bdnf prodomain  (Alomone Labs)


Bioz Verified Symbol Alomone Labs is a verified supplier
Bioz Manufacturer Symbol Alomone Labs manufactures this product  
  • Logo
  • About
  • News
  • Press Release
  • Team
  • Advisors
  • Partners
  • Contact
  • Bioz Stars
  • Bioz vStars
  • 97

    Structured Review

    Alomone Labs bdnf prodomain
    <t>BDNF</t> <t>prodomain</t> in low concentration (1 nM) pre-synaptically increases ACh quantal size and simultaneously induces oppositely directed presynaptic effects affecting the evoked ACh release at newly formed NMJs of reinnervated mouse m. EDL. (A) Representative recordings of MEPPs (left above) and mean MEPP amplitude and cumulative probability plots (right above), frequency and time-course parameters (left to right below) in control ( n = 20) and upon application of BDNF prodomain ( n = 22). (B) Mean MEPP amplitude in control ( n = 16) and during inhibition of vesicular ACh transporter by vesamicol (1 μM, n = 17) (left) and mean MEPP amplitude and cumulative probability plots in control ( n = 15) and upon application of BDNF prodomain in the presence of vesamicol ( n = 16). (C) Changes in the EPP amplitude (left) and their quantal content (right) in control ( n = 31) and in the presence of BDNF prodomain ( n = 41). Inset shows MEPP amplitudes.
    Bdnf Prodomain, supplied by Alomone Labs, used in various techniques. Bioz Stars score: 97/100, based on 40 PubMed citations. ZERO BIAS - scores, article reviews, protocol conditions and more
    https://www.bioz.com/result/bdnf prodomain/product/Alomone Labs
    Average 97 stars, based on 40 article reviews
    Price from $9.99 to $1999.99
    bdnf prodomain - by Bioz Stars, 2022-08
    97/100 stars

    Images

    1) Product Images from "ProBDNF and Brain-Derived Neurotrophic Factor Prodomain Differently Modulate Acetylcholine Release in Regenerating and Mature Mouse Motor Synapses"

    Article Title: ProBDNF and Brain-Derived Neurotrophic Factor Prodomain Differently Modulate Acetylcholine Release in Regenerating and Mature Mouse Motor Synapses

    Journal: Frontiers in Cellular Neuroscience

    doi: 10.3389/fncel.2022.866802

    BDNF prodomain in low concentration (1 nM) pre-synaptically increases ACh quantal size and simultaneously induces oppositely directed presynaptic effects affecting the evoked ACh release at newly formed NMJs of reinnervated mouse m. EDL. (A) Representative recordings of MEPPs (left above) and mean MEPP amplitude and cumulative probability plots (right above), frequency and time-course parameters (left to right below) in control ( n = 20) and upon application of BDNF prodomain ( n = 22). (B) Mean MEPP amplitude in control ( n = 16) and during inhibition of vesicular ACh transporter by vesamicol (1 μM, n = 17) (left) and mean MEPP amplitude and cumulative probability plots in control ( n = 15) and upon application of BDNF prodomain in the presence of vesamicol ( n = 16). (C) Changes in the EPP amplitude (left) and their quantal content (right) in control ( n = 31) and in the presence of BDNF prodomain ( n = 41). Inset shows MEPP amplitudes.
    Figure Legend Snippet: BDNF prodomain in low concentration (1 nM) pre-synaptically increases ACh quantal size and simultaneously induces oppositely directed presynaptic effects affecting the evoked ACh release at newly formed NMJs of reinnervated mouse m. EDL. (A) Representative recordings of MEPPs (left above) and mean MEPP amplitude and cumulative probability plots (right above), frequency and time-course parameters (left to right below) in control ( n = 20) and upon application of BDNF prodomain ( n = 22). (B) Mean MEPP amplitude in control ( n = 16) and during inhibition of vesicular ACh transporter by vesamicol (1 μM, n = 17) (left) and mean MEPP amplitude and cumulative probability plots in control ( n = 15) and upon application of BDNF prodomain in the presence of vesamicol ( n = 16). (C) Changes in the EPP amplitude (left) and their quantal content (right) in control ( n = 31) and in the presence of BDNF prodomain ( n = 41). Inset shows MEPP amplitudes.

    Techniques Used: Concentration Assay, Inhibition

    BK channels do not but GIRK channels mediate BDNF prodomain-induced inhibition of evoked ACh release at mature NMJs. (A) Changes in the EPP amplitude (left) and in the quantal content of EPPs (right) in control ( n = 15) and upon BDNF prodomain (1 nM) in the presence of BK-blocker iberiotoxin (ITx, 100 nM) with L-type Ca 2+ -channel blocker nitrendipine (Nitr., 1 μM) ( n = 21). (B) Changes in the EPP amplitude (left) and in the quantal content of EPPs (right) in control ( n = 15) and in the presence of GIRK blocker tertiapin-Q (100 nM, n = 17). (C) Changes in the EPP amplitude (left) and in the quantal content of EPPs (right) in control ( n = 16) and upon BDNF prodomain (1 nM) in the presence of tertiapin-Q ( n = 19). Insets show MEPP amplitudes.
    Figure Legend Snippet: BK channels do not but GIRK channels mediate BDNF prodomain-induced inhibition of evoked ACh release at mature NMJs. (A) Changes in the EPP amplitude (left) and in the quantal content of EPPs (right) in control ( n = 15) and upon BDNF prodomain (1 nM) in the presence of BK-blocker iberiotoxin (ITx, 100 nM) with L-type Ca 2+ -channel blocker nitrendipine (Nitr., 1 μM) ( n = 21). (B) Changes in the EPP amplitude (left) and in the quantal content of EPPs (right) in control ( n = 15) and in the presence of GIRK blocker tertiapin-Q (100 nM, n = 17). (C) Changes in the EPP amplitude (left) and in the quantal content of EPPs (right) in control ( n = 16) and upon BDNF prodomain (1 nM) in the presence of tertiapin-Q ( n = 19). Insets show MEPP amplitudes.

    Techniques Used: Inhibition

    BDNF prodomain (1 nM) but not proBDNF (1 nM), induces strong inhibition of spontaneous end evoked ACh release at mature NMJs. (A) Mean MEPP amplitude, cumulative probability plots, frequency, and time-course parameters (left to right) in control ( n = 19) and upon application of proBDNF ( n = 26). (B) Representative recordings of MEPPs (top left) and mean MEPP amplitude, cumulative probability plots, frequency, (top right) and their time-course parameters (bottom) in control ( n = 23) and upon application of BDNF prodomain ( n = 33). (C) Representative recordings of EPPs during a short (1 s) high-frequency (50 Hz) train in control (above) and upon application of BDNF prodomain (below). (D) Changes in the EPP amplitude (above) and in the quantal content of EPPs (below) in control ( n = 22) and in the presence of proBDNF ( n = 21). Inset shows MEPP amplitudes.
    Figure Legend Snippet: BDNF prodomain (1 nM) but not proBDNF (1 nM), induces strong inhibition of spontaneous end evoked ACh release at mature NMJs. (A) Mean MEPP amplitude, cumulative probability plots, frequency, and time-course parameters (left to right) in control ( n = 19) and upon application of proBDNF ( n = 26). (B) Representative recordings of MEPPs (top left) and mean MEPP amplitude, cumulative probability plots, frequency, (top right) and their time-course parameters (bottom) in control ( n = 23) and upon application of BDNF prodomain ( n = 33). (C) Representative recordings of EPPs during a short (1 s) high-frequency (50 Hz) train in control (above) and upon application of BDNF prodomain (below). (D) Changes in the EPP amplitude (above) and in the quantal content of EPPs (below) in control ( n = 22) and in the presence of proBDNF ( n = 21). Inset shows MEPP amplitudes.

    Techniques Used: Inhibition

    p75 receptors and Rho-signaling pathway underlie BDNF prodomain-triggered inhibition of evoked ACh release at mature NMJs. Moreover, the inhibitory effect of the BDNF prodomain (1 nM) on the evoked neuromuscular transmission depends on the endogenous activity of synaptic purinoreceptors at mature NMJs. (A) Changes in the EPP amplitude (left) and in the quantal content of EPPs (right) in control ( n = 20) and upon BDNF prodomain (1 nM) in the presence of Rho-GDI-associated p75 signaling inhibitor TAT-Pep5 (1 μM, n = 21). (B) Changes in the EPP amplitude (left) and in the quantal content of EPPs (right) in control ( n = 17) and in the presence of ROCK inhibitor Y-27632 (3 μM, n = 21). (C) Changes in the EPP amplitude (left) and in the quantal content of EPPs (right) in control ( n = 15) and upon BDNF prodomain (1 nM) in the presence of Y-27632 ( n = 21). (D) Changes in the EPP amplitude (left) and in the quantal content of EPPs (right), registered from NMJs of Panx1 –/– mice in control ( n = 24) and in the presence of BDNF prodomain ( n = 22). Insets show MEPP amplitudes.
    Figure Legend Snippet: p75 receptors and Rho-signaling pathway underlie BDNF prodomain-triggered inhibition of evoked ACh release at mature NMJs. Moreover, the inhibitory effect of the BDNF prodomain (1 nM) on the evoked neuromuscular transmission depends on the endogenous activity of synaptic purinoreceptors at mature NMJs. (A) Changes in the EPP amplitude (left) and in the quantal content of EPPs (right) in control ( n = 20) and upon BDNF prodomain (1 nM) in the presence of Rho-GDI-associated p75 signaling inhibitor TAT-Pep5 (1 μM, n = 21). (B) Changes in the EPP amplitude (left) and in the quantal content of EPPs (right) in control ( n = 17) and in the presence of ROCK inhibitor Y-27632 (3 μM, n = 21). (C) Changes in the EPP amplitude (left) and in the quantal content of EPPs (right) in control ( n = 15) and upon BDNF prodomain (1 nM) in the presence of Y-27632 ( n = 21). (D) Changes in the EPP amplitude (left) and in the quantal content of EPPs (right), registered from NMJs of Panx1 –/– mice in control ( n = 24) and in the presence of BDNF prodomain ( n = 22). Insets show MEPP amplitudes.

    Techniques Used: Inhibition, Transmission Assay, Activity Assay, Mouse Assay

    2) Product Images from "ProBDNF and Brain-Derived Neurotrophic Factor Prodomain Differently Modulate Acetylcholine Release in Regenerating and Mature Mouse Motor Synapses"

    Article Title: ProBDNF and Brain-Derived Neurotrophic Factor Prodomain Differently Modulate Acetylcholine Release in Regenerating and Mature Mouse Motor Synapses

    Journal: Frontiers in Cellular Neuroscience

    doi: 10.3389/fncel.2022.866802

    BDNF prodomain in low concentration (1 nM) pre-synaptically increases ACh quantal size and simultaneously induces oppositely directed presynaptic effects affecting the evoked ACh release at newly formed NMJs of reinnervated mouse m. EDL. (A) Representative recordings of MEPPs (left above) and mean MEPP amplitude and cumulative probability plots (right above), frequency and time-course parameters (left to right below) in control ( n = 20) and upon application of BDNF prodomain ( n = 22). (B) Mean MEPP amplitude in control ( n = 16) and during inhibition of vesicular ACh transporter by vesamicol (1 μM, n = 17) (left) and mean MEPP amplitude and cumulative probability plots in control ( n = 15) and upon application of BDNF prodomain in the presence of vesamicol ( n = 16). (C) Changes in the EPP amplitude (left) and their quantal content (right) in control ( n = 31) and in the presence of BDNF prodomain ( n = 41). Inset shows MEPP amplitudes.
    Figure Legend Snippet: BDNF prodomain in low concentration (1 nM) pre-synaptically increases ACh quantal size and simultaneously induces oppositely directed presynaptic effects affecting the evoked ACh release at newly formed NMJs of reinnervated mouse m. EDL. (A) Representative recordings of MEPPs (left above) and mean MEPP amplitude and cumulative probability plots (right above), frequency and time-course parameters (left to right below) in control ( n = 20) and upon application of BDNF prodomain ( n = 22). (B) Mean MEPP amplitude in control ( n = 16) and during inhibition of vesicular ACh transporter by vesamicol (1 μM, n = 17) (left) and mean MEPP amplitude and cumulative probability plots in control ( n = 15) and upon application of BDNF prodomain in the presence of vesamicol ( n = 16). (C) Changes in the EPP amplitude (left) and their quantal content (right) in control ( n = 31) and in the presence of BDNF prodomain ( n = 41). Inset shows MEPP amplitudes.

    Techniques Used: Concentration Assay, Inhibition

    BK channels do not but GIRK channels mediate BDNF prodomain-induced inhibition of evoked ACh release at mature NMJs. (A) Changes in the EPP amplitude (left) and in the quantal content of EPPs (right) in control ( n = 15) and upon BDNF prodomain (1 nM) in the presence of BK-blocker iberiotoxin (ITx, 100 nM) with L-type Ca 2+ -channel blocker nitrendipine (Nitr., 1 μM) ( n = 21). (B) Changes in the EPP amplitude (left) and in the quantal content of EPPs (right) in control ( n = 15) and in the presence of GIRK blocker tertiapin-Q (100 nM, n = 17). (C) Changes in the EPP amplitude (left) and in the quantal content of EPPs (right) in control ( n = 16) and upon BDNF prodomain (1 nM) in the presence of tertiapin-Q ( n = 19). Insets show MEPP amplitudes.
    Figure Legend Snippet: BK channels do not but GIRK channels mediate BDNF prodomain-induced inhibition of evoked ACh release at mature NMJs. (A) Changes in the EPP amplitude (left) and in the quantal content of EPPs (right) in control ( n = 15) and upon BDNF prodomain (1 nM) in the presence of BK-blocker iberiotoxin (ITx, 100 nM) with L-type Ca 2+ -channel blocker nitrendipine (Nitr., 1 μM) ( n = 21). (B) Changes in the EPP amplitude (left) and in the quantal content of EPPs (right) in control ( n = 15) and in the presence of GIRK blocker tertiapin-Q (100 nM, n = 17). (C) Changes in the EPP amplitude (left) and in the quantal content of EPPs (right) in control ( n = 16) and upon BDNF prodomain (1 nM) in the presence of tertiapin-Q ( n = 19). Insets show MEPP amplitudes.

    Techniques Used: Inhibition

    BDNF prodomain (1 nM) but not proBDNF (1 nM), induces strong inhibition of spontaneous end evoked ACh release at mature NMJs. (A) Mean MEPP amplitude, cumulative probability plots, frequency, and time-course parameters (left to right) in control ( n = 19) and upon application of proBDNF ( n = 26). (B) Representative recordings of MEPPs (top left) and mean MEPP amplitude, cumulative probability plots, frequency, (top right) and their time-course parameters (bottom) in control ( n = 23) and upon application of BDNF prodomain ( n = 33). (C) Representative recordings of EPPs during a short (1 s) high-frequency (50 Hz) train in control (above) and upon application of BDNF prodomain (below). (D) Changes in the EPP amplitude (above) and in the quantal content of EPPs (below) in control ( n = 22) and in the presence of proBDNF ( n = 21). Inset shows MEPP amplitudes.
    Figure Legend Snippet: BDNF prodomain (1 nM) but not proBDNF (1 nM), induces strong inhibition of spontaneous end evoked ACh release at mature NMJs. (A) Mean MEPP amplitude, cumulative probability plots, frequency, and time-course parameters (left to right) in control ( n = 19) and upon application of proBDNF ( n = 26). (B) Representative recordings of MEPPs (top left) and mean MEPP amplitude, cumulative probability plots, frequency, (top right) and their time-course parameters (bottom) in control ( n = 23) and upon application of BDNF prodomain ( n = 33). (C) Representative recordings of EPPs during a short (1 s) high-frequency (50 Hz) train in control (above) and upon application of BDNF prodomain (below). (D) Changes in the EPP amplitude (above) and in the quantal content of EPPs (below) in control ( n = 22) and in the presence of proBDNF ( n = 21). Inset shows MEPP amplitudes.

    Techniques Used: Inhibition

    p75 receptors and Rho-signaling pathway underlie BDNF prodomain-triggered inhibition of evoked ACh release at mature NMJs. Moreover, the inhibitory effect of the BDNF prodomain (1 nM) on the evoked neuromuscular transmission depends on the endogenous activity of synaptic purinoreceptors at mature NMJs. (A) Changes in the EPP amplitude (left) and in the quantal content of EPPs (right) in control ( n = 20) and upon BDNF prodomain (1 nM) in the presence of Rho-GDI-associated p75 signaling inhibitor TAT-Pep5 (1 μM, n = 21). (B) Changes in the EPP amplitude (left) and in the quantal content of EPPs (right) in control ( n = 17) and in the presence of ROCK inhibitor Y-27632 (3 μM, n = 21). (C) Changes in the EPP amplitude (left) and in the quantal content of EPPs (right) in control ( n = 15) and upon BDNF prodomain (1 nM) in the presence of Y-27632 ( n = 21). (D) Changes in the EPP amplitude (left) and in the quantal content of EPPs (right), registered from NMJs of Panx1 –/– mice in control ( n = 24) and in the presence of BDNF prodomain ( n = 22). Insets show MEPP amplitudes.
    Figure Legend Snippet: p75 receptors and Rho-signaling pathway underlie BDNF prodomain-triggered inhibition of evoked ACh release at mature NMJs. Moreover, the inhibitory effect of the BDNF prodomain (1 nM) on the evoked neuromuscular transmission depends on the endogenous activity of synaptic purinoreceptors at mature NMJs. (A) Changes in the EPP amplitude (left) and in the quantal content of EPPs (right) in control ( n = 20) and upon BDNF prodomain (1 nM) in the presence of Rho-GDI-associated p75 signaling inhibitor TAT-Pep5 (1 μM, n = 21). (B) Changes in the EPP amplitude (left) and in the quantal content of EPPs (right) in control ( n = 17) and in the presence of ROCK inhibitor Y-27632 (3 μM, n = 21). (C) Changes in the EPP amplitude (left) and in the quantal content of EPPs (right) in control ( n = 15) and upon BDNF prodomain (1 nM) in the presence of Y-27632 ( n = 21). (D) Changes in the EPP amplitude (left) and in the quantal content of EPPs (right), registered from NMJs of Panx1 –/– mice in control ( n = 24) and in the presence of BDNF prodomain ( n = 22). Insets show MEPP amplitudes.

