary fluorescence units. ( c ) Agarose gel electrophoresis of PCR products after 15, 16 and 17 cycles of amplification (Steps 81-83) of the same library shows product between 200 and 300 bp in size. ( d ) Sequencing results for libraries generated using Nb.BtsI are highly reproducibility between different strains (POL, wildtype polymerase; pol1-L868M, increased Pol-α ribonucleotide incorporation) after normalizing read counts to sequence tags per million (TPM). The majority of bona fide Nb.BtsI sites were present at maximal frequency, although some sites were present at lower frequencies. This is the result of partial loss during size selection because of their close proximity to other cleavage sites, a highly reproducible finding between independent libraries (Spearman's rho=0.82, p

    Journal: Nature protocols

    Article Title: Genome-wide mapping of embedded ribonucleotides and other non-canonical nucleotides using emRiboSeq and EndoSeq

    doi: 10.1038/nprot.2015.099

    Figure Lengend Snippet: Library quality control and anticipated results. ( a ) Sonicated DNA separated by agarose gel electrophoresis (Step 25) shows an average fragment size of approximately 400 bp. ( b ) Bioanalyzer result (Step 84) for an emRiboSeq library shows a typical trace (left) and gel-like image (right) with a peak for fragments between ˜180 and ˜300 bp in size (black bar). Standards (green and purple bars) of defined size and amount allow quantification. FU, arbitrary fluorescence units. ( c ) Agarose gel electrophoresis of PCR products after 15, 16 and 17 cycles of amplification (Steps 81-83) of the same library shows product between 200 and 300 bp in size. ( d ) Sequencing results for libraries generated using Nb.BtsI are highly reproducibility between different strains (POL, wildtype polymerase; pol1-L868M, increased Pol-α ribonucleotide incorporation) after normalizing read counts to sequence tags per million (TPM). The majority of bona fide Nb.BtsI sites were present at maximal frequency, although some sites were present at lower frequencies. This is the result of partial loss during size selection because of their close proximity to other cleavage sites, a highly reproducible finding between independent libraries (Spearman's rho=0.82, p

    Article Snippet: CRITICAL: alternative sources of recombinant type 2 RNase H enzymes may be used 10% (wt/vol) Bovine Serum Albumin Fraction V (BSA, Roche, cat. no. 10 735 086 001) Magnesium chloride (MgCl2 , Sigma, cat. no. M2670) Nb.BtsI, Supplied with 10x CutSmart® buffer (New England Biolabs, cat. no. R0707) BciVI, Supplied with 10x CutSmart® buffer (New England Biolabs, cat. no. R0596) Shrimp Alkaline Phosphatase (SAP), supplied with 10x reaction buffer (Affymetrix USB® , cat. no. 70092Z) Dynabeads® M-280 Streptavidin (Life Technologies, cat. no. 11205D) Tri-sodium citrate (Sigma, cat. no. C8532) Glycogen (Roche, cat. no. 10 901 393 001) Sodium acetate (NaOAc, Sigma, cat. no. S2889) Sodium hydroxide (NaOH, Sigma, cat. no. 38215) CAUTION Sodium hydroxide is corrosive.

    Techniques: Sonication, Agarose Gel Electrophoresis, Fluorescence, Polymerase Chain Reaction, Amplification, Sequencing, Generated, Selection