    Techniques Used: Inhibition, Transmission Assay, Activity Assay, Mouse Assay

    3) Product Images from "ProBDNF and Brain-Derived Neurotrophic Factor Prodomain Differently Modulate Acetylcholine Release in Regenerating and Mature Mouse Motor Synapses"

    Article Title: ProBDNF and Brain-Derived Neurotrophic Factor Prodomain Differently Modulate Acetylcholine Release in Regenerating and Mature Mouse Motor Synapses

    Journal: Frontiers in Cellular Neuroscience

    doi: 10.3389/fncel.2022.866802

    BDNF prodomain in low concentration (1 nM) pre-synaptically increases ACh quantal size and simultaneously induces oppositely directed presynaptic effects affecting the evoked ACh release at newly formed NMJs of reinnervated mouse m. EDL. (A) Representative recordings of MEPPs (left above) and mean MEPP amplitude and cumulative probability plots (right above), frequency and time-course parameters (left to right below) in control ( n = 20) and upon application of BDNF prodomain ( n = 22). (B) Mean MEPP amplitude in control ( n = 16) and during inhibition of vesicular ACh transporter by vesamicol (1 μM, n = 17) (left) and mean MEPP amplitude and cumulative probability plots in control ( n = 15) and upon application of BDNF prodomain in the presence of vesamicol ( n = 16). (C) Changes in the EPP amplitude (left) and their quantal content (right) in control ( n = 31) and in the presence of BDNF prodomain ( n = 41). Inset shows MEPP amplitudes.
    Figure Legend Snippet: BDNF prodomain in low concentration (1 nM) pre-synaptically increases ACh quantal size and simultaneously induces oppositely directed presynaptic effects affecting the evoked ACh release at newly formed NMJs of reinnervated mouse m. EDL. (A) Representative recordings of MEPPs (left above) and mean MEPP amplitude and cumulative probability plots (right above), frequency and time-course parameters (left to right below) in control ( n = 20) and upon application of BDNF prodomain ( n = 22). (B) Mean MEPP amplitude in control ( n = 16) and during inhibition of vesicular ACh transporter by vesamicol (1 μM, n = 17) (left) and mean MEPP amplitude and cumulative probability plots in control ( n = 15) and upon application of BDNF prodomain in the presence of vesamicol ( n = 16). (C) Changes in the EPP amplitude (left) and their quantal content (right) in control ( n = 31) and in the presence of BDNF prodomain ( n = 41). Inset shows MEPP amplitudes.

    Techniques Used: Concentration Assay, Inhibition

    BK channels do not but GIRK channels mediate BDNF prodomain-induced inhibition of evoked ACh release at mature NMJs. (A) Changes in the EPP amplitude (left) and in the quantal content of EPPs (right) in control ( n = 15) and upon BDNF prodomain (1 nM) in the presence of BK-blocker iberiotoxin (ITx, 100 nM) with L-type Ca 2+ -channel blocker nitrendipine (Nitr., 1 μM) ( n = 21). (B) Changes in the EPP amplitude (left) and in the quantal content of EPPs (right) in control ( n = 15) and in the presence of GIRK blocker tertiapin-Q (100 nM, n = 17). (C) Changes in the EPP amplitude (left) and in the quantal content of EPPs (right) in control ( n = 16) and upon BDNF prodomain (1 nM) in the presence of tertiapin-Q ( n = 19). Insets show MEPP amplitudes.
    Figure Legend Snippet: BK channels do not but GIRK channels mediate BDNF prodomain-induced inhibition of evoked ACh release at mature NMJs. (A) Changes in the EPP amplitude (left) and in the quantal content of EPPs (right) in control ( n = 15) and upon BDNF prodomain (1 nM) in the presence of BK-blocker iberiotoxin (ITx, 100 nM) with L-type Ca 2+ -channel blocker nitrendipine (Nitr., 1 μM) ( n = 21). (B) Changes in the EPP amplitude (left) and in the quantal content of EPPs (right) in control ( n = 15) and in the presence of GIRK blocker tertiapin-Q (100 nM, n = 17). (C) Changes in the EPP amplitude (left) and in the quantal content of EPPs (right) in control ( n = 16) and upon BDNF prodomain (1 nM) in the presence of tertiapin-Q ( n = 19). Insets show MEPP amplitudes.

    Techniques Used: Inhibition

    BDNF prodomain (1 nM) but not proBDNF (1 nM), induces strong inhibition of spontaneous end evoked ACh release at mature NMJs. (A) Mean MEPP amplitude, cumulative probability plots, frequency, and time-course parameters (left to right) in control ( n = 19) and upon application of proBDNF ( n = 26). (B) Representative recordings of MEPPs (top left) and mean MEPP amplitude, cumulative probability plots, frequency, (top right) and their time-course parameters (bottom) in control ( n = 23) and upon application of BDNF prodomain ( n = 33). (C) Representative recordings of EPPs during a short (1 s) high-frequency (50 Hz) train in control (above) and upon application of BDNF prodomain (below). (D) Changes in the EPP amplitude (above) and in the quantal content of EPPs (below) in control ( n = 22) and in the presence of proBDNF ( n = 21). Inset shows MEPP amplitudes.
    Figure Legend Snippet: BDNF prodomain (1 nM) but not proBDNF (1 nM), induces strong inhibition of spontaneous end evoked ACh release at mature NMJs. (A) Mean MEPP amplitude, cumulative probability plots, frequency, and time-course parameters (left to right) in control ( n = 19) and upon application of proBDNF ( n = 26). (B) Representative recordings of MEPPs (top left) and mean MEPP amplitude, cumulative probability plots, frequency, (top right) and their time-course parameters (bottom) in control ( n = 23) and upon application of BDNF prodomain ( n = 33). (C) Representative recordings of EPPs during a short (1 s) high-frequency (50 Hz) train in control (above) and upon application of BDNF prodomain (below). (D) Changes in the EPP amplitude (above) and in the quantal content of EPPs (below) in control ( n = 22) and in the presence of proBDNF ( n = 21). Inset shows MEPP amplitudes.

    Techniques Used: Inhibition

    p75 receptors and Rho-signaling pathway underlie BDNF prodomain-triggered inhibition of evoked ACh release at mature NMJs. Moreover, the inhibitory effect of the BDNF prodomain (1 nM) on the evoked neuromuscular transmission depends on the endogenous activity of synaptic purinoreceptors at mature NMJs. (A) Changes in the EPP amplitude (left) and in the quantal content of EPPs (right) in control ( n = 20) and upon BDNF prodomain (1 nM) in the presence of Rho-GDI-associated p75 signaling inhibitor TAT-Pep5 (1 μM, n = 21). (B) Changes in the EPP amplitude (left) and in the quantal content of EPPs (right) in control ( n = 17) and in the presence of ROCK inhibitor Y-27632 (3 μM, n = 21). (C) Changes in the EPP amplitude (left) and in the quantal content of EPPs (right) in control ( n = 15) and upon BDNF prodomain (1 nM) in the presence of Y-27632 ( n = 21). (D) Changes in the EPP amplitude (left) and in the quantal content of EPPs (right), registered from NMJs of Panx1 –/– mice in control ( n = 24) and in the presence of BDNF prodomain ( n = 22). Insets show MEPP amplitudes.
    Figure Legend Snippet: p75 receptors and Rho-signaling pathway underlie BDNF prodomain-triggered inhibition of evoked ACh release at mature NMJs. Moreover, the inhibitory effect of the BDNF prodomain (1 nM) on the evoked neuromuscular transmission depends on the endogenous activity of synaptic purinoreceptors at mature NMJs. (A) Changes in the EPP amplitude (left) and in the quantal content of EPPs (right) in control ( n = 20) and upon BDNF prodomain (1 nM) in the presence of Rho-GDI-associated p75 signaling inhibitor TAT-Pep5 (1 μM, n = 21). (B) Changes in the EPP amplitude (left) and in the quantal content of EPPs (right) in control ( n = 17) and in the presence of ROCK inhibitor Y-27632 (3 μM, n = 21). (C) Changes in the EPP amplitude (left) and in the quantal content of EPPs (right) in control ( n = 15) and upon BDNF prodomain (1 nM) in the presence of Y-27632 ( n = 21). (D) Changes in the EPP amplitude (left) and in the quantal content of EPPs (right), registered from NMJs of Panx1 –/– mice in control ( n = 24) and in the presence of BDNF prodomain ( n = 22). Insets show MEPP amplitudes.

    Techniques Used: Inhibition, Transmission Assay, Activity Assay, Mouse Assay

    4) Product Images from "ProBDNF and Brain-Derived Neurotrophic Factor Prodomain Differently Modulate Acetylcholine Release in Regenerating and Mature Mouse Motor Synapses"

    Article Title: ProBDNF and Brain-Derived Neurotrophic Factor Prodomain Differently Modulate Acetylcholine Release in Regenerating and Mature Mouse Motor Synapses

    Journal: Frontiers in Cellular Neuroscience

    doi: 10.3389/fncel.2022.866802

    BDNF prodomain in low concentration (1 nM) pre-synaptically increases ACh quantal size and simultaneously induces oppositely directed presynaptic effects affecting the evoked ACh release at newly formed NMJs of reinnervated mouse m. EDL. (A) Representative recordings of MEPPs (left above) and mean MEPP amplitude and cumulative probability plots (right above), frequency and time-course parameters (left to right below) in control ( n = 20) and upon application of BDNF prodomain ( n = 22). (B) Mean MEPP amplitude in control ( n = 16) and during inhibition of vesicular ACh transporter by vesamicol (1 μM, n = 17) (left) and mean MEPP amplitude and cumulative probability plots in control ( n = 15) and upon application of BDNF prodomain in the presence of vesamicol ( n = 16). (C) Changes in the EPP amplitude (left) and their quantal content (right) in control ( n = 31) and in the presence of BDNF prodomain ( n = 41). Inset shows MEPP amplitudes.
    Figure Legend Snippet: BDNF prodomain in low concentration (1 nM) pre-synaptically increases ACh quantal size and simultaneously induces oppositely directed presynaptic effects affecting the evoked ACh release at newly formed NMJs of reinnervated mouse m. EDL. (A) Representative recordings of MEPPs (left above) and mean MEPP amplitude and cumulative probability plots (right above), frequency and time-course parameters (left to right below) in control ( n = 20) and upon application of BDNF prodomain ( n = 22). (B) Mean MEPP amplitude in control ( n = 16) and during inhibition of vesicular ACh transporter by vesamicol (1 μM, n = 17) (left) and mean MEPP amplitude and cumulative probability plots in control ( n = 15) and upon application of BDNF prodomain in the presence of vesamicol ( n = 16). (C) Changes in the EPP amplitude (left) and their quantal content (right) in control ( n = 31) and in the presence of BDNF prodomain ( n = 41). Inset shows MEPP amplitudes.

    Techniques Used: Concentration Assay, Inhibition

    BK channels do not but GIRK channels mediate BDNF prodomain-induced inhibition of evoked ACh release at mature NMJs. (A) Changes in the EPP amplitude (left) and in the quantal content of EPPs (right) in control ( n = 15) and upon BDNF prodomain (1 nM) in the presence of BK-blocker iberiotoxin (ITx, 100 nM) with L-type Ca 2+ -channel blocker nitrendipine (Nitr., 1 μM) ( n = 21). (B) Changes in the EPP amplitude (left) and in the quantal content of EPPs (right) in control ( n = 15) and in the presence of GIRK blocker tertiapin-Q (100 nM, n = 17). (C) Changes in the EPP amplitude (left) and in the quantal content of EPPs (right) in control ( n = 16) and upon BDNF prodomain (1 nM) in the presence of tertiapin-Q ( n = 19). Insets show MEPP amplitudes.
    Figure Legend Snippet: BK channels do not but GIRK channels mediate BDNF prodomain-induced inhibition of evoked ACh release at mature NMJs. (A) Changes in the EPP amplitude (left) and in the quantal content of EPPs (right) in control ( n = 15) and upon BDNF prodomain (1 nM) in the presence of BK-blocker iberiotoxin (ITx, 100 nM) with L-type Ca 2+ -channel blocker nitrendipine (Nitr., 1 μM) ( n = 21). (B) Changes in the EPP amplitude (left) and in the quantal content of EPPs (right) in control ( n = 15) and in the presence of GIRK blocker tertiapin-Q (100 nM, n = 17). (C) Changes in the EPP amplitude (left) and in the quantal content of EPPs (right) in control ( n = 16) and upon BDNF prodomain (1 nM) in the presence of tertiapin-Q ( n = 19). Insets show MEPP amplitudes.

    Techniques Used: Inhibition

    BDNF prodomain (1 nM) but not proBDNF (1 nM), induces strong inhibition of spontaneous end evoked ACh release at mature NMJs. (A) Mean MEPP amplitude, cumulative probability plots, frequency, and time-course parameters (left to right) in control ( n = 19) and upon application of proBDNF ( n = 26). (B) Representative recordings of MEPPs (top left) and mean MEPP amplitude, cumulative probability plots, frequency, (top right) and their time-course parameters (bottom) in control ( n = 23) and upon application of BDNF prodomain ( n = 33). (C) Representative recordings of EPPs during a short (1 s) high-frequency (50 Hz) train in control (above) and upon application of BDNF prodomain (below). (D) Changes in the EPP amplitude (above) and in the quantal content of EPPs (below) in control ( n = 22) and in the presence of proBDNF ( n = 21). Inset shows MEPP amplitudes.
    Figure Legend Snippet: BDNF prodomain (1 nM) but not proBDNF (1 nM), induces strong inhibition of spontaneous end evoked ACh release at mature NMJs. (A) Mean MEPP amplitude, cumulative probability plots, frequency, and time-course parameters (left to right) in control ( n = 19) and upon application of proBDNF ( n = 26). (B) Representative recordings of MEPPs (top left) and mean MEPP amplitude, cumulative probability plots, frequency, (top right) and their time-course parameters (bottom) in control ( n = 23) and upon application of BDNF prodomain ( n = 33). (C) Representative recordings of EPPs during a short (1 s) high-frequency (50 Hz) train in control (above) and upon application of BDNF prodomain (below). (D) Changes in the EPP amplitude (above) and in the quantal content of EPPs (below) in control ( n = 22) and in the presence of proBDNF ( n = 21). Inset shows MEPP amplitudes.

    Techniques Used: Inhibition

    p75 receptors and Rho-signaling pathway underlie BDNF prodomain-triggered inhibition of evoked ACh release at mature NMJs. Moreover, the inhibitory effect of the BDNF prodomain (1 nM) on the evoked neuromuscular transmission depends on the endogenous activity of synaptic purinoreceptors at mature NMJs. (A) Changes in the EPP amplitude (left) and in the quantal content of EPPs (right) in control ( n = 20) and upon BDNF prodomain (1 nM) in the presence of Rho-GDI-associated p75 signaling inhibitor TAT-Pep5 (1 μM, n = 21). (B) Changes in the EPP amplitude (left) and in the quantal content of EPPs (right) in control ( n = 17) and in the presence of ROCK inhibitor Y-27632 (3 μM, n = 21). (C) Changes in the EPP amplitude (left) and in the quantal content of EPPs (right) in control ( n = 15) and upon BDNF prodomain (1 nM) in the presence of Y-27632 ( n = 21). (D) Changes in the EPP amplitude (left) and in the quantal content of EPPs (right), registered from NMJs of Panx1 –/– mice in control ( n = 24) and in the presence of BDNF prodomain ( n = 22). Insets show MEPP amplitudes.
    Figure Legend Snippet: p75 receptors and Rho-signaling pathway underlie BDNF prodomain-triggered inhibition of evoked ACh release at mature NMJs. Moreover, the inhibitory effect of the BDNF prodomain (1 nM) on the evoked neuromuscular transmission depends on the endogenous activity of synaptic purinoreceptors at mature NMJs. (A) Changes in the EPP amplitude (left) and in the quantal content of EPPs (right) in control ( n = 20) and upon BDNF prodomain (1 nM) in the presence of Rho-GDI-associated p75 signaling inhibitor TAT-Pep5 (1 μM, n = 21). (B) Changes in the EPP amplitude (left) and in the quantal content of EPPs (right) in control ( n = 17) and in the presence of ROCK inhibitor Y-27632 (3 μM, n = 21). (C) Changes in the EPP amplitude (left) and in the quantal content of EPPs (right) in control ( n = 15) and upon BDNF prodomain (1 nM) in the presence of Y-27632 ( n = 21). (D) Changes in the EPP amplitude (left) and in the quantal content of EPPs (right), registered from NMJs of Panx1 –/– mice in control ( n = 24) and in the presence of BDNF prodomain ( n = 22). Insets show MEPP amplitudes.

    Techniques Used: Inhibition, Transmission Assay, Activity Assay, Mouse Assay

    5) Product Images from "ProBDNF and Brain-Derived Neurotrophic Factor Prodomain Differently Modulate Acetylcholine Release in Regenerating and Mature Mouse Motor Synapses"

    Article Title: ProBDNF and Brain-Derived Neurotrophic Factor Prodomain Differently Modulate Acetylcholine Release in Regenerating and Mature Mouse Motor Synapses

    Journal: Frontiers in Cellular Neuroscience

    doi: 10.3389/fncel.2022.866802

    BDNF prodomain in low concentration (1 nM) pre-synaptically increases ACh quantal size and simultaneously induces oppositely directed presynaptic effects affecting the evoked ACh release at newly formed NMJs of reinnervated mouse m. EDL. (A) Representative recordings of MEPPs (left above) and mean MEPP amplitude and cumulative probability plots (right above), frequency and time-course parameters (left to right below) in control ( n = 20) and upon application of BDNF prodomain ( n = 22). (B) Mean MEPP amplitude in control ( n = 16) and during inhibition of vesicular ACh transporter by vesamicol (1 μM, n = 17) (left) and mean MEPP amplitude and cumulative probability plots in control ( n = 15) and upon application of BDNF prodomain in the presence of vesamicol ( n = 16). (C) Changes in the EPP amplitude (left) and their quantal content (right) in control ( n = 31) and in the presence of BDNF prodomain ( n = 41). Inset shows MEPP amplitudes.
    Figure Legend Snippet: BDNF prodomain in low concentration (1 nM) pre-synaptically increases ACh quantal size and simultaneously induces oppositely directed presynaptic effects affecting the evoked ACh release at newly formed NMJs of reinnervated mouse m. EDL. (A) Representative recordings of MEPPs (left above) and mean MEPP amplitude and cumulative probability plots (right above), frequency and time-course parameters (left to right below) in control ( n = 20) and upon application of BDNF prodomain ( n = 22). (B) Mean MEPP amplitude in control ( n = 16) and during inhibition of vesicular ACh transporter by vesamicol (1 μM, n = 17) (left) and mean MEPP amplitude and cumulative probability plots in control ( n = 15) and upon application of BDNF prodomain in the presence of vesamicol ( n = 16). (C) Changes in the EPP amplitude (left) and their quantal content (right) in control ( n = 31) and in the presence of BDNF prodomain ( n = 41). Inset shows MEPP amplitudes.

    Techniques Used: Concentration Assay, Inhibition

    BK channels do not but GIRK channels mediate BDNF prodomain-induced inhibition of evoked ACh release at mature NMJs. (A) Changes in the EPP amplitude (left) and in the quantal content of EPPs (right) in control ( n = 15) and upon BDNF prodomain (1 nM) in the presence of BK-blocker iberiotoxin (ITx, 100 nM) with L-type Ca 2+ -channel blocker nitrendipine (Nitr., 1 μM) ( n = 21). (B) Changes in the EPP amplitude (left) and in the quantal content of EPPs (right) in control ( n = 15) and in the presence of GIRK blocker tertiapin-Q (100 nM, n = 17). (C) Changes in the EPP amplitude (left) and in the quantal content of EPPs (right) in control ( n = 16) and upon BDNF prodomain (1 nM) in the presence of tertiapin-Q ( n = 19). Insets show MEPP amplitudes.
    Figure Legend Snippet: BK channels do not but GIRK channels mediate BDNF prodomain-induced inhibition of evoked ACh release at mature NMJs. (A) Changes in the EPP amplitude (left) and in the quantal content of EPPs (right) in control ( n = 15) and upon BDNF prodomain (1 nM) in the presence of BK-blocker iberiotoxin (ITx, 100 nM) with L-type Ca 2+ -channel blocker nitrendipine (Nitr., 1 μM) ( n = 21). (B) Changes in the EPP amplitude (left) and in the quantal content of EPPs (right) in control ( n = 15) and in the presence of GIRK blocker tertiapin-Q (100 nM, n = 17). (C) Changes in the EPP amplitude (left) and in the quantal content of EPPs (right) in control ( n = 16) and upon BDNF prodomain (1 nM) in the presence of tertiapin-Q ( n = 19). Insets show MEPP amplitudes.

    Techniques Used: Inhibition

    BDNF prodomain (1 nM) but not proBDNF (1 nM), induces strong inhibition of spontaneous end evoked ACh release at mature NMJs. (A) Mean MEPP amplitude, cumulative probability plots, frequency, and time-course parameters (left to right) in control ( n = 19) and upon application of proBDNF ( n = 26). (B) Representative recordings of MEPPs (top left) and mean MEPP amplitude, cumulative probability plots, frequency, (top right) and their time-course parameters (bottom) in control ( n = 23) and upon application of BDNF prodomain ( n = 33). (C) Representative recordings of EPPs during a short (1 s) high-frequency (50 Hz) train in control (above) and upon application of BDNF prodomain (below). (D) Changes in the EPP amplitude (above) and in the quantal content of EPPs (below) in control ( n = 22) and in the presence of proBDNF ( n = 21). Inset shows MEPP amplitudes.
    Figure Legend Snippet: BDNF prodomain (1 nM) but not proBDNF (1 nM), induces strong inhibition of spontaneous end evoked ACh release at mature NMJs. (A) Mean MEPP amplitude, cumulative probability plots, frequency, and time-course parameters (left to right) in control ( n = 19) and upon application of proBDNF ( n = 26). (B) Representative recordings of MEPPs (top left) and mean MEPP amplitude, cumulative probability plots, frequency, (top right) and their time-course parameters (bottom) in control ( n = 23) and upon application of BDNF prodomain ( n = 33). (C) Representative recordings of EPPs during a short (1 s) high-frequency (50 Hz) train in control (above) and upon application of BDNF prodomain (below). (D) Changes in the EPP amplitude (above) and in the quantal content of EPPs (below) in control ( n = 22) and in the presence of proBDNF ( n = 21). Inset shows MEPP amplitudes.

    Techniques Used: Inhibition

    p75 receptors and Rho-signaling pathway underlie BDNF prodomain-triggered inhibition of evoked ACh release at mature NMJs. Moreover, the inhibitory effect of the BDNF prodomain (1 nM) on the evoked neuromuscular transmission depends on the endogenous activity of synaptic purinoreceptors at mature NMJs. (A) Changes in the EPP amplitude (left) and in the quantal content of EPPs (right) in control ( n = 20) and upon BDNF prodomain (1 nM) in the presence of Rho-GDI-associated p75 signaling inhibitor TAT-Pep5 (1 μM, n = 21). (B) Changes in the EPP amplitude (left) and in the quantal content of EPPs (right) in control ( n = 17) and in the presence of ROCK inhibitor Y-27632 (3 μM, n = 21). (C) Changes in the EPP amplitude (left) and in the quantal content of EPPs (right) in control ( n = 15) and upon BDNF prodomain (1 nM) in the presence of Y-27632 ( n = 21). (D) Changes in the EPP amplitude (left) and in the quantal content of EPPs (right), registered from NMJs of Panx1 –/– mice in control ( n = 24) and in the presence of BDNF prodomain ( n = 22). Insets show MEPP amplitudes.
    Figure Legend Snippet: p75 receptors and Rho-signaling pathway underlie BDNF prodomain-triggered inhibition of evoked ACh release at mature NMJs. Moreover, the inhibitory effect of the BDNF prodomain (1 nM) on the evoked neuromuscular transmission depends on the endogenous activity of synaptic purinoreceptors at mature NMJs. (A) Changes in the EPP amplitude (left) and in the quantal content of EPPs (right) in control ( n = 20) and upon BDNF prodomain (1 nM) in the presence of Rho-GDI-associated p75 signaling inhibitor TAT-Pep5 (1 μM, n = 21). (B) Changes in the EPP amplitude (left) and in the quantal content of EPPs (right) in control ( n = 17) and in the presence of ROCK inhibitor Y-27632 (3 μM, n = 21). (C) Changes in the EPP amplitude (left) and in the quantal content of EPPs (right) in control ( n = 15) and upon BDNF prodomain (1 nM) in the presence of Y-27632 ( n = 21). (D) Changes in the EPP amplitude (left) and in the quantal content of EPPs (right), registered from NMJs of Panx1 –/– mice in control ( n = 24) and in the presence of BDNF prodomain ( n = 22). Insets show MEPP amplitudes.

    Techniques Used: Inhibition, Transmission Assay, Activity Assay, Mouse Assay

    6) Product Images from "ProBDNF and Brain-Derived Neurotrophic Factor Prodomain Differently Modulate Acetylcholine Release in Regenerating and Mature Mouse Motor Synapses"

    Article Title: ProBDNF and Brain-Derived Neurotrophic Factor Prodomain Differently Modulate Acetylcholine Release in Regenerating and Mature Mouse Motor Synapses

    Journal: Frontiers in Cellular Neuroscience

    doi: 10.3389/fncel.2022.866802

    BDNF prodomain in low concentration (1 nM) pre-synaptically increases ACh quantal size and simultaneously induces oppositely directed presynaptic effects affecting the evoked ACh release at newly formed NMJs of reinnervated mouse m. EDL. (A) Representative recordings of MEPPs (left above) and mean MEPP amplitude and cumulative probability plots (right above), frequency and time-course parameters (left to right below) in control ( n = 20) and upon application of BDNF prodomain ( n = 22). (B) Mean MEPP amplitude in control ( n = 16) and during inhibition of vesicular ACh transporter by vesamicol (1 μM, n = 17) (left) and mean MEPP amplitude and cumulative probability plots in control ( n = 15) and upon application of BDNF prodomain in the presence of vesamicol ( n = 16). (C) Changes in the EPP amplitude (left) and their quantal content (right) in control ( n = 31) and in the presence of BDNF prodomain ( n = 41). Inset shows MEPP amplitudes.
    Figure Legend Snippet: BDNF prodomain in low concentration (1 nM) pre-synaptically increases ACh quantal size and simultaneously induces oppositely directed presynaptic effects affecting the evoked ACh release at newly formed NMJs of reinnervated mouse m. EDL. (A) Representative recordings of MEPPs (left above) and mean MEPP amplitude and cumulative probability plots (right above), frequency and time-course parameters (left to right below) in control ( n = 20) and upon application of BDNF prodomain ( n = 22). (B) Mean MEPP amplitude in control ( n = 16) and during inhibition of vesicular ACh transporter by vesamicol (1 μM, n = 17) (left) and mean MEPP amplitude and cumulative probability plots in control ( n = 15) and upon application of BDNF prodomain in the presence of vesamicol ( n = 16). (C) Changes in the EPP amplitude (left) and their quantal content (right) in control ( n = 31) and in the presence of BDNF prodomain ( n = 41). Inset shows MEPP amplitudes.

    Techniques Used: Concentration Assay, Inhibition

    BK channels do not but GIRK channels mediate BDNF prodomain-induced inhibition of evoked ACh release at mature NMJs. (A) Changes in the EPP amplitude (left) and in the quantal content of EPPs (right) in control ( n = 15) and upon BDNF prodomain (1 nM) in the presence of BK-blocker iberiotoxin (ITx, 100 nM) with L-type Ca 2+ -channel blocker nitrendipine (Nitr., 1 μM) ( n = 21). (B) Changes in the EPP amplitude (left) and in the quantal content of EPPs (right) in control ( n = 15) and in the presence of GIRK blocker tertiapin-Q (100 nM, n = 17). (C) Changes in the EPP amplitude (left) and in the quantal content of EPPs (right) in control ( n = 16) and upon BDNF prodomain (1 nM) in the presence of tertiapin-Q ( n = 19). Insets show MEPP amplitudes.
    Figure Legend Snippet: BK channels do not but GIRK channels mediate BDNF prodomain-induced inhibition of evoked ACh release at mature NMJs. (A) Changes in the EPP amplitude (left) and in the quantal content of EPPs (right) in control ( n = 15) and upon BDNF prodomain (1 nM) in the presence of BK-blocker iberiotoxin (ITx, 100 nM) with L-type Ca 2+ -channel blocker nitrendipine (Nitr., 1 μM) ( n = 21). (B) Changes in the EPP amplitude (left) and in the quantal content of EPPs (right) in control ( n = 15) and in the presence of GIRK blocker tertiapin-Q (100 nM, n = 17). (C) Changes in the EPP amplitude (left) and in the quantal content of EPPs (right) in control ( n = 16) and upon BDNF prodomain (1 nM) in the presence of tertiapin-Q ( n = 19). Insets show MEPP amplitudes.

    Techniques Used: Inhibition

    BDNF prodomain (1 nM) but not proBDNF (1 nM), induces strong inhibition of spontaneous end evoked ACh release at mature NMJs. (A) Mean MEPP amplitude, cumulative probability plots, frequency, and time-course parameters (left to right) in control ( n = 19) and upon application of proBDNF ( n = 26). (B) Representative recordings of MEPPs (top left) and mean MEPP amplitude, cumulative probability plots, frequency, (top right) and their time-course parameters (bottom) in control ( n = 23) and upon application of BDNF prodomain ( n = 33). (C) Representative recordings of EPPs during a short (1 s) high-frequency (50 Hz) train in control (above) and upon application of BDNF prodomain (below). (D) Changes in the EPP amplitude (above) and in the quantal content of EPPs (below) in control ( n = 22) and in the presence of proBDNF ( n = 21). Inset shows MEPP amplitudes.
    Figure Legend Snippet: BDNF prodomain (1 nM) but not proBDNF (1 nM), induces strong inhibition of spontaneous end evoked ACh release at mature NMJs. (A) Mean MEPP amplitude, cumulative probability plots, frequency, and time-course parameters (left to right) in control ( n = 19) and upon application of proBDNF ( n = 26). (B) Representative recordings of MEPPs (top left) and mean MEPP amplitude, cumulative probability plots, frequency, (top right) and their time-course parameters (bottom) in control ( n = 23) and upon application of BDNF prodomain ( n = 33). (C) Representative recordings of EPPs during a short (1 s) high-frequency (50 Hz) train in control (above) and upon application of BDNF prodomain (below). (D) Changes in the EPP amplitude (above) and in the quantal content of EPPs (below) in control ( n = 22) and in the presence of proBDNF ( n = 21). Inset shows MEPP amplitudes.

    Techniques Used: Inhibition

    p75 receptors and Rho-signaling pathway underlie BDNF prodomain-triggered inhibition of evoked ACh release at mature NMJs. Moreover, the inhibitory effect of the BDNF prodomain (1 nM) on the evoked neuromuscular transmission depends on the endogenous activity of synaptic purinoreceptors at mature NMJs. (A) Changes in the EPP amplitude (left) and in the quantal content of EPPs (right) in control ( n = 20) and upon BDNF prodomain (1 nM) in the presence of Rho-GDI-associated p75 signaling inhibitor TAT-Pep5 (1 μM, n = 21). (B) Changes in the EPP amplitude (left) and in the quantal content of EPPs (right) in control ( n = 17) and in the presence of ROCK inhibitor Y-27632 (3 μM, n = 21). (C) Changes in the EPP amplitude (left) and in the quantal content of EPPs (right) in control ( n = 15) and upon BDNF prodomain (1 nM) in the presence of Y-27632 ( n = 21). (D) Changes in the EPP amplitude (left) and in the quantal content of EPPs (right), registered from NMJs of Panx1 –/– mice in control ( n = 24) and in the presence of BDNF prodomain ( n = 22). Insets show MEPP amplitudes.
    Figure Legend Snippet: p75 receptors and Rho-signaling pathway underlie BDNF prodomain-triggered inhibition of evoked ACh release at mature NMJs. Moreover, the inhibitory effect of the BDNF prodomain (1 nM) on the evoked neuromuscular transmission depends on the endogenous activity of synaptic purinoreceptors at mature NMJs. (A) Changes in the EPP amplitude (left) and in the quantal content of EPPs (right) in control ( n = 20) and upon BDNF prodomain (1 nM) in the presence of Rho-GDI-associated p75 signaling inhibitor TAT-Pep5 (1 μM, n = 21). (B) Changes in the EPP amplitude (left) and in the quantal content of EPPs (right) in control ( n = 17) and in the presence of ROCK inhibitor Y-27632 (3 μM, n = 21). (C) Changes in the EPP amplitude (left) and in the quantal content of EPPs (right) in control ( n = 15) and upon BDNF prodomain (1 nM) in the presence of Y-27632 ( n = 21). (D) Changes in the EPP amplitude (left) and in the quantal content of EPPs (right), registered from NMJs of Panx1 –/– mice in control ( n = 24) and in the presence of BDNF prodomain ( n = 22). Insets show MEPP amplitudes.