    Analysis of pUC19 DNA following treatment with clb − or clb + E. coli and linearization with the restriction enzyme EcoRI. The cross-linked linearized pUC19 DNA isolated from a co-culture with clb + BW25113 E. coli was used a positive control. A . Analysis of DNA by native gel electrophoresis. B . Analysis of DNA by denaturing gel electrophoresis. For both A and B: DNA ladder (Lane #1); circular pUC19 DNA standard (Lane #2); linearized pUC19 DNA standard (Lane # 3); linearized pUC19 DNA co-cultured with clb + BW25113 E. coli (Lane #4); circular pUC19 DNA isolated from co-culture with clb − BW25113 E. coli (Lane #5), reacted with buffer (Lane #6), reacted with EcoRI restriction enzyme (Lane #7); circular pUC19 DNA isolated from co-culture with clb + BW25113 E. coli (Lane #8), reacted with buffer (Lane #9), reacted with EcoRI restriction enzyme (Lane #10). Conditions (Lane #4): linearized pUC19 DNA, clb + BW25113 E. coli , M9-CA media, 4 h at 37 °C. Conditions (Lane #5–#7): circular pUC19 DNA isolated from co-culture with clb − BW25113 E. coli in M9-CA media for 4 h at 37 °C (Lane #5); the DNA (15.4 μM base pair) was reacted with CutSmart Buffer® (New England Biolabs®), pH 7.9, at 37 °C for 30 minutes (Lane #6); the DNA (15.4 μM base pair) was reacted with 20 units of EcoRI-HF restriction enzyme in CutSmart Buffer® (New England Biolabs®), pH 7.9, at 37 °C for 30 minutes (Lane #7). Conditions (Lane #8–#10): circular pUC19 DNA isolated from co-culture with BW25113 clb + E. coli . in in M9-CA media for 4 h at 37 °C (Lane # 8); the DNA (15.4 μM base pair) was reacted with CutSmart Buffer® (New England Biolabs®), pH 7.9, at 37 °C for 30 minutes (Lane #9); the DNA (15.4 μM base pair) was reacted with 20 units of EcoRI-HF restriction enzyme in CutSmart Buffer® (New England Biolabs®), pH 7.9, at 37 °C for 30 minutes (Lane #10). The DNA was isolated and analyzed by native (Fig. 5A) or 0.4% NaOH denaturing (Fig. 5B) agarose gel electrophoresis (90 V, 1.5 h). SC = supercoiled, nicked = SSB, linear = DSB, SC-denat. = supercoiled DNA in denaturing form, linear-denat. = DSB/linearized DNA in denaturing form, nicked-XL = SSB DNA cross-linked by colibactin, linear-XL = DSB/linerized DNA cross-linked by colibactin.

    Journal: Biochemistry

    Article Title: Depurination of colibactin-derived interstrand cross-links.

    doi: 10.1021/acs.biochem.9b01070

    Figure Lengend Snippet: Analysis of pUC19 DNA following treatment with clb − or clb + E. coli and linearization with the restriction enzyme EcoRI. The cross-linked linearized pUC19 DNA isolated from a co-culture with clb + BW25113 E. coli was used a positive control. A . Analysis of DNA by native gel electrophoresis. B . Analysis of DNA by denaturing gel electrophoresis. For both A and B: DNA ladder (Lane #1); circular pUC19 DNA standard (Lane #2); linearized pUC19 DNA standard (Lane # 3); linearized pUC19 DNA co-cultured with clb + BW25113 E. coli (Lane #4); circular pUC19 DNA isolated from co-culture with clb − BW25113 E. coli (Lane #5), reacted with buffer (Lane #6), reacted with EcoRI restriction enzyme (Lane #7); circular pUC19 DNA isolated from co-culture with clb + BW25113 E. coli (Lane #8), reacted with buffer (Lane #9), reacted with EcoRI restriction enzyme (Lane #10). Conditions (Lane #4): linearized pUC19 DNA, clb + BW25113 E. coli , M9-CA media, 4 h at 37 °C. Conditions (Lane #5–#7): circular pUC19 DNA isolated from co-culture with clb − BW25113 E. coli in M9-CA media for 4 h at 37 °C (Lane #5); the DNA (15.4 μM base pair) was reacted with CutSmart Buffer® (New England Biolabs®), pH 7.9, at 37 °C for 30 minutes (Lane #6); the DNA (15.4 μM base pair) was reacted with 20 units of EcoRI-HF restriction enzyme in CutSmart Buffer® (New England Biolabs®), pH 7.9, at 37 °C for 30 minutes (Lane #7). Conditions (Lane #8–#10): circular pUC19 DNA isolated from co-culture with BW25113 clb + E. coli . in in M9-CA media for 4 h at 37 °C (Lane # 8); the DNA (15.4 μM base pair) was reacted with CutSmart Buffer® (New England Biolabs®), pH 7.9, at 37 °C for 30 minutes (Lane #9); the DNA (15.4 μM base pair) was reacted with 20 units of EcoRI-HF restriction enzyme in CutSmart Buffer® (New England Biolabs®), pH 7.9, at 37 °C for 30 minutes (Lane #10). The DNA was isolated and analyzed by native (Fig. 5A) or 0.4% NaOH denaturing (Fig. 5B) agarose gel electrophoresis (90 V, 1.5 h). SC = supercoiled, nicked = SSB, linear = DSB, SC-denat. = supercoiled DNA in denaturing form, linear-denat. = DSB/linearized DNA in denaturing form, nicked-XL = SSB DNA cross-linked by colibactin, linear-XL = DSB/linerized DNA cross-linked by colibactin.