    Techniques Used: Inhibition, Transmission Assay, Activity Assay, Mouse Assay

    7) Product Images from "ProBDNF and Brain-Derived Neurotrophic Factor Prodomain Differently Modulate Acetylcholine Release in Regenerating and Mature Mouse Motor Synapses"

    Article Title: ProBDNF and Brain-Derived Neurotrophic Factor Prodomain Differently Modulate Acetylcholine Release in Regenerating and Mature Mouse Motor Synapses

    Journal: Frontiers in Cellular Neuroscience

    doi: 10.3389/fncel.2022.866802

    BDNF prodomain in low concentration (1 nM) pre-synaptically increases ACh quantal size and simultaneously induces oppositely directed presynaptic effects affecting the evoked ACh release at newly formed NMJs of reinnervated mouse m. EDL. (A) Representative recordings of MEPPs (left above) and mean MEPP amplitude and cumulative probability plots (right above), frequency and time-course parameters (left to right below) in control ( n = 20) and upon application of BDNF prodomain ( n = 22). (B) Mean MEPP amplitude in control ( n = 16) and during inhibition of vesicular ACh transporter by vesamicol (1 μM, n = 17) (left) and mean MEPP amplitude and cumulative probability plots in control ( n = 15) and upon application of BDNF prodomain in the presence of vesamicol ( n = 16). (C) Changes in the EPP amplitude (left) and their quantal content (right) in control ( n = 31) and in the presence of BDNF prodomain ( n = 41). Inset shows MEPP amplitudes.
    Figure Legend Snippet: BDNF prodomain in low concentration (1 nM) pre-synaptically increases ACh quantal size and simultaneously induces oppositely directed presynaptic effects affecting the evoked ACh release at newly formed NMJs of reinnervated mouse m. EDL. (A) Representative recordings of MEPPs (left above) and mean MEPP amplitude and cumulative probability plots (right above), frequency and time-course parameters (left to right below) in control ( n = 20) and upon application of BDNF prodomain ( n = 22). (B) Mean MEPP amplitude in control ( n = 16) and during inhibition of vesicular ACh transporter by vesamicol (1 μM, n = 17) (left) and mean MEPP amplitude and cumulative probability plots in control ( n = 15) and upon application of BDNF prodomain in the presence of vesamicol ( n = 16). (C) Changes in the EPP amplitude (left) and their quantal content (right) in control ( n = 31) and in the presence of BDNF prodomain ( n = 41). Inset shows MEPP amplitudes.

    Techniques Used: Concentration Assay, Inhibition

    BK channels do not but GIRK channels mediate BDNF prodomain-induced inhibition of evoked ACh release at mature NMJs. (A) Changes in the EPP amplitude (left) and in the quantal content of EPPs (right) in control ( n = 15) and upon BDNF prodomain (1 nM) in the presence of BK-blocker iberiotoxin (ITx, 100 nM) with L-type Ca 2+ -channel blocker nitrendipine (Nitr., 1 μM) ( n = 21). (B) Changes in the EPP amplitude (left) and in the quantal content of EPPs (right) in control ( n = 15) and in the presence of GIRK blocker tertiapin-Q (100 nM, n = 17). (C) Changes in the EPP amplitude (left) and in the quantal content of EPPs (right) in control ( n = 16) and upon BDNF prodomain (1 nM) in the presence of tertiapin-Q ( n = 19). Insets show MEPP amplitudes.
    Figure Legend Snippet: BK channels do not but GIRK channels mediate BDNF prodomain-induced inhibition of evoked ACh release at mature NMJs. (A) Changes in the EPP amplitude (left) and in the quantal content of EPPs (right) in control ( n = 15) and upon BDNF prodomain (1 nM) in the presence of BK-blocker iberiotoxin (ITx, 100 nM) with L-type Ca 2+ -channel blocker nitrendipine (Nitr., 1 μM) ( n = 21). (B) Changes in the EPP amplitude (left) and in the quantal content of EPPs (right) in control ( n = 15) and in the presence of GIRK blocker tertiapin-Q (100 nM, n = 17). (C) Changes in the EPP amplitude (left) and in the quantal content of EPPs (right) in control ( n = 16) and upon BDNF prodomain (1 nM) in the presence of tertiapin-Q ( n = 19). Insets show MEPP amplitudes.

    Techniques Used: Inhibition

    BDNF prodomain (1 nM) but not proBDNF (1 nM), induces strong inhibition of spontaneous end evoked ACh release at mature NMJs. (A) Mean MEPP amplitude, cumulative probability plots, frequency, and time-course parameters (left to right) in control ( n = 19) and upon application of proBDNF ( n = 26). (B) Representative recordings of MEPPs (top left) and mean MEPP amplitude, cumulative probability plots, frequency, (top right) and their time-course parameters (bottom) in control ( n = 23) and upon application of BDNF prodomain ( n = 33). (C) Representative recordings of EPPs during a short (1 s) high-frequency (50 Hz) train in control (above) and upon application of BDNF prodomain (below). (D) Changes in the EPP amplitude (above) and in the quantal content of EPPs (below) in control ( n = 22) and in the presence of proBDNF ( n = 21). Inset shows MEPP amplitudes.
    Figure Legend Snippet: BDNF prodomain (1 nM) but not proBDNF (1 nM), induces strong inhibition of spontaneous end evoked ACh release at mature NMJs. (A) Mean MEPP amplitude, cumulative probability plots, frequency, and time-course parameters (left to right) in control ( n = 19) and upon application of proBDNF ( n = 26). (B) Representative recordings of MEPPs (top left) and mean MEPP amplitude, cumulative probability plots, frequency, (top right) and their time-course parameters (bottom) in control ( n = 23) and upon application of BDNF prodomain ( n = 33). (C) Representative recordings of EPPs during a short (1 s) high-frequency (50 Hz) train in control (above) and upon application of BDNF prodomain (below). (D) Changes in the EPP amplitude (above) and in the quantal content of EPPs (below) in control ( n = 22) and in the presence of proBDNF ( n = 21). Inset shows MEPP amplitudes.

    Techniques Used: Inhibition

    p75 receptors and Rho-signaling pathway underlie BDNF prodomain-triggered inhibition of evoked ACh release at mature NMJs. Moreover, the inhibitory effect of the BDNF prodomain (1 nM) on the evoked neuromuscular transmission depends on the endogenous activity of synaptic purinoreceptors at mature NMJs. (A) Changes in the EPP amplitude (left) and in the quantal content of EPPs (right) in control ( n = 20) and upon BDNF prodomain (1 nM) in the presence of Rho-GDI-associated p75 signaling inhibitor TAT-Pep5 (1 μM, n = 21). (B) Changes in the EPP amplitude (left) and in the quantal content of EPPs (right) in control ( n = 17) and in the presence of ROCK inhibitor Y-27632 (3 μM, n = 21). (C) Changes in the EPP amplitude (left) and in the quantal content of EPPs (right) in control ( n = 15) and upon BDNF prodomain (1 nM) in the presence of Y-27632 ( n = 21). (D) Changes in the EPP amplitude (left) and in the quantal content of EPPs (right), registered from NMJs of Panx1 –/– mice in control ( n = 24) and in the presence of BDNF prodomain ( n = 22). Insets show MEPP amplitudes.
    Figure Legend Snippet: p75 receptors and Rho-signaling pathway underlie BDNF prodomain-triggered inhibition of evoked ACh release at mature NMJs. Moreover, the inhibitory effect of the BDNF prodomain (1 nM) on the evoked neuromuscular transmission depends on the endogenous activity of synaptic purinoreceptors at mature NMJs. (A) Changes in the EPP amplitude (left) and in the quantal content of EPPs (right) in control ( n = 20) and upon BDNF prodomain (1 nM) in the presence of Rho-GDI-associated p75 signaling inhibitor TAT-Pep5 (1 μM, n = 21). (B) Changes in the EPP amplitude (left) and in the quantal content of EPPs (right) in control ( n = 17) and in the presence of ROCK inhibitor Y-27632 (3 μM, n = 21). (C) Changes in the EPP amplitude (left) and in the quantal content of EPPs (right) in control ( n = 15) and upon BDNF prodomain (1 nM) in the presence of Y-27632 ( n = 21). (D) Changes in the EPP amplitude (left) and in the quantal content of EPPs (right), registered from NMJs of Panx1 –/– mice in control ( n = 24) and in the presence of BDNF prodomain ( n = 22). Insets show MEPP amplitudes.

    Techniques Used: Inhibition, Transmission Assay, Activity Assay, Mouse Assay

    8) Product Images from "ProBDNF and Brain-Derived Neurotrophic Factor Prodomain Differently Modulate Acetylcholine Release in Regenerating and Mature Mouse Motor Synapses"

    Article Title: ProBDNF and Brain-Derived Neurotrophic Factor Prodomain Differently Modulate Acetylcholine Release in Regenerating and Mature Mouse Motor Synapses

    Journal: Frontiers in Cellular Neuroscience

    doi: 10.3389/fncel.2022.866802

    BDNF prodomain in low concentration (1 nM) pre-synaptically increases ACh quantal size and simultaneously induces oppositely directed presynaptic effects affecting the evoked ACh release at newly formed NMJs of reinnervated mouse m. EDL. (A) Representative recordings of MEPPs (left above) and mean MEPP amplitude and cumulative probability plots (right above), frequency and time-course parameters (left to right below) in control ( n = 20) and upon application of BDNF prodomain ( n = 22). (B) Mean MEPP amplitude in control ( n = 16) and during inhibition of vesicular ACh transporter by vesamicol (1 μM, n = 17) (left) and mean MEPP amplitude and cumulative probability plots in control ( n = 15) and upon application of BDNF prodomain in the presence of vesamicol ( n = 16). (C) Changes in the EPP amplitude (left) and their quantal content (right) in control ( n = 31) and in the presence of BDNF prodomain ( n = 41). Inset shows MEPP amplitudes.
    Figure Legend Snippet: BDNF prodomain in low concentration (1 nM) pre-synaptically increases ACh quantal size and simultaneously induces oppositely directed presynaptic effects affecting the evoked ACh release at newly formed NMJs of reinnervated mouse m. EDL. (A) Representative recordings of MEPPs (left above) and mean MEPP amplitude and cumulative probability plots (right above), frequency and time-course parameters (left to right below) in control ( n = 20) and upon application of BDNF prodomain ( n = 22). (B) Mean MEPP amplitude in control ( n = 16) and during inhibition of vesicular ACh transporter by vesamicol (1 μM, n = 17) (left) and mean MEPP amplitude and cumulative probability plots in control ( n = 15) and upon application of BDNF prodomain in the presence of vesamicol ( n = 16). (C) Changes in the EPP amplitude (left) and their quantal content (right) in control ( n = 31) and in the presence of BDNF prodomain ( n = 41). Inset shows MEPP amplitudes.

    Techniques Used: Concentration Assay, Inhibition

    BK channels do not but GIRK channels mediate BDNF prodomain-induced inhibition of evoked ACh release at mature NMJs. (A) Changes in the EPP amplitude (left) and in the quantal content of EPPs (right) in control ( n = 15) and upon BDNF prodomain (1 nM) in the presence of BK-blocker iberiotoxin (ITx, 100 nM) with L-type Ca 2+ -channel blocker nitrendipine (Nitr., 1 μM) ( n = 21). (B) Changes in the EPP amplitude (left) and in the quantal content of EPPs (right) in control ( n = 15) and in the presence of GIRK blocker tertiapin-Q (100 nM, n = 17). (C) Changes in the EPP amplitude (left) and in the quantal content of EPPs (right) in control ( n = 16) and upon BDNF prodomain (1 nM) in the presence of tertiapin-Q ( n = 19). Insets show MEPP amplitudes.
    Figure Legend Snippet: BK channels do not but GIRK channels mediate BDNF prodomain-induced inhibition of evoked ACh release at mature NMJs. (A) Changes in the EPP amplitude (left) and in the quantal content of EPPs (right) in control ( n = 15) and upon BDNF prodomain (1 nM) in the presence of BK-blocker iberiotoxin (ITx, 100 nM) with L-type Ca 2+ -channel blocker nitrendipine (Nitr., 1 μM) ( n = 21). (B) Changes in the EPP amplitude (left) and in the quantal content of EPPs (right) in control ( n = 15) and in the presence of GIRK blocker tertiapin-Q (100 nM, n = 17). (C) Changes in the EPP amplitude (left) and in the quantal content of EPPs (right) in control ( n = 16) and upon BDNF prodomain (1 nM) in the presence of tertiapin-Q ( n = 19). Insets show MEPP amplitudes.

    Techniques Used: Inhibition

    BDNF prodomain (1 nM) but not proBDNF (1 nM), induces strong inhibition of spontaneous end evoked ACh release at mature NMJs. (A) Mean MEPP amplitude, cumulative probability plots, frequency, and time-course parameters (left to right) in control ( n = 19) and upon application of proBDNF ( n = 26). (B) Representative recordings of MEPPs (top left) and mean MEPP amplitude, cumulative probability plots, frequency, (top right) and their time-course parameters (bottom) in control ( n = 23) and upon application of BDNF prodomain ( n = 33). (C) Representative recordings of EPPs during a short (1 s) high-frequency (50 Hz) train in control (above) and upon application of BDNF prodomain (below). (D) Changes in the EPP amplitude (above) and in the quantal content of EPPs (below) in control ( n = 22) and in the presence of proBDNF ( n = 21). Inset shows MEPP amplitudes.
    Figure Legend Snippet: BDNF prodomain (1 nM) but not proBDNF (1 nM), induces strong inhibition of spontaneous end evoked ACh release at mature NMJs. (A) Mean MEPP amplitude, cumulative probability plots, frequency, and time-course parameters (left to right) in control ( n = 19) and upon application of proBDNF ( n = 26). (B) Representative recordings of MEPPs (top left) and mean MEPP amplitude, cumulative probability plots, frequency, (top right) and their time-course parameters (bottom) in control ( n = 23) and upon application of BDNF prodomain ( n = 33). (C) Representative recordings of EPPs during a short (1 s) high-frequency (50 Hz) train in control (above) and upon application of BDNF prodomain (below). (D) Changes in the EPP amplitude (above) and in the quantal content of EPPs (below) in control ( n = 22) and in the presence of proBDNF ( n = 21). Inset shows MEPP amplitudes.

    Techniques Used: Inhibition

    p75 receptors and Rho-signaling pathway underlie BDNF prodomain-triggered inhibition of evoked ACh release at mature NMJs. Moreover, the inhibitory effect of the BDNF prodomain (1 nM) on the evoked neuromuscular transmission depends on the endogenous activity of synaptic purinoreceptors at mature NMJs. (A) Changes in the EPP amplitude (left) and in the quantal content of EPPs (right) in control ( n = 20) and upon BDNF prodomain (1 nM) in the presence of Rho-GDI-associated p75 signaling inhibitor TAT-Pep5 (1 μM, n = 21). (B) Changes in the EPP amplitude (left) and in the quantal content of EPPs (right) in control ( n = 17) and in the presence of ROCK inhibitor Y-27632 (3 μM, n = 21). (C) Changes in the EPP amplitude (left) and in the quantal content of EPPs (right) in control ( n = 15) and upon BDNF prodomain (1 nM) in the presence of Y-27632 ( n = 21). (D) Changes in the EPP amplitude (left) and in the quantal content of EPPs (right), registered from NMJs of Panx1 –/– mice in control ( n = 24) and in the presence of BDNF prodomain ( n = 22). Insets show MEPP amplitudes.
    Figure Legend Snippet: p75 receptors and Rho-signaling pathway underlie BDNF prodomain-triggered inhibition of evoked ACh release at mature NMJs. Moreover, the inhibitory effect of the BDNF prodomain (1 nM) on the evoked neuromuscular transmission depends on the endogenous activity of synaptic purinoreceptors at mature NMJs. (A) Changes in the EPP amplitude (left) and in the quantal content of EPPs (right) in control ( n = 20) and upon BDNF prodomain (1 nM) in the presence of Rho-GDI-associated p75 signaling inhibitor TAT-Pep5 (1 μM, n = 21). (B) Changes in the EPP amplitude (left) and in the quantal content of EPPs (right) in control ( n = 17) and in the presence of ROCK inhibitor Y-27632 (3 μM, n = 21). (C) Changes in the EPP amplitude (left) and in the quantal content of EPPs (right) in control ( n = 15) and upon BDNF prodomain (1 nM) in the presence of Y-27632 ( n = 21). (D) Changes in the EPP amplitude (left) and in the quantal content of EPPs (right), registered from NMJs of Panx1 –/– mice in control ( n = 24) and in the presence of BDNF prodomain ( n = 22). Insets show MEPP amplitudes.

    Techniques Used: Inhibition, Transmission Assay, Activity Assay, Mouse Assay

    9) Product Images from "ProBDNF and Brain-Derived Neurotrophic Factor Prodomain Differently Modulate Acetylcholine Release in Regenerating and Mature Mouse Motor Synapses"

    Article Title: ProBDNF and Brain-Derived Neurotrophic Factor Prodomain Differently Modulate Acetylcholine Release in Regenerating and Mature Mouse Motor Synapses

    Journal: Frontiers in Cellular Neuroscience

    doi: 10.3389/fncel.2022.866802

    BDNF prodomain in low concentration (1 nM) pre-synaptically increases ACh quantal size and simultaneously induces oppositely directed presynaptic effects affecting the evoked ACh release at newly formed NMJs of reinnervated mouse m. EDL. (A) Representative recordings of MEPPs (left above) and mean MEPP amplitude and cumulative probability plots (right above), frequency and time-course parameters (left to right below) in control ( n = 20) and upon application of BDNF prodomain ( n = 22). (B) Mean MEPP amplitude in control ( n = 16) and during inhibition of vesicular ACh transporter by vesamicol (1 μM, n = 17) (left) and mean MEPP amplitude and cumulative probability plots in control ( n = 15) and upon application of BDNF prodomain in the presence of vesamicol ( n = 16). (C) Changes in the EPP amplitude (left) and their quantal content (right) in control ( n = 31) and in the presence of BDNF prodomain ( n = 41). Inset shows MEPP amplitudes.
    Figure Legend Snippet: BDNF prodomain in low concentration (1 nM) pre-synaptically increases ACh quantal size and simultaneously induces oppositely directed presynaptic effects affecting the evoked ACh release at newly formed NMJs of reinnervated mouse m. EDL. (A) Representative recordings of MEPPs (left above) and mean MEPP amplitude and cumulative probability plots (right above), frequency and time-course parameters (left to right below) in control ( n = 20) and upon application of BDNF prodomain ( n = 22). (B) Mean MEPP amplitude in control ( n = 16) and during inhibition of vesicular ACh transporter by vesamicol (1 μM, n = 17) (left) and mean MEPP amplitude and cumulative probability plots in control ( n = 15) and upon application of BDNF prodomain in the presence of vesamicol ( n = 16). (C) Changes in the EPP amplitude (left) and their quantal content (right) in control ( n = 31) and in the presence of BDNF prodomain ( n = 41). Inset shows MEPP amplitudes.

    Techniques Used: Concentration Assay, Inhibition

    BK channels do not but GIRK channels mediate BDNF prodomain-induced inhibition of evoked ACh release at mature NMJs. (A) Changes in the EPP amplitude (left) and in the quantal content of EPPs (right) in control ( n = 15) and upon BDNF prodomain (1 nM) in the presence of BK-blocker iberiotoxin (ITx, 100 nM) with L-type Ca 2+ -channel blocker nitrendipine (Nitr., 1 μM) ( n = 21). (B) Changes in the EPP amplitude (left) and in the quantal content of EPPs (right) in control ( n = 15) and in the presence of GIRK blocker tertiapin-Q (100 nM, n = 17). (C) Changes in the EPP amplitude (left) and in the quantal content of EPPs (right) in control ( n = 16) and upon BDNF prodomain (1 nM) in the presence of tertiapin-Q ( n = 19). Insets show MEPP amplitudes.
    Figure Legend Snippet: BK channels do not but GIRK channels mediate BDNF prodomain-induced inhibition of evoked ACh release at mature NMJs. (A) Changes in the EPP amplitude (left) and in the quantal content of EPPs (right) in control ( n = 15) and upon BDNF prodomain (1 nM) in the presence of BK-blocker iberiotoxin (ITx, 100 nM) with L-type Ca 2+ -channel blocker nitrendipine (Nitr., 1 μM) ( n = 21). (B) Changes in the EPP amplitude (left) and in the quantal content of EPPs (right) in control ( n = 15) and in the presence of GIRK blocker tertiapin-Q (100 nM, n = 17). (C) Changes in the EPP amplitude (left) and in the quantal content of EPPs (right) in control ( n = 16) and upon BDNF prodomain (1 nM) in the presence of tertiapin-Q ( n = 19). Insets show MEPP amplitudes.

    Techniques Used: Inhibition

    BDNF prodomain (1 nM) but not proBDNF (1 nM), induces strong inhibition of spontaneous end evoked ACh release at mature NMJs. (A) Mean MEPP amplitude, cumulative probability plots, frequency, and time-course parameters (left to right) in control ( n = 19) and upon application of proBDNF ( n = 26). (B) Representative recordings of MEPPs (top left) and mean MEPP amplitude, cumulative probability plots, frequency, (top right) and their time-course parameters (bottom) in control ( n = 23) and upon application of BDNF prodomain ( n = 33). (C) Representative recordings of EPPs during a short (1 s) high-frequency (50 Hz) train in control (above) and upon application of BDNF prodomain (below). (D) Changes in the EPP amplitude (above) and in the quantal content of EPPs (below) in control ( n = 22) and in the presence of proBDNF ( n = 21). Inset shows MEPP amplitudes.
    Figure Legend Snippet: BDNF prodomain (1 nM) but not proBDNF (1 nM), induces strong inhibition of spontaneous end evoked ACh release at mature NMJs. (A) Mean MEPP amplitude, cumulative probability plots, frequency, and time-course parameters (left to right) in control ( n = 19) and upon application of proBDNF ( n = 26). (B) Representative recordings of MEPPs (top left) and mean MEPP amplitude, cumulative probability plots, frequency, (top right) and their time-course parameters (bottom) in control ( n = 23) and upon application of BDNF prodomain ( n = 33). (C) Representative recordings of EPPs during a short (1 s) high-frequency (50 Hz) train in control (above) and upon application of BDNF prodomain (below). (D) Changes in the EPP amplitude (above) and in the quantal content of EPPs (below) in control ( n = 22) and in the presence of proBDNF ( n = 21). Inset shows MEPP amplitudes.

    Techniques Used: Inhibition

    p75 receptors and Rho-signaling pathway underlie BDNF prodomain-triggered inhibition of evoked ACh release at mature NMJs. Moreover, the inhibitory effect of the BDNF prodomain (1 nM) on the evoked neuromuscular transmission depends on the endogenous activity of synaptic purinoreceptors at mature NMJs. (A) Changes in the EPP amplitude (left) and in the quantal content of EPPs (right) in control ( n = 20) and upon BDNF prodomain (1 nM) in the presence of Rho-GDI-associated p75 signaling inhibitor TAT-Pep5 (1 μM, n = 21). (B) Changes in the EPP amplitude (left) and in the quantal content of EPPs (right) in control ( n = 17) and in the presence of ROCK inhibitor Y-27632 (3 μM, n = 21). (C) Changes in the EPP amplitude (left) and in the quantal content of EPPs (right) in control ( n = 15) and upon BDNF prodomain (1 nM) in the presence of Y-27632 ( n = 21). (D) Changes in the EPP amplitude (left) and in the quantal content of EPPs (right), registered from NMJs of Panx1 –/– mice in control ( n = 24) and in the presence of BDNF prodomain ( n = 22). Insets show MEPP amplitudes.
    Figure Legend Snippet: p75 receptors and Rho-signaling pathway underlie BDNF prodomain-triggered inhibition of evoked ACh release at mature NMJs. Moreover, the inhibitory effect of the BDNF prodomain (1 nM) on the evoked neuromuscular transmission depends on the endogenous activity of synaptic purinoreceptors at mature NMJs. (A) Changes in the EPP amplitude (left) and in the quantal content of EPPs (right) in control ( n = 20) and upon BDNF prodomain (1 nM) in the presence of Rho-GDI-associated p75 signaling inhibitor TAT-Pep5 (1 μM, n = 21). (B) Changes in the EPP amplitude (left) and in the quantal content of EPPs (right) in control ( n = 17) and in the presence of ROCK inhibitor Y-27632 (3 μM, n = 21). (C) Changes in the EPP amplitude (left) and in the quantal content of EPPs (right) in control ( n = 15) and upon BDNF prodomain (1 nM) in the presence of Y-27632 ( n = 21). (D) Changes in the EPP amplitude (left) and in the quantal content of EPPs (right), registered from NMJs of Panx1 –/– mice in control ( n = 24) and in the presence of BDNF prodomain ( n = 22). Insets show MEPP amplitudes.

    Techniques Used: Inhibition, Transmission Assay, Activity Assay, Mouse Assay

    10) Product Images from "ProBDNF and Brain-Derived Neurotrophic Factor Prodomain Differently Modulate Acetylcholine Release in Regenerating and Mature Mouse Motor Synapses"

    Article Title: ProBDNF and Brain-Derived Neurotrophic Factor Prodomain Differently Modulate Acetylcholine Release in Regenerating and Mature Mouse Motor Synapses

    Journal: Frontiers in Cellular Neuroscience

    doi: 10.3389/fncel.2022.866802

    BDNF prodomain in low concentration (1 nM) pre-synaptically increases ACh quantal size and simultaneously induces oppositely directed presynaptic effects affecting the evoked ACh release at newly formed NMJs of reinnervated mouse m. EDL. (A) Representative recordings of MEPPs (left above) and mean MEPP amplitude and cumulative probability plots (right above), frequency and time-course parameters (left to right below) in control ( n = 20) and upon application of BDNF prodomain ( n = 22). (B) Mean MEPP amplitude in control ( n = 16) and during inhibition of vesicular ACh transporter by vesamicol (1 μM, n = 17) (left) and mean MEPP amplitude and cumulative probability plots in control ( n = 15) and upon application of BDNF prodomain in the presence of vesamicol ( n = 16). (C) Changes in the EPP amplitude (left) and their quantal content (right) in control ( n = 31) and in the presence of BDNF prodomain ( n = 41). Inset shows MEPP amplitudes.
    Figure Legend Snippet: BDNF prodomain in low concentration (1 nM) pre-synaptically increases ACh quantal size and simultaneously induces oppositely directed presynaptic effects affecting the evoked ACh release at newly formed NMJs of reinnervated mouse m. EDL. (A) Representative recordings of MEPPs (left above) and mean MEPP amplitude and cumulative probability plots (right above), frequency and time-course parameters (left to right below) in control ( n = 20) and upon application of BDNF prodomain ( n = 22). (B) Mean MEPP amplitude in control ( n = 16) and during inhibition of vesicular ACh transporter by vesamicol (1 μM, n = 17) (left) and mean MEPP amplitude and cumulative probability plots in control ( n = 15) and upon application of BDNF prodomain in the presence of vesamicol ( n = 16). (C) Changes in the EPP amplitude (left) and their quantal content (right) in control ( n = 31) and in the presence of BDNF prodomain ( n = 41). Inset shows MEPP amplitudes.

    Techniques Used: Concentration Assay, Inhibition

    BK channels do not but GIRK channels mediate BDNF prodomain-induced inhibition of evoked ACh release at mature NMJs. (A) Changes in the EPP amplitude (left) and in the quantal content of EPPs (right) in control ( n = 15) and upon BDNF prodomain (1 nM) in the presence of BK-blocker iberiotoxin (ITx, 100 nM) with L-type Ca 2+ -channel blocker nitrendipine (Nitr., 1 μM) ( n = 21). (B) Changes in the EPP amplitude (left) and in the quantal content of EPPs (right) in control ( n = 15) and in the presence of GIRK blocker tertiapin-Q (100 nM, n = 17). (C) Changes in the EPP amplitude (left) and in the quantal content of EPPs (right) in control ( n = 16) and upon BDNF prodomain (1 nM) in the presence of tertiapin-Q ( n = 19). Insets show MEPP amplitudes.
    Figure Legend Snippet: BK channels do not but GIRK channels mediate BDNF prodomain-induced inhibition of evoked ACh release at mature NMJs. (A) Changes in the EPP amplitude (left) and in the quantal content of EPPs (right) in control ( n = 15) and upon BDNF prodomain (1 nM) in the presence of BK-blocker iberiotoxin (ITx, 100 nM) with L-type Ca 2+ -channel blocker nitrendipine (Nitr., 1 μM) ( n = 21). (B) Changes in the EPP amplitude (left) and in the quantal content of EPPs (right) in control ( n = 15) and in the presence of GIRK blocker tertiapin-Q (100 nM, n = 17). (C) Changes in the EPP amplitude (left) and in the quantal content of EPPs (right) in control ( n = 16) and upon BDNF prodomain (1 nM) in the presence of tertiapin-Q ( n = 19). Insets show MEPP amplitudes.

    Techniques Used: Inhibition

    BDNF prodomain (1 nM) but not proBDNF (1 nM), induces strong inhibition of spontaneous end evoked ACh release at mature NMJs. (A) Mean MEPP amplitude, cumulative probability plots, frequency, and time-course parameters (left to right) in control ( n = 19) and upon application of proBDNF ( n = 26). (B) Representative recordings of MEPPs (top left) and mean MEPP amplitude, cumulative probability plots, frequency, (top right) and their time-course parameters (bottom) in control ( n = 23) and upon application of BDNF prodomain ( n = 33). (C) Representative recordings of EPPs during a short (1 s) high-frequency (50 Hz) train in control (above) and upon application of BDNF prodomain (below). (D) Changes in the EPP amplitude (above) and in the quantal content of EPPs (below) in control ( n = 22) and in the presence of proBDNF ( n = 21). Inset shows MEPP amplitudes.
    Figure Legend Snippet: BDNF prodomain (1 nM) but not proBDNF (1 nM), induces strong inhibition of spontaneous end evoked ACh release at mature NMJs. (A) Mean MEPP amplitude, cumulative probability plots, frequency, and time-course parameters (left to right) in control ( n = 19) and upon application of proBDNF ( n = 26). (B) Representative recordings of MEPPs (top left) and mean MEPP amplitude, cumulative probability plots, frequency, (top right) and their time-course parameters (bottom) in control ( n = 23) and upon application of BDNF prodomain ( n = 33). (C) Representative recordings of EPPs during a short (1 s) high-frequency (50 Hz) train in control (above) and upon application of BDNF prodomain (below). (D) Changes in the EPP amplitude (above) and in the quantal content of EPPs (below) in control ( n = 22) and in the presence of proBDNF ( n = 21). Inset shows MEPP amplitudes.

    Techniques Used: Inhibition

    p75 receptors and Rho-signaling pathway underlie BDNF prodomain-triggered inhibition of evoked ACh release at mature NMJs. Moreover, the inhibitory effect of the BDNF prodomain (1 nM) on the evoked neuromuscular transmission depends on the endogenous activity of synaptic purinoreceptors at mature NMJs. (A) Changes in the EPP amplitude (left) and in the quantal content of EPPs (right) in control ( n = 20) and upon BDNF prodomain (1 nM) in the presence of Rho-GDI-associated p75 signaling inhibitor TAT-Pep5 (1 μM, n = 21). (B) Changes in the EPP amplitude (left) and in the quantal content of EPPs (right) in control ( n = 17) and in the presence of ROCK inhibitor Y-27632 (3 μM, n = 21). (C) Changes in the EPP amplitude (left) and in the quantal content of EPPs (right) in control ( n = 15) and upon BDNF prodomain (1 nM) in the presence of Y-27632 ( n = 21). (D) Changes in the EPP amplitude (left) and in the quantal content of EPPs (right), registered from NMJs of Panx1 –/– mice in control ( n = 24) and in the presence of BDNF prodomain ( n = 22). Insets show MEPP amplitudes.
    Figure Legend Snippet: p75 receptors and Rho-signaling pathway underlie BDNF prodomain-triggered inhibition of evoked ACh release at mature NMJs. Moreover, the inhibitory effect of the BDNF prodomain (1 nM) on the evoked neuromuscular transmission depends on the endogenous activity of synaptic purinoreceptors at mature NMJs. (A) Changes in the EPP amplitude (left) and in the quantal content of EPPs (right) in control ( n = 20) and upon BDNF prodomain (1 nM) in the presence of Rho-GDI-associated p75 signaling inhibitor TAT-Pep5 (1 μM, n = 21). (B) Changes in the EPP amplitude (left) and in the quantal content of EPPs (right) in control ( n = 17) and in the presence of ROCK inhibitor Y-27632 (3 μM, n = 21). (C) Changes in the EPP amplitude (left) and in the quantal content of EPPs (right) in control ( n = 15) and upon BDNF prodomain (1 nM) in the presence of Y-27632 ( n = 21). (D) Changes in the EPP amplitude (left) and in the quantal content of EPPs (right), registered from NMJs of Panx1 –/– mice in control ( n = 24) and in the presence of BDNF prodomain ( n = 22). Insets show MEPP amplitudes.

    Techniques Used: Inhibition, Transmission Assay, Activity Assay, Mouse Assay

    11) Product Images from "ProBDNF and Brain-Derived Neurotrophic Factor Prodomain Differently Modulate Acetylcholine Release in Regenerating and Mature Mouse Motor Synapses"

    Article Title: ProBDNF and Brain-Derived Neurotrophic Factor Prodomain Differently Modulate Acetylcholine Release in Regenerating and Mature Mouse Motor Synapses

    Journal: Frontiers in Cellular Neuroscience

    doi: 10.3389/fncel.2022.866802

    BDNF prodomain in low concentration (1 nM) pre-synaptically increases ACh quantal size and simultaneously induces oppositely directed presynaptic effects affecting the evoked ACh release at newly formed NMJs of reinnervated mouse m. EDL. (A) Representative recordings of MEPPs (left above) and mean MEPP amplitude and cumulative probability plots (right above), frequency and time-course parameters (left to right below) in control ( n = 20) and upon application of BDNF prodomain ( n = 22). (B) Mean MEPP amplitude in control ( n = 16) and during inhibition of vesicular ACh transporter by vesamicol (1 μM, n = 17) (left) and mean MEPP amplitude and cumulative probability plots in control ( n = 15) and upon application of BDNF prodomain in the presence of vesamicol ( n = 16). (C) Changes in the EPP amplitude (left) and their quantal content (right) in control ( n = 31) and in the presence of BDNF prodomain ( n = 41). Inset shows MEPP amplitudes.
    Figure Legend Snippet: BDNF prodomain in low concentration (1 nM) pre-synaptically increases ACh quantal size and simultaneously induces oppositely directed presynaptic effects affecting the evoked ACh release at newly formed NMJs of reinnervated mouse m. EDL. (A) Representative recordings of MEPPs (left above) and mean MEPP amplitude and cumulative probability plots (right above), frequency and time-course parameters (left to right below) in control ( n = 20) and upon application of BDNF prodomain ( n = 22). (B) Mean MEPP amplitude in control ( n = 16) and during inhibition of vesicular ACh transporter by vesamicol (1 μM, n = 17) (left) and mean MEPP amplitude and cumulative probability plots in control ( n = 15) and upon application of BDNF prodomain in the presence of vesamicol ( n = 16). (C) Changes in the EPP amplitude (left) and their quantal content (right) in control ( n = 31) and in the presence of BDNF prodomain ( n = 41). Inset shows MEPP amplitudes.