    Article Snippet: The CutSmart® buffer (New England Biolabs®) contains 50 mM potassium acetate, 20 mM Tris-acetate, 10 mM magnesium acetate, and 100 μg/mL BSA.

    Techniques: Isolation, Co-Culture Assay, Positive Control, Nucleic Acid Electrophoresis, Cell Culture, Agarose Gel Electrophoresis

    Schematic overview of droplet Tn-Seq. a A microfluidic device encapsulates single bacterial cells into droplets containing growth medium. Bacteria are allowed to grow within droplets, genomic DNA (gDNA) is isolated at the start of the experiment (t1) and after growth (t2). Importantly, while growth for each transposon mutant takes place in isolation, gDNA is isolated from the pooled population, enabling screening of all mutants simultaneously. b gDNA is then amplified with DNA polymerase phi29, digested with MmeI, an adapter is ligated, a ~180 bp fragment is produced which contains ~16 nucleotides of bacterial gDNA, defining the transposon-insertion location, followed by Illumina sequencing. Reads are demultiplexed based on the barcode in the adapter and a potential second barcode in primer 1, mapped to the genome, and fitness is calculated for each defined region.

    Journal: Nature Communications

    Article Title: Droplet Tn-Seq combines microfluidics with Tn-Seq for identifying complex single-cell phenotypes

    doi: 10.1038/s41467-019-13719-9

    Figure Lengend Snippet: Schematic overview of droplet Tn-Seq. a A microfluidic device encapsulates single bacterial cells into droplets containing growth medium. Bacteria are allowed to grow within droplets, genomic DNA (gDNA) is isolated at the start of the experiment (t1) and after growth (t2). Importantly, while growth for each transposon mutant takes place in isolation, gDNA is isolated from the pooled population, enabling screening of all mutants simultaneously. b gDNA is then amplified with DNA polymerase phi29, digested with MmeI, an adapter is ligated, a ~180 bp fragment is produced which contains ~16 nucleotides of bacterial gDNA, defining the transposon-insertion location, followed by Illumina sequencing. Reads are demultiplexed based on the barcode in the adapter and a potential second barcode in primer 1, mapped to the genome, and fitness is calculated for each defined region.

    Article Snippet: Beads were then dried for 3 min at room temperature, and DNA was eluted off the beads with 12.7 μl of dH2 O. (3) In all, 11.49 μl of phi29 amplified DNA was then added to a MmeI digestion mix (two units NEB MmeI enzyme, 50 μM SAM, 1× CutSmart Buffer) in a total volume of 20 μl, and incubated for 2.5 h at 37 °C followed by 20 min at 65 °C. (4) In all, 1 μl of alkaline phosphatase (NEB - M0290S Calf Intestinal, CIP) was added to the sample and incubated for 1 h at 37 °C. (5) In total, 10 μl of magnetic beads plus 20 μl PEG solution per sample were used to wash the sample followed by elution in 14.3 μl of dH2 O. (6) T4 DNA ligase (NEB M0202L) was used to ligate DNA adapter barcodes by adding 13.12 μl DNA to 1 μl of 1:5 diluted adapter, 1× T4 DNA Ligase Reaction Buffer, and 400 units T4 DNA ligase, followed by incubation at 16 °C for 16 h, 65 °C for 10 min, and held at 10 °C. (7) In all, 10 μl magnetic beads plus 20 μl PEG solution were used to wash the sample followed by elution in 36 μl of dH2 O. (8) Adapter ligated DNA was then PCR amplified using Q5 high-fidelity DNA polymerase (NEB – M0491L) by adding 34 μl of DNA to 1X Q5 reaction buffer, 10 mM dNTPs, 0.45 μM of each primer (P1-M6-GAT-MmeI; P2-ADPT-Tnseq-primer; Supplementary Data ), one unit Q5 DNA polymerase, and incubated at 98 °C for 30 s, and 18–22 cycles of 98 °C for 10 s, 62 °C for 30 s, 72 °C for 15 s, followed by 72 °C for 2 min, and a 10 °C hold. (9) PCR products were gel purified and sequenced on an Illumina NextSeq 500 according to the manufacturer's protocol.