    Techniques Used: Concentration Assay, Inhibition

    BK channels do not but GIRK channels mediate BDNF prodomain-induced inhibition of evoked ACh release at mature NMJs. (A) Changes in the EPP amplitude (left) and in the quantal content of EPPs (right) in control ( n = 15) and upon BDNF prodomain (1 nM) in the presence of BK-blocker iberiotoxin (ITx, 100 nM) with L-type Ca 2+ -channel blocker nitrendipine (Nitr., 1 μM) ( n = 21). (B) Changes in the EPP amplitude (left) and in the quantal content of EPPs (right) in control ( n = 15) and in the presence of GIRK blocker tertiapin-Q (100 nM, n = 17). (C) Changes in the EPP amplitude (left) and in the quantal content of EPPs (right) in control ( n = 16) and upon BDNF prodomain (1 nM) in the presence of tertiapin-Q ( n = 19). Insets show MEPP amplitudes.
    Figure Legend Snippet: BK channels do not but GIRK channels mediate BDNF prodomain-induced inhibition of evoked ACh release at mature NMJs. (A) Changes in the EPP amplitude (left) and in the quantal content of EPPs (right) in control ( n = 15) and upon BDNF prodomain (1 nM) in the presence of BK-blocker iberiotoxin (ITx, 100 nM) with L-type Ca 2+ -channel blocker nitrendipine (Nitr., 1 μM) ( n = 21). (B) Changes in the EPP amplitude (left) and in the quantal content of EPPs (right) in control ( n = 15) and in the presence of GIRK blocker tertiapin-Q (100 nM, n = 17). (C) Changes in the EPP amplitude (left) and in the quantal content of EPPs (right) in control ( n = 16) and upon BDNF prodomain (1 nM) in the presence of tertiapin-Q ( n = 19). Insets show MEPP amplitudes.

    Techniques Used: Inhibition

    BDNF prodomain (1 nM) but not proBDNF (1 nM), induces strong inhibition of spontaneous end evoked ACh release at mature NMJs. (A) Mean MEPP amplitude, cumulative probability plots, frequency, and time-course parameters (left to right) in control ( n = 19) and upon application of proBDNF ( n = 26). (B) Representative recordings of MEPPs (top left) and mean MEPP amplitude, cumulative probability plots, frequency, (top right) and their time-course parameters (bottom) in control ( n = 23) and upon application of BDNF prodomain ( n = 33). (C) Representative recordings of EPPs during a short (1 s) high-frequency (50 Hz) train in control (above) and upon application of BDNF prodomain (below). (D) Changes in the EPP amplitude (above) and in the quantal content of EPPs (below) in control ( n = 22) and in the presence of proBDNF ( n = 21). Inset shows MEPP amplitudes.
    Figure Legend Snippet: BDNF prodomain (1 nM) but not proBDNF (1 nM), induces strong inhibition of spontaneous end evoked ACh release at mature NMJs. (A) Mean MEPP amplitude, cumulative probability plots, frequency, and time-course parameters (left to right) in control ( n = 19) and upon application of proBDNF ( n = 26). (B) Representative recordings of MEPPs (top left) and mean MEPP amplitude, cumulative probability plots, frequency, (top right) and their time-course parameters (bottom) in control ( n = 23) and upon application of BDNF prodomain ( n = 33). (C) Representative recordings of EPPs during a short (1 s) high-frequency (50 Hz) train in control (above) and upon application of BDNF prodomain (below). (D) Changes in the EPP amplitude (above) and in the quantal content of EPPs (below) in control ( n = 22) and in the presence of proBDNF ( n = 21). Inset shows MEPP amplitudes.

    Techniques Used: Inhibition

    p75 receptors and Rho-signaling pathway underlie BDNF prodomain-triggered inhibition of evoked ACh release at mature NMJs. Moreover, the inhibitory effect of the BDNF prodomain (1 nM) on the evoked neuromuscular transmission depends on the endogenous activity of synaptic purinoreceptors at mature NMJs. (A) Changes in the EPP amplitude (left) and in the quantal content of EPPs (right) in control ( n = 20) and upon BDNF prodomain (1 nM) in the presence of Rho-GDI-associated p75 signaling inhibitor TAT-Pep5 (1 μM, n = 21). (B) Changes in the EPP amplitude (left) and in the quantal content of EPPs (right) in control ( n = 17) and in the presence of ROCK inhibitor Y-27632 (3 μM, n = 21). (C) Changes in the EPP amplitude (left) and in the quantal content of EPPs (right) in control ( n = 15) and upon BDNF prodomain (1 nM) in the presence of Y-27632 ( n = 21). (D) Changes in the EPP amplitude (left) and in the quantal content of EPPs (right), registered from NMJs of Panx1 –/– mice in control ( n = 24) and in the presence of BDNF prodomain ( n = 22). Insets show MEPP amplitudes.
    Figure Legend Snippet: p75 receptors and Rho-signaling pathway underlie BDNF prodomain-triggered inhibition of evoked ACh release at mature NMJs. Moreover, the inhibitory effect of the BDNF prodomain (1 nM) on the evoked neuromuscular transmission depends on the endogenous activity of synaptic purinoreceptors at mature NMJs. (A) Changes in the EPP amplitude (left) and in the quantal content of EPPs (right) in control ( n = 20) and upon BDNF prodomain (1 nM) in the presence of Rho-GDI-associated p75 signaling inhibitor TAT-Pep5 (1 μM, n = 21). (B) Changes in the EPP amplitude (left) and in the quantal content of EPPs (right) in control ( n = 17) and in the presence of ROCK inhibitor Y-27632 (3 μM, n = 21). (C) Changes in the EPP amplitude (left) and in the quantal content of EPPs (right) in control ( n = 15) and upon BDNF prodomain (1 nM) in the presence of Y-27632 ( n = 21). (D) Changes in the EPP amplitude (left) and in the quantal content of EPPs (right), registered from NMJs of Panx1 –/– mice in control ( n = 24) and in the presence of BDNF prodomain ( n = 22). Insets show MEPP amplitudes.

    Techniques Used: Inhibition, Transmission Assay, Activity Assay, Mouse Assay

    12) Product Images from "ProBDNF and Brain-Derived Neurotrophic Factor Prodomain Differently Modulate Acetylcholine Release in Regenerating and Mature Mouse Motor Synapses"

    Article Title: ProBDNF and Brain-Derived Neurotrophic Factor Prodomain Differently Modulate Acetylcholine Release in Regenerating and Mature Mouse Motor Synapses

    Journal: Frontiers in Cellular Neuroscience

    doi: 10.3389/fncel.2022.866802

    BDNF prodomain in low concentration (1 nM) pre-synaptically increases ACh quantal size and simultaneously induces oppositely directed presynaptic effects affecting the evoked ACh release at newly formed NMJs of reinnervated mouse m. EDL. (A) Representative recordings of MEPPs (left above) and mean MEPP amplitude and cumulative probability plots (right above), frequency and time-course parameters (left to right below) in control ( n = 20) and upon application of BDNF prodomain ( n = 22). (B) Mean MEPP amplitude in control ( n = 16) and during inhibition of vesicular ACh transporter by vesamicol (1 μM, n = 17) (left) and mean MEPP amplitude and cumulative probability plots in control ( n = 15) and upon application of BDNF prodomain in the presence of vesamicol ( n = 16). (C) Changes in the EPP amplitude (left) and their quantal content (right) in control ( n = 31) and in the presence of BDNF prodomain ( n = 41). Inset shows MEPP amplitudes.
    Figure Legend Snippet: BDNF prodomain in low concentration (1 nM) pre-synaptically increases ACh quantal size and simultaneously induces oppositely directed presynaptic effects affecting the evoked ACh release at newly formed NMJs of reinnervated mouse m. EDL. (A) Representative recordings of MEPPs (left above) and mean MEPP amplitude and cumulative probability plots (right above), frequency and time-course parameters (left to right below) in control ( n = 20) and upon application of BDNF prodomain ( n = 22). (B) Mean MEPP amplitude in control ( n = 16) and during inhibition of vesicular ACh transporter by vesamicol (1 μM, n = 17) (left) and mean MEPP amplitude and cumulative probability plots in control ( n = 15) and upon application of BDNF prodomain in the presence of vesamicol ( n = 16). (C) Changes in the EPP amplitude (left) and their quantal content (right) in control ( n = 31) and in the presence of BDNF prodomain ( n = 41). Inset shows MEPP amplitudes.

    Techniques Used: Concentration Assay, Inhibition

    BK channels do not but GIRK channels mediate BDNF prodomain-induced inhibition of evoked ACh release at mature NMJs. (A) Changes in the EPP amplitude (left) and in the quantal content of EPPs (right) in control ( n = 15) and upon BDNF prodomain (1 nM) in the presence of BK-blocker iberiotoxin (ITx, 100 nM) with L-type Ca 2+ -channel blocker nitrendipine (Nitr., 1 μM) ( n = 21). (B) Changes in the EPP amplitude (left) and in the quantal content of EPPs (right) in control ( n = 15) and in the presence of GIRK blocker tertiapin-Q (100 nM, n = 17). (C) Changes in the EPP amplitude (left) and in the quantal content of EPPs (right) in control ( n = 16) and upon BDNF prodomain (1 nM) in the presence of tertiapin-Q ( n = 19). Insets show MEPP amplitudes.
    Figure Legend Snippet: BK channels do not but GIRK channels mediate BDNF prodomain-induced inhibition of evoked ACh release at mature NMJs. (A) Changes in the EPP amplitude (left) and in the quantal content of EPPs (right) in control ( n = 15) and upon BDNF prodomain (1 nM) in the presence of BK-blocker iberiotoxin (ITx, 100 nM) with L-type Ca 2+ -channel blocker nitrendipine (Nitr., 1 μM) ( n = 21). (B) Changes in the EPP amplitude (left) and in the quantal content of EPPs (right) in control ( n = 15) and in the presence of GIRK blocker tertiapin-Q (100 nM, n = 17). (C) Changes in the EPP amplitude (left) and in the quantal content of EPPs (right) in control ( n = 16) and upon BDNF prodomain (1 nM) in the presence of tertiapin-Q ( n = 19). Insets show MEPP amplitudes.

    Techniques Used: Inhibition

    BDNF prodomain (1 nM) but not proBDNF (1 nM), induces strong inhibition of spontaneous end evoked ACh release at mature NMJs. (A) Mean MEPP amplitude, cumulative probability plots, frequency, and time-course parameters (left to right) in control ( n = 19) and upon application of proBDNF ( n = 26). (B) Representative recordings of MEPPs (top left) and mean MEPP amplitude, cumulative probability plots, frequency, (top right) and their time-course parameters (bottom) in control ( n = 23) and upon application of BDNF prodomain ( n = 33). (C) Representative recordings of EPPs during a short (1 s) high-frequency (50 Hz) train in control (above) and upon application of BDNF prodomain (below). (D) Changes in the EPP amplitude (above) and in the quantal content of EPPs (below) in control ( n = 22) and in the presence of proBDNF ( n = 21). Inset shows MEPP amplitudes.
    Figure Legend Snippet: BDNF prodomain (1 nM) but not proBDNF (1 nM), induces strong inhibition of spontaneous end evoked ACh release at mature NMJs. (A) Mean MEPP amplitude, cumulative probability plots, frequency, and time-course parameters (left to right) in control ( n = 19) and upon application of proBDNF ( n = 26). (B) Representative recordings of MEPPs (top left) and mean MEPP amplitude, cumulative probability plots, frequency, (top right) and their time-course parameters (bottom) in control ( n = 23) and upon application of BDNF prodomain ( n = 33). (C) Representative recordings of EPPs during a short (1 s) high-frequency (50 Hz) train in control (above) and upon application of BDNF prodomain (below). (D) Changes in the EPP amplitude (above) and in the quantal content of EPPs (below) in control ( n = 22) and in the presence of proBDNF ( n = 21). Inset shows MEPP amplitudes.

    Techniques Used: Inhibition

    p75 receptors and Rho-signaling pathway underlie BDNF prodomain-triggered inhibition of evoked ACh release at mature NMJs. Moreover, the inhibitory effect of the BDNF prodomain (1 nM) on the evoked neuromuscular transmission depends on the endogenous activity of synaptic purinoreceptors at mature NMJs. (A) Changes in the EPP amplitude (left) and in the quantal content of EPPs (right) in control ( n = 20) and upon BDNF prodomain (1 nM) in the presence of Rho-GDI-associated p75 signaling inhibitor TAT-Pep5 (1 μM, n = 21). (B) Changes in the EPP amplitude (left) and in the quantal content of EPPs (right) in control ( n = 17) and in the presence of ROCK inhibitor Y-27632 (3 μM, n = 21). (C) Changes in the EPP amplitude (left) and in the quantal content of EPPs (right) in control ( n = 15) and upon BDNF prodomain (1 nM) in the presence of Y-27632 ( n = 21). (D) Changes in the EPP amplitude (left) and in the quantal content of EPPs (right), registered from NMJs of Panx1 –/– mice in control ( n = 24) and in the presence of BDNF prodomain ( n = 22). Insets show MEPP amplitudes.
    Figure Legend Snippet: p75 receptors and Rho-signaling pathway underlie BDNF prodomain-triggered inhibition of evoked ACh release at mature NMJs. Moreover, the inhibitory effect of the BDNF prodomain (1 nM) on the evoked neuromuscular transmission depends on the endogenous activity of synaptic purinoreceptors at mature NMJs. (A) Changes in the EPP amplitude (left) and in the quantal content of EPPs (right) in control ( n = 20) and upon BDNF prodomain (1 nM) in the presence of Rho-GDI-associated p75 signaling inhibitor TAT-Pep5 (1 μM, n = 21). (B) Changes in the EPP amplitude (left) and in the quantal content of EPPs (right) in control ( n = 17) and in the presence of ROCK inhibitor Y-27632 (3 μM, n = 21). (C) Changes in the EPP amplitude (left) and in the quantal content of EPPs (right) in control ( n = 15) and upon BDNF prodomain (1 nM) in the presence of Y-27632 ( n = 21). (D) Changes in the EPP amplitude (left) and in the quantal content of EPPs (right), registered from NMJs of Panx1 –/– mice in control ( n = 24) and in the presence of BDNF prodomain ( n = 22). Insets show MEPP amplitudes.

    Techniques Used: Inhibition, Transmission Assay, Activity Assay, Mouse Assay

    13) Product Images from "ProBDNF and Brain-Derived Neurotrophic Factor Prodomain Differently Modulate Acetylcholine Release in Regenerating and Mature Mouse Motor Synapses"

    Article Title: ProBDNF and Brain-Derived Neurotrophic Factor Prodomain Differently Modulate Acetylcholine Release in Regenerating and Mature Mouse Motor Synapses

    Journal: Frontiers in Cellular Neuroscience

    doi: 10.3389/fncel.2022.866802

    BDNF prodomain in low concentration (1 nM) pre-synaptically increases ACh quantal size and simultaneously induces oppositely directed presynaptic effects affecting the evoked ACh release at newly formed NMJs of reinnervated mouse m. EDL. (A) Representative recordings of MEPPs (left above) and mean MEPP amplitude and cumulative probability plots (right above), frequency and time-course parameters (left to right below) in control ( n = 20) and upon application of BDNF prodomain ( n = 22). (B) Mean MEPP amplitude in control ( n = 16) and during inhibition of vesicular ACh transporter by vesamicol (1 μM, n = 17) (left) and mean MEPP amplitude and cumulative probability plots in control ( n = 15) and upon application of BDNF prodomain in the presence of vesamicol ( n = 16). (C) Changes in the EPP amplitude (left) and their quantal content (right) in control ( n = 31) and in the presence of BDNF prodomain ( n = 41). Inset shows MEPP amplitudes.
    Figure Legend Snippet: BDNF prodomain in low concentration (1 nM) pre-synaptically increases ACh quantal size and simultaneously induces oppositely directed presynaptic effects affecting the evoked ACh release at newly formed NMJs of reinnervated mouse m. EDL. (A) Representative recordings of MEPPs (left above) and mean MEPP amplitude and cumulative probability plots (right above), frequency and time-course parameters (left to right below) in control ( n = 20) and upon application of BDNF prodomain ( n = 22). (B) Mean MEPP amplitude in control ( n = 16) and during inhibition of vesicular ACh transporter by vesamicol (1 μM, n = 17) (left) and mean MEPP amplitude and cumulative probability plots in control ( n = 15) and upon application of BDNF prodomain in the presence of vesamicol ( n = 16). (C) Changes in the EPP amplitude (left) and their quantal content (right) in control ( n = 31) and in the presence of BDNF prodomain ( n = 41). Inset shows MEPP amplitudes.

    Techniques Used: Concentration Assay, Inhibition

    BK channels do not but GIRK channels mediate BDNF prodomain-induced inhibition of evoked ACh release at mature NMJs. (A) Changes in the EPP amplitude (left) and in the quantal content of EPPs (right) in control ( n = 15) and upon BDNF prodomain (1 nM) in the presence of BK-blocker iberiotoxin (ITx, 100 nM) with L-type Ca 2+ -channel blocker nitrendipine (Nitr., 1 μM) ( n = 21). (B) Changes in the EPP amplitude (left) and in the quantal content of EPPs (right) in control ( n = 15) and in the presence of GIRK blocker tertiapin-Q (100 nM, n = 17). (C) Changes in the EPP amplitude (left) and in the quantal content of EPPs (right) in control ( n = 16) and upon BDNF prodomain (1 nM) in the presence of tertiapin-Q ( n = 19). Insets show MEPP amplitudes.
    Figure Legend Snippet: BK channels do not but GIRK channels mediate BDNF prodomain-induced inhibition of evoked ACh release at mature NMJs. (A) Changes in the EPP amplitude (left) and in the quantal content of EPPs (right) in control ( n = 15) and upon BDNF prodomain (1 nM) in the presence of BK-blocker iberiotoxin (ITx, 100 nM) with L-type Ca 2+ -channel blocker nitrendipine (Nitr., 1 μM) ( n = 21). (B) Changes in the EPP amplitude (left) and in the quantal content of EPPs (right) in control ( n = 15) and in the presence of GIRK blocker tertiapin-Q (100 nM, n = 17). (C) Changes in the EPP amplitude (left) and in the quantal content of EPPs (right) in control ( n = 16) and upon BDNF prodomain (1 nM) in the presence of tertiapin-Q ( n = 19). Insets show MEPP amplitudes.

    Techniques Used: Inhibition

    BDNF prodomain (1 nM) but not proBDNF (1 nM), induces strong inhibition of spontaneous end evoked ACh release at mature NMJs. (A) Mean MEPP amplitude, cumulative probability plots, frequency, and time-course parameters (left to right) in control ( n = 19) and upon application of proBDNF ( n = 26). (B) Representative recordings of MEPPs (top left) and mean MEPP amplitude, cumulative probability plots, frequency, (top right) and their time-course parameters (bottom) in control ( n = 23) and upon application of BDNF prodomain ( n = 33). (C) Representative recordings of EPPs during a short (1 s) high-frequency (50 Hz) train in control (above) and upon application of BDNF prodomain (below). (D) Changes in the EPP amplitude (above) and in the quantal content of EPPs (below) in control ( n = 22) and in the presence of proBDNF ( n = 21). Inset shows MEPP amplitudes.
    Figure Legend Snippet: BDNF prodomain (1 nM) but not proBDNF (1 nM), induces strong inhibition of spontaneous end evoked ACh release at mature NMJs. (A) Mean MEPP amplitude, cumulative probability plots, frequency, and time-course parameters (left to right) in control ( n = 19) and upon application of proBDNF ( n = 26). (B) Representative recordings of MEPPs (top left) and mean MEPP amplitude, cumulative probability plots, frequency, (top right) and their time-course parameters (bottom) in control ( n = 23) and upon application of BDNF prodomain ( n = 33). (C) Representative recordings of EPPs during a short (1 s) high-frequency (50 Hz) train in control (above) and upon application of BDNF prodomain (below). (D) Changes in the EPP amplitude (above) and in the quantal content of EPPs (below) in control ( n = 22) and in the presence of proBDNF ( n = 21). Inset shows MEPP amplitudes.

    Techniques Used: Inhibition

    p75 receptors and Rho-signaling pathway underlie BDNF prodomain-triggered inhibition of evoked ACh release at mature NMJs. Moreover, the inhibitory effect of the BDNF prodomain (1 nM) on the evoked neuromuscular transmission depends on the endogenous activity of synaptic purinoreceptors at mature NMJs. (A) Changes in the EPP amplitude (left) and in the quantal content of EPPs (right) in control ( n = 20) and upon BDNF prodomain (1 nM) in the presence of Rho-GDI-associated p75 signaling inhibitor TAT-Pep5 (1 μM, n = 21). (B) Changes in the EPP amplitude (left) and in the quantal content of EPPs (right) in control ( n = 17) and in the presence of ROCK inhibitor Y-27632 (3 μM, n = 21). (C) Changes in the EPP amplitude (left) and in the quantal content of EPPs (right) in control ( n = 15) and upon BDNF prodomain (1 nM) in the presence of Y-27632 ( n = 21). (D) Changes in the EPP amplitude (left) and in the quantal content of EPPs (right), registered from NMJs of Panx1 –/– mice in control ( n = 24) and in the presence of BDNF prodomain ( n = 22). Insets show MEPP amplitudes.
    Figure Legend Snippet: p75 receptors and Rho-signaling pathway underlie BDNF prodomain-triggered inhibition of evoked ACh release at mature NMJs. Moreover, the inhibitory effect of the BDNF prodomain (1 nM) on the evoked neuromuscular transmission depends on the endogenous activity of synaptic purinoreceptors at mature NMJs. (A) Changes in the EPP amplitude (left) and in the quantal content of EPPs (right) in control ( n = 20) and upon BDNF prodomain (1 nM) in the presence of Rho-GDI-associated p75 signaling inhibitor TAT-Pep5 (1 μM, n = 21). (B) Changes in the EPP amplitude (left) and in the quantal content of EPPs (right) in control ( n = 17) and in the presence of ROCK inhibitor Y-27632 (3 μM, n = 21). (C) Changes in the EPP amplitude (left) and in the quantal content of EPPs (right) in control ( n = 15) and upon BDNF prodomain (1 nM) in the presence of Y-27632 ( n = 21). (D) Changes in the EPP amplitude (left) and in the quantal content of EPPs (right), registered from NMJs of Panx1 –/– mice in control ( n = 24) and in the presence of BDNF prodomain ( n = 22). Insets show MEPP amplitudes.

    Techniques Used: Inhibition, Transmission Assay, Activity Assay, Mouse Assay

    14) Product Images from "ProBDNF and Brain-Derived Neurotrophic Factor Prodomain Differently Modulate Acetylcholine Release in Regenerating and Mature Mouse Motor Synapses"

    Article Title: ProBDNF and Brain-Derived Neurotrophic Factor Prodomain Differently Modulate Acetylcholine Release in Regenerating and Mature Mouse Motor Synapses

    Journal: Frontiers in Cellular Neuroscience

    doi: 10.3389/fncel.2022.866802

    BDNF prodomain in low concentration (1 nM) pre-synaptically increases ACh quantal size and simultaneously induces oppositely directed presynaptic effects affecting the evoked ACh release at newly formed NMJs of reinnervated mouse m. EDL. (A) Representative recordings of MEPPs (left above) and mean MEPP amplitude and cumulative probability plots (right above), frequency and time-course parameters (left to right below) in control ( n = 20) and upon application of BDNF prodomain ( n = 22). (B) Mean MEPP amplitude in control ( n = 16) and during inhibition of vesicular ACh transporter by vesamicol (1 μM, n = 17) (left) and mean MEPP amplitude and cumulative probability plots in control ( n = 15) and upon application of BDNF prodomain in the presence of vesamicol ( n = 16). (C) Changes in the EPP amplitude (left) and their quantal content (right) in control ( n = 31) and in the presence of BDNF prodomain ( n = 41). Inset shows MEPP amplitudes.
    Figure Legend Snippet: BDNF prodomain in low concentration (1 nM) pre-synaptically increases ACh quantal size and simultaneously induces oppositely directed presynaptic effects affecting the evoked ACh release at newly formed NMJs of reinnervated mouse m. EDL. (A) Representative recordings of MEPPs (left above) and mean MEPP amplitude and cumulative probability plots (right above), frequency and time-course parameters (left to right below) in control ( n = 20) and upon application of BDNF prodomain ( n = 22). (B) Mean MEPP amplitude in control ( n = 16) and during inhibition of vesicular ACh transporter by vesamicol (1 μM, n = 17) (left) and mean MEPP amplitude and cumulative probability plots in control ( n = 15) and upon application of BDNF prodomain in the presence of vesamicol ( n = 16). (C) Changes in the EPP amplitude (left) and their quantal content (right) in control ( n = 31) and in the presence of BDNF prodomain ( n = 41). Inset shows MEPP amplitudes.

    Techniques Used: Concentration Assay, Inhibition

    BK channels do not but GIRK channels mediate BDNF prodomain-induced inhibition of evoked ACh release at mature NMJs. (A) Changes in the EPP amplitude (left) and in the quantal content of EPPs (right) in control ( n = 15) and upon BDNF prodomain (1 nM) in the presence of BK-blocker iberiotoxin (ITx, 100 nM) with L-type Ca 2+ -channel blocker nitrendipine (Nitr., 1 μM) ( n = 21). (B) Changes in the EPP amplitude (left) and in the quantal content of EPPs (right) in control ( n = 15) and in the presence of GIRK blocker tertiapin-Q (100 nM, n = 17). (C) Changes in the EPP amplitude (left) and in the quantal content of EPPs (right) in control ( n = 16) and upon BDNF prodomain (1 nM) in the presence of tertiapin-Q ( n = 19). Insets show MEPP amplitudes.
    Figure Legend Snippet: BK channels do not but GIRK channels mediate BDNF prodomain-induced inhibition of evoked ACh release at mature NMJs. (A) Changes in the EPP amplitude (left) and in the quantal content of EPPs (right) in control ( n = 15) and upon BDNF prodomain (1 nM) in the presence of BK-blocker iberiotoxin (ITx, 100 nM) with L-type Ca 2+ -channel blocker nitrendipine (Nitr., 1 μM) ( n = 21). (B) Changes in the EPP amplitude (left) and in the quantal content of EPPs (right) in control ( n = 15) and in the presence of GIRK blocker tertiapin-Q (100 nM, n = 17). (C) Changes in the EPP amplitude (left) and in the quantal content of EPPs (right) in control ( n = 16) and upon BDNF prodomain (1 nM) in the presence of tertiapin-Q ( n = 19). Insets show MEPP amplitudes.

    Techniques Used: Inhibition

    BDNF prodomain (1 nM) but not proBDNF (1 nM), induces strong inhibition of spontaneous end evoked ACh release at mature NMJs. (A) Mean MEPP amplitude, cumulative probability plots, frequency, and time-course parameters (left to right) in control ( n = 19) and upon application of proBDNF ( n = 26). (B) Representative recordings of MEPPs (top left) and mean MEPP amplitude, cumulative probability plots, frequency, (top right) and their time-course parameters (bottom) in control ( n = 23) and upon application of BDNF prodomain ( n = 33). (C) Representative recordings of EPPs during a short (1 s) high-frequency (50 Hz) train in control (above) and upon application of BDNF prodomain (below). (D) Changes in the EPP amplitude (above) and in the quantal content of EPPs (below) in control ( n = 22) and in the presence of proBDNF ( n = 21). Inset shows MEPP amplitudes.
    Figure Legend Snippet: BDNF prodomain (1 nM) but not proBDNF (1 nM), induces strong inhibition of spontaneous end evoked ACh release at mature NMJs. (A) Mean MEPP amplitude, cumulative probability plots, frequency, and time-course parameters (left to right) in control ( n = 19) and upon application of proBDNF ( n = 26). (B) Representative recordings of MEPPs (top left) and mean MEPP amplitude, cumulative probability plots, frequency, (top right) and their time-course parameters (bottom) in control ( n = 23) and upon application of BDNF prodomain ( n = 33). (C) Representative recordings of EPPs during a short (1 s) high-frequency (50 Hz) train in control (above) and upon application of BDNF prodomain (below). (D) Changes in the EPP amplitude (above) and in the quantal content of EPPs (below) in control ( n = 22) and in the presence of proBDNF ( n = 21). Inset shows MEPP amplitudes.

    Techniques Used: Inhibition

    p75 receptors and Rho-signaling pathway underlie BDNF prodomain-triggered inhibition of evoked ACh release at mature NMJs. Moreover, the inhibitory effect of the BDNF prodomain (1 nM) on the evoked neuromuscular transmission depends on the endogenous activity of synaptic purinoreceptors at mature NMJs. (A) Changes in the EPP amplitude (left) and in the quantal content of EPPs (right) in control ( n = 20) and upon BDNF prodomain (1 nM) in the presence of Rho-GDI-associated p75 signaling inhibitor TAT-Pep5 (1 μM, n = 21). (B) Changes in the EPP amplitude (left) and in the quantal content of EPPs (right) in control ( n = 17) and in the presence of ROCK inhibitor Y-27632 (3 μM, n = 21). (C) Changes in the EPP amplitude (left) and in the quantal content of EPPs (right) in control ( n = 15) and upon BDNF prodomain (1 nM) in the presence of Y-27632 ( n = 21). (D) Changes in the EPP amplitude (left) and in the quantal content of EPPs (right), registered from NMJs of Panx1 –/– mice in control ( n = 24) and in the presence of BDNF prodomain ( n = 22). Insets show MEPP amplitudes.
    Figure Legend Snippet: p75 receptors and Rho-signaling pathway underlie BDNF prodomain-triggered inhibition of evoked ACh release at mature NMJs. Moreover, the inhibitory effect of the BDNF prodomain (1 nM) on the evoked neuromuscular transmission depends on the endogenous activity of synaptic purinoreceptors at mature NMJs. (A) Changes in the EPP amplitude (left) and in the quantal content of EPPs (right) in control ( n = 20) and upon BDNF prodomain (1 nM) in the presence of Rho-GDI-associated p75 signaling inhibitor TAT-Pep5 (1 μM, n = 21). (B) Changes in the EPP amplitude (left) and in the quantal content of EPPs (right) in control ( n = 17) and in the presence of ROCK inhibitor Y-27632 (3 μM, n = 21). (C) Changes in the EPP amplitude (left) and in the quantal content of EPPs (right) in control ( n = 15) and upon BDNF prodomain (1 nM) in the presence of Y-27632 ( n = 21). (D) Changes in the EPP amplitude (left) and in the quantal content of EPPs (right), registered from NMJs of Panx1 –/– mice in control ( n = 24) and in the presence of BDNF prodomain ( n = 22). Insets show MEPP amplitudes.

    Techniques Used: Inhibition, Transmission Assay, Activity Assay, Mouse Assay

    15) Product Images from "ProBDNF and Brain-Derived Neurotrophic Factor Prodomain Differently Modulate Acetylcholine Release in Regenerating and Mature Mouse Motor Synapses"

    Article Title: ProBDNF and Brain-Derived Neurotrophic Factor Prodomain Differently Modulate Acetylcholine Release in Regenerating and Mature Mouse Motor Synapses

    Journal: Frontiers in Cellular Neuroscience

    doi: 10.3389/fncel.2022.866802

    BDNF prodomain in low concentration (1 nM) pre-synaptically increases ACh quantal size and simultaneously induces oppositely directed presynaptic effects affecting the evoked ACh release at newly formed NMJs of reinnervated mouse m. EDL. (A) Representative recordings of MEPPs (left above) and mean MEPP amplitude and cumulative probability plots (right above), frequency and time-course parameters (left to right below) in control ( n = 20) and upon application of BDNF prodomain ( n = 22). (B) Mean MEPP amplitude in control ( n = 16) and during inhibition of vesicular ACh transporter by vesamicol (1 μM, n = 17) (left) and mean MEPP amplitude and cumulative probability plots in control ( n = 15) and upon application of BDNF prodomain in the presence of vesamicol ( n = 16). (C) Changes in the EPP amplitude (left) and their quantal content (right) in control ( n = 31) and in the presence of BDNF prodomain ( n = 41). Inset shows MEPP amplitudes.
    Figure Legend Snippet: BDNF prodomain in low concentration (1 nM) pre-synaptically increases ACh quantal size and simultaneously induces oppositely directed presynaptic effects affecting the evoked ACh release at newly formed NMJs of reinnervated mouse m. EDL. (A) Representative recordings of MEPPs (left above) and mean MEPP amplitude and cumulative probability plots (right above), frequency and time-course parameters (left to right below) in control ( n = 20) and upon application of BDNF prodomain ( n = 22). (B) Mean MEPP amplitude in control ( n = 16) and during inhibition of vesicular ACh transporter by vesamicol (1 μM, n = 17) (left) and mean MEPP amplitude and cumulative probability plots in control ( n = 15) and upon application of BDNF prodomain in the presence of vesamicol ( n = 16). (C) Changes in the EPP amplitude (left) and their quantal content (right) in control ( n = 31) and in the presence of BDNF prodomain ( n = 41). Inset shows MEPP amplitudes.