    Techniques: Isolation, Mutagenesis, Amplification, Produced, Sequencing

    Unbiased whole-genome amplification of low-quantity genomic DNA. a , b gDNA was prepared by two different methods for transposon sequencing. For the WGA sample, 10 ng of gDNA was amplified first with DNA polymerase phi29 before MmeI digestion and adapter ligation. For the standard sample, 1 μg of gDNA was digested with MmeI, followed by adapter ligation. There is a strong correlation between fitness values obtained from WGA preparation compared with standard Tn-Seq library preparation a , and WGA preparation is highly reproducible b .

    Journal: Nature Communications

    Article Title: Droplet Tn-Seq combines microfluidics with Tn-Seq for identifying complex single-cell phenotypes

    doi: 10.1038/s41467-019-13719-9

    Figure Lengend Snippet: Unbiased whole-genome amplification of low-quantity genomic DNA. a , b gDNA was prepared by two different methods for transposon sequencing. For the WGA sample, 10 ng of gDNA was amplified first with DNA polymerase phi29 before MmeI digestion and adapter ligation. For the standard sample, 1 μg of gDNA was digested with MmeI, followed by adapter ligation. There is a strong correlation between fitness values obtained from WGA preparation compared with standard Tn-Seq library preparation a , and WGA preparation is highly reproducible b .

    Article Snippet: Beads were then dried for 3 min at room temperature, and DNA was eluted off the beads with 12.7 μl of dH2 O. (3) In all, 11.49 μl of phi29 amplified DNA was then added to a MmeI digestion mix (two units NEB MmeI enzyme, 50 μM SAM, 1× CutSmart Buffer) in a total volume of 20 μl, and incubated for 2.5 h at 37 °C followed by 20 min at 65 °C. (4) In all, 1 μl of alkaline phosphatase (NEB - M0290S Calf Intestinal, CIP) was added to the sample and incubated for 1 h at 37 °C. (5) In total, 10 μl of magnetic beads plus 20 μl PEG solution per sample were used to wash the sample followed by elution in 14.3 μl of dH2 O. (6) T4 DNA ligase (NEB M0202L) was used to ligate DNA adapter barcodes by adding 13.12 μl DNA to 1 μl of 1:5 diluted adapter, 1× T4 DNA Ligase Reaction Buffer, and 400 units T4 DNA ligase, followed by incubation at 16 °C for 16 h, 65 °C for 10 min, and held at 10 °C. (7) In all, 10 μl magnetic beads plus 20 μl PEG solution were used to wash the sample followed by elution in 36 μl of dH2 O. (8) Adapter ligated DNA was then PCR amplified using Q5 high-fidelity DNA polymerase (NEB – M0491L) by adding 34 μl of DNA to 1X Q5 reaction buffer, 10 mM dNTPs, 0.45 μM of each primer (P1-M6-GAT-MmeI; P2-ADPT-Tnseq-primer; Supplementary Data ), one unit Q5 DNA polymerase, and incubated at 98 °C for 30 s, and 18–22 cycles of 98 °C for 10 s, 62 °C for 30 s, 72 °C for 15 s, followed by 72 °C for 2 min, and a 10 °C hold. (9) PCR products were gel purified and sequenced on an Illumina NextSeq 500 according to the manufacturer's protocol.

    Techniques: Whole Genome Amplification, Sequencing, Amplification, Ligation

    Analysis of pUC19 DNA following treatment with clb − or clb + E. coli and linearization with the restriction enzyme EcoRI. The cross-linked linearized pUC19 DNA isolated from a co-culture with clb + BW25113 E. coli was used a positive control. A. Analysis of DNA by native gel electrophoresis. B. Analysis of DNA by denaturing gel electrophoresis. For both A and B: DNA ladder (Lane #1); circular pUC19 DNA standard (Lane #2); linearized pUC19 DNA standard (Lane # 3); linearized pUC19 DNA co-cultured with clb + BW25113 E. coli (Lane #4); circular pUC19 DNA isolated from co-culture with clb − BW25113 E. coli (Lane #5), reacted with buffer (Lane #6), reacted with EcoRI restriction enzyme (Lane #7); circular pUC19 DNA isolated from co-culture with clb + BW25113 E. coli (Lane #8), reacted with buffer (Lane #9), reacted with EcoRI restriction enzyme (Lane #10). Conditions (Lane #4): linearized pUC19 DNA, clb + BW25113 E. coli , M9-CA media, 4 h at 37 °C. Conditions (Lane #5–#7): circular pUC19 DNA isolated from co-culture with clb − BW25113 E. coli in M9-CA media for 4 h at 37 °C (Lane #5); the DNA (15.4 µM base pair) was reacted with CutSmart Buffer® (New England Biolabs®), pH 7.9, at 37 °C for 30 minutes (Lane #6); the DNA (15.4 µM base pair) was reacted with 20 units of EcoRI-HF restriction enzyme in CutSmart Buffer® (New England Biolabs®), pH 7.9, at 37 °C for 30 minutes (Lane #7). Conditions (Lane #8–#10): circular pUC19 DNA isolated from co-culture with BW25113 clb + E. coli. in in M9-CA media for 4 h at 37 °C (Lane # 8); the DNA (15.4 µM base pair) was reacted with CutSmart Buffer® (New England Biolabs®), pH 7.9, at 37 °C for 30 minutes (Lane #9); the DNA (15.4 µM base pair) was reacted with 20 units of EcoRI-HF restriction enzyme in CutSmart Buffer® (New England Biolabs®), pH 7.9, at 37 °C for 30 minutes (Lane #10). The DNA was isolated and analyzed by native ( Fig. 5A ) or 0.4% NaOH denaturing ( Fig. 5B ) agarose gel electrophoresis (90 V, 1.5 h).

    Journal: bioRxiv

    Article Title: Depurination of colibactin-derived interstrand cross-links

    doi: 10.1101/869313

    Figure Lengend Snippet: Analysis of pUC19 DNA following treatment with clb − or clb + E. coli and linearization with the restriction enzyme EcoRI. The cross-linked linearized pUC19 DNA isolated from a co-culture with clb + BW25113 E. coli was used a positive control. A. Analysis of DNA by native gel electrophoresis. B. Analysis of DNA by denaturing gel electrophoresis. For both A and B: DNA ladder (Lane #1); circular pUC19 DNA standard (Lane #2); linearized pUC19 DNA standard (Lane # 3); linearized pUC19 DNA co-cultured with clb + BW25113 E. coli (Lane #4); circular pUC19 DNA isolated from co-culture with clb − BW25113 E. coli (Lane #5), reacted with buffer (Lane #6), reacted with EcoRI restriction enzyme (Lane #7); circular pUC19 DNA isolated from co-culture with clb + BW25113 E. coli (Lane #8), reacted with buffer (Lane #9), reacted with EcoRI restriction enzyme (Lane #10). Conditions (Lane #4): linearized pUC19 DNA, clb + BW25113 E. coli , M9-CA media, 4 h at 37 °C. Conditions (Lane #5–#7): circular pUC19 DNA isolated from co-culture with clb − BW25113 E. coli in M9-CA media for 4 h at 37 °C (Lane #5); the DNA (15.4 µM base pair) was reacted with CutSmart Buffer® (New England Biolabs®), pH 7.9, at 37 °C for 30 minutes (Lane #6); the DNA (15.4 µM base pair) was reacted with 20 units of EcoRI-HF restriction enzyme in CutSmart Buffer® (New England Biolabs®), pH 7.9, at 37 °C for 30 minutes (Lane #7). Conditions (Lane #8–#10): circular pUC19 DNA isolated from co-culture with BW25113 clb + E. coli. in in M9-CA media for 4 h at 37 °C (Lane # 8); the DNA (15.4 µM base pair) was reacted with CutSmart Buffer® (New England Biolabs®), pH 7.9, at 37 °C for 30 minutes (Lane #9); the DNA (15.4 µM base pair) was reacted with 20 units of EcoRI-HF restriction enzyme in CutSmart Buffer® (New England Biolabs®), pH 7.9, at 37 °C for 30 minutes (Lane #10). The DNA was isolated and analyzed by native ( Fig. 5A ) or 0.4% NaOH denaturing ( Fig. 5B ) agarose gel electrophoresis (90 V, 1.5 h).

    Article Snippet: To set up the linearization reactions, 20 units of EcoRI-HF® (New England Biolabs®) was mixed with 500 ng of isolated DNA (40 units/µg DNA) in CutSmart® buffer (New England Biolabs®), pH 7.9, in a total volume of 50 µL for 30 min at 37 °C.

    Techniques: Isolation, Co-Culture Assay, Positive Control, Nucleic Acid Electrophoresis, Cell Culture, Agarose Gel Electrophoresis