    Techniques Used: Concentration Assay, Inhibition

    BK channels do not but GIRK channels mediate BDNF prodomain-induced inhibition of evoked ACh release at mature NMJs. (A) Changes in the EPP amplitude (left) and in the quantal content of EPPs (right) in control ( n = 15) and upon BDNF prodomain (1 nM) in the presence of BK-blocker iberiotoxin (ITx, 100 nM) with L-type Ca 2+ -channel blocker nitrendipine (Nitr., 1 μM) ( n = 21). (B) Changes in the EPP amplitude (left) and in the quantal content of EPPs (right) in control ( n = 15) and in the presence of GIRK blocker tertiapin-Q (100 nM, n = 17). (C) Changes in the EPP amplitude (left) and in the quantal content of EPPs (right) in control ( n = 16) and upon BDNF prodomain (1 nM) in the presence of tertiapin-Q ( n = 19). Insets show MEPP amplitudes.
    Figure Legend Snippet: BK channels do not but GIRK channels mediate BDNF prodomain-induced inhibition of evoked ACh release at mature NMJs. (A) Changes in the EPP amplitude (left) and in the quantal content of EPPs (right) in control ( n = 15) and upon BDNF prodomain (1 nM) in the presence of BK-blocker iberiotoxin (ITx, 100 nM) with L-type Ca 2+ -channel blocker nitrendipine (Nitr., 1 μM) ( n = 21). (B) Changes in the EPP amplitude (left) and in the quantal content of EPPs (right) in control ( n = 15) and in the presence of GIRK blocker tertiapin-Q (100 nM, n = 17). (C) Changes in the EPP amplitude (left) and in the quantal content of EPPs (right) in control ( n = 16) and upon BDNF prodomain (1 nM) in the presence of tertiapin-Q ( n = 19). Insets show MEPP amplitudes.

    Techniques Used: Inhibition

    BDNF prodomain (1 nM) but not proBDNF (1 nM), induces strong inhibition of spontaneous end evoked ACh release at mature NMJs. (A) Mean MEPP amplitude, cumulative probability plots, frequency, and time-course parameters (left to right) in control ( n = 19) and upon application of proBDNF ( n = 26). (B) Representative recordings of MEPPs (top left) and mean MEPP amplitude, cumulative probability plots, frequency, (top right) and their time-course parameters (bottom) in control ( n = 23) and upon application of BDNF prodomain ( n = 33). (C) Representative recordings of EPPs during a short (1 s) high-frequency (50 Hz) train in control (above) and upon application of BDNF prodomain (below). (D) Changes in the EPP amplitude (above) and in the quantal content of EPPs (below) in control ( n = 22) and in the presence of proBDNF ( n = 21). Inset shows MEPP amplitudes.
    Figure Legend Snippet: BDNF prodomain (1 nM) but not proBDNF (1 nM), induces strong inhibition of spontaneous end evoked ACh release at mature NMJs. (A) Mean MEPP amplitude, cumulative probability plots, frequency, and time-course parameters (left to right) in control ( n = 19) and upon application of proBDNF ( n = 26). (B) Representative recordings of MEPPs (top left) and mean MEPP amplitude, cumulative probability plots, frequency, (top right) and their time-course parameters (bottom) in control ( n = 23) and upon application of BDNF prodomain ( n = 33). (C) Representative recordings of EPPs during a short (1 s) high-frequency (50 Hz) train in control (above) and upon application of BDNF prodomain (below). (D) Changes in the EPP amplitude (above) and in the quantal content of EPPs (below) in control ( n = 22) and in the presence of proBDNF ( n = 21). Inset shows MEPP amplitudes.

    Techniques Used: Inhibition

    p75 receptors and Rho-signaling pathway underlie BDNF prodomain-triggered inhibition of evoked ACh release at mature NMJs. Moreover, the inhibitory effect of the BDNF prodomain (1 nM) on the evoked neuromuscular transmission depends on the endogenous activity of synaptic purinoreceptors at mature NMJs. (A) Changes in the EPP amplitude (left) and in the quantal content of EPPs (right) in control ( n = 20) and upon BDNF prodomain (1 nM) in the presence of Rho-GDI-associated p75 signaling inhibitor TAT-Pep5 (1 μM, n = 21). (B) Changes in the EPP amplitude (left) and in the quantal content of EPPs (right) in control ( n = 17) and in the presence of ROCK inhibitor Y-27632 (3 μM, n = 21). (C) Changes in the EPP amplitude (left) and in the quantal content of EPPs (right) in control ( n = 15) and upon BDNF prodomain (1 nM) in the presence of Y-27632 ( n = 21). (D) Changes in the EPP amplitude (left) and in the quantal content of EPPs (right), registered from NMJs of Panx1 –/– mice in control ( n = 24) and in the presence of BDNF prodomain ( n = 22). Insets show MEPP amplitudes.
    Figure Legend Snippet: p75 receptors and Rho-signaling pathway underlie BDNF prodomain-triggered inhibition of evoked ACh release at mature NMJs. Moreover, the inhibitory effect of the BDNF prodomain (1 nM) on the evoked neuromuscular transmission depends on the endogenous activity of synaptic purinoreceptors at mature NMJs. (A) Changes in the EPP amplitude (left) and in the quantal content of EPPs (right) in control ( n = 20) and upon BDNF prodomain (1 nM) in the presence of Rho-GDI-associated p75 signaling inhibitor TAT-Pep5 (1 μM, n = 21). (B) Changes in the EPP amplitude (left) and in the quantal content of EPPs (right) in control ( n = 17) and in the presence of ROCK inhibitor Y-27632 (3 μM, n = 21). (C) Changes in the EPP amplitude (left) and in the quantal content of EPPs (right) in control ( n = 15) and upon BDNF prodomain (1 nM) in the presence of Y-27632 ( n = 21). (D) Changes in the EPP amplitude (left) and in the quantal content of EPPs (right), registered from NMJs of Panx1 –/– mice in control ( n = 24) and in the presence of BDNF prodomain ( n = 22). Insets show MEPP amplitudes.

    Techniques Used: Inhibition, Transmission Assay, Activity Assay, Mouse Assay

    16) Product Images from "ProBDNF and Brain-Derived Neurotrophic Factor Prodomain Differently Modulate Acetylcholine Release in Regenerating and Mature Mouse Motor Synapses"

    Article Title: ProBDNF and Brain-Derived Neurotrophic Factor Prodomain Differently Modulate Acetylcholine Release in Regenerating and Mature Mouse Motor Synapses

    Journal: Frontiers in Cellular Neuroscience

    doi: 10.3389/fncel.2022.866802

    BDNF prodomain in low concentration (1 nM) pre-synaptically increases ACh quantal size and simultaneously induces oppositely directed presynaptic effects affecting the evoked ACh release at newly formed NMJs of reinnervated mouse m. EDL. (A) Representative recordings of MEPPs (left above) and mean MEPP amplitude and cumulative probability plots (right above), frequency and time-course parameters (left to right below) in control ( n = 20) and upon application of BDNF prodomain ( n = 22). (B) Mean MEPP amplitude in control ( n = 16) and during inhibition of vesicular ACh transporter by vesamicol (1 μM, n = 17) (left) and mean MEPP amplitude and cumulative probability plots in control ( n = 15) and upon application of BDNF prodomain in the presence of vesamicol ( n = 16). (C) Changes in the EPP amplitude (left) and their quantal content (right) in control ( n = 31) and in the presence of BDNF prodomain ( n = 41). Inset shows MEPP amplitudes.
    Figure Legend Snippet: BDNF prodomain in low concentration (1 nM) pre-synaptically increases ACh quantal size and simultaneously induces oppositely directed presynaptic effects affecting the evoked ACh release at newly formed NMJs of reinnervated mouse m. EDL. (A) Representative recordings of MEPPs (left above) and mean MEPP amplitude and cumulative probability plots (right above), frequency and time-course parameters (left to right below) in control ( n = 20) and upon application of BDNF prodomain ( n = 22). (B) Mean MEPP amplitude in control ( n = 16) and during inhibition of vesicular ACh transporter by vesamicol (1 μM, n = 17) (left) and mean MEPP amplitude and cumulative probability plots in control ( n = 15) and upon application of BDNF prodomain in the presence of vesamicol ( n = 16). (C) Changes in the EPP amplitude (left) and their quantal content (right) in control ( n = 31) and in the presence of BDNF prodomain ( n = 41). Inset shows MEPP amplitudes.

    Techniques Used: Concentration Assay, Inhibition

    BK channels do not but GIRK channels mediate BDNF prodomain-induced inhibition of evoked ACh release at mature NMJs. (A) Changes in the EPP amplitude (left) and in the quantal content of EPPs (right) in control ( n = 15) and upon BDNF prodomain (1 nM) in the presence of BK-blocker iberiotoxin (ITx, 100 nM) with L-type Ca 2+ -channel blocker nitrendipine (Nitr., 1 μM) ( n = 21). (B) Changes in the EPP amplitude (left) and in the quantal content of EPPs (right) in control ( n = 15) and in the presence of GIRK blocker tertiapin-Q (100 nM, n = 17). (C) Changes in the EPP amplitude (left) and in the quantal content of EPPs (right) in control ( n = 16) and upon BDNF prodomain (1 nM) in the presence of tertiapin-Q ( n = 19). Insets show MEPP amplitudes.
    Figure Legend Snippet: BK channels do not but GIRK channels mediate BDNF prodomain-induced inhibition of evoked ACh release at mature NMJs. (A) Changes in the EPP amplitude (left) and in the quantal content of EPPs (right) in control ( n = 15) and upon BDNF prodomain (1 nM) in the presence of BK-blocker iberiotoxin (ITx, 100 nM) with L-type Ca 2+ -channel blocker nitrendipine (Nitr., 1 μM) ( n = 21). (B) Changes in the EPP amplitude (left) and in the quantal content of EPPs (right) in control ( n = 15) and in the presence of GIRK blocker tertiapin-Q (100 nM, n = 17). (C) Changes in the EPP amplitude (left) and in the quantal content of EPPs (right) in control ( n = 16) and upon BDNF prodomain (1 nM) in the presence of tertiapin-Q ( n = 19). Insets show MEPP amplitudes.

    Techniques Used: Inhibition

    BDNF prodomain (1 nM) but not proBDNF (1 nM), induces strong inhibition of spontaneous end evoked ACh release at mature NMJs. (A) Mean MEPP amplitude, cumulative probability plots, frequency, and time-course parameters (left to right) in control ( n = 19) and upon application of proBDNF ( n = 26). (B) Representative recordings of MEPPs (top left) and mean MEPP amplitude, cumulative probability plots, frequency, (top right) and their time-course parameters (bottom) in control ( n = 23) and upon application of BDNF prodomain ( n = 33). (C) Representative recordings of EPPs during a short (1 s) high-frequency (50 Hz) train in control (above) and upon application of BDNF prodomain (below). (D) Changes in the EPP amplitude (above) and in the quantal content of EPPs (below) in control ( n = 22) and in the presence of proBDNF ( n = 21). Inset shows MEPP amplitudes.
    Figure Legend Snippet: BDNF prodomain (1 nM) but not proBDNF (1 nM), induces strong inhibition of spontaneous end evoked ACh release at mature NMJs. (A) Mean MEPP amplitude, cumulative probability plots, frequency, and time-course parameters (left to right) in control ( n = 19) and upon application of proBDNF ( n = 26). (B) Representative recordings of MEPPs (top left) and mean MEPP amplitude, cumulative probability plots, frequency, (top right) and their time-course parameters (bottom) in control ( n = 23) and upon application of BDNF prodomain ( n = 33). (C) Representative recordings of EPPs during a short (1 s) high-frequency (50 Hz) train in control (above) and upon application of BDNF prodomain (below). (D) Changes in the EPP amplitude (above) and in the quantal content of EPPs (below) in control ( n = 22) and in the presence of proBDNF ( n = 21). Inset shows MEPP amplitudes.

    Techniques Used: Inhibition

    p75 receptors and Rho-signaling pathway underlie BDNF prodomain-triggered inhibition of evoked ACh release at mature NMJs. Moreover, the inhibitory effect of the BDNF prodomain (1 nM) on the evoked neuromuscular transmission depends on the endogenous activity of synaptic purinoreceptors at mature NMJs. (A) Changes in the EPP amplitude (left) and in the quantal content of EPPs (right) in control ( n = 20) and upon BDNF prodomain (1 nM) in the presence of Rho-GDI-associated p75 signaling inhibitor TAT-Pep5 (1 μM, n = 21). (B) Changes in the EPP amplitude (left) and in the quantal content of EPPs (right) in control ( n = 17) and in the presence of ROCK inhibitor Y-27632 (3 μM, n = 21). (C) Changes in the EPP amplitude (left) and in the quantal content of EPPs (right) in control ( n = 15) and upon BDNF prodomain (1 nM) in the presence of Y-27632 ( n = 21). (D) Changes in the EPP amplitude (left) and in the quantal content of EPPs (right), registered from NMJs of Panx1 –/– mice in control ( n = 24) and in the presence of BDNF prodomain ( n = 22). Insets show MEPP amplitudes.
    Figure Legend Snippet: p75 receptors and Rho-signaling pathway underlie BDNF prodomain-triggered inhibition of evoked ACh release at mature NMJs. Moreover, the inhibitory effect of the BDNF prodomain (1 nM) on the evoked neuromuscular transmission depends on the endogenous activity of synaptic purinoreceptors at mature NMJs. (A) Changes in the EPP amplitude (left) and in the quantal content of EPPs (right) in control ( n = 20) and upon BDNF prodomain (1 nM) in the presence of Rho-GDI-associated p75 signaling inhibitor TAT-Pep5 (1 μM, n = 21). (B) Changes in the EPP amplitude (left) and in the quantal content of EPPs (right) in control ( n = 17) and in the presence of ROCK inhibitor Y-27632 (3 μM, n = 21). (C) Changes in the EPP amplitude (left) and in the quantal content of EPPs (right) in control ( n = 15) and upon BDNF prodomain (1 nM) in the presence of Y-27632 ( n = 21). (D) Changes in the EPP amplitude (left) and in the quantal content of EPPs (right), registered from NMJs of Panx1 –/– mice in control ( n = 24) and in the presence of BDNF prodomain ( n = 22). Insets show MEPP amplitudes.

    Techniques Used: Inhibition, Transmission Assay, Activity Assay, Mouse Assay

    17) Product Images from "ProBDNF and Brain-Derived Neurotrophic Factor Prodomain Differently Modulate Acetylcholine Release in Regenerating and Mature Mouse Motor Synapses"

    Article Title: ProBDNF and Brain-Derived Neurotrophic Factor Prodomain Differently Modulate Acetylcholine Release in Regenerating and Mature Mouse Motor Synapses

    Journal: Frontiers in Cellular Neuroscience

    doi: 10.3389/fncel.2022.866802

    BDNF prodomain in low concentration (1 nM) pre-synaptically increases ACh quantal size and simultaneously induces oppositely directed presynaptic effects affecting the evoked ACh release at newly formed NMJs of reinnervated mouse m. EDL. (A) Representative recordings of MEPPs (left above) and mean MEPP amplitude and cumulative probability plots (right above), frequency and time-course parameters (left to right below) in control ( n = 20) and upon application of BDNF prodomain ( n = 22). (B) Mean MEPP amplitude in control ( n = 16) and during inhibition of vesicular ACh transporter by vesamicol (1 μM, n = 17) (left) and mean MEPP amplitude and cumulative probability plots in control ( n = 15) and upon application of BDNF prodomain in the presence of vesamicol ( n = 16). (C) Changes in the EPP amplitude (left) and their quantal content (right) in control ( n = 31) and in the presence of BDNF prodomain ( n = 41). Inset shows MEPP amplitudes.
    Figure Legend Snippet: BDNF prodomain in low concentration (1 nM) pre-synaptically increases ACh quantal size and simultaneously induces oppositely directed presynaptic effects affecting the evoked ACh release at newly formed NMJs of reinnervated mouse m. EDL. (A) Representative recordings of MEPPs (left above) and mean MEPP amplitude and cumulative probability plots (right above), frequency and time-course parameters (left to right below) in control ( n = 20) and upon application of BDNF prodomain ( n = 22). (B) Mean MEPP amplitude in control ( n = 16) and during inhibition of vesicular ACh transporter by vesamicol (1 μM, n = 17) (left) and mean MEPP amplitude and cumulative probability plots in control ( n = 15) and upon application of BDNF prodomain in the presence of vesamicol ( n = 16). (C) Changes in the EPP amplitude (left) and their quantal content (right) in control ( n = 31) and in the presence of BDNF prodomain ( n = 41). Inset shows MEPP amplitudes.

    Techniques Used: Concentration Assay, Inhibition

    BK channels do not but GIRK channels mediate BDNF prodomain-induced inhibition of evoked ACh release at mature NMJs. (A) Changes in the EPP amplitude (left) and in the quantal content of EPPs (right) in control ( n = 15) and upon BDNF prodomain (1 nM) in the presence of BK-blocker iberiotoxin (ITx, 100 nM) with L-type Ca 2+ -channel blocker nitrendipine (Nitr., 1 μM) ( n = 21). (B) Changes in the EPP amplitude (left) and in the quantal content of EPPs (right) in control ( n = 15) and in the presence of GIRK blocker tertiapin-Q (100 nM, n = 17). (C) Changes in the EPP amplitude (left) and in the quantal content of EPPs (right) in control ( n = 16) and upon BDNF prodomain (1 nM) in the presence of tertiapin-Q ( n = 19). Insets show MEPP amplitudes.
    Figure Legend Snippet: BK channels do not but GIRK channels mediate BDNF prodomain-induced inhibition of evoked ACh release at mature NMJs. (A) Changes in the EPP amplitude (left) and in the quantal content of EPPs (right) in control ( n = 15) and upon BDNF prodomain (1 nM) in the presence of BK-blocker iberiotoxin (ITx, 100 nM) with L-type Ca 2+ -channel blocker nitrendipine (Nitr., 1 μM) ( n = 21). (B) Changes in the EPP amplitude (left) and in the quantal content of EPPs (right) in control ( n = 15) and in the presence of GIRK blocker tertiapin-Q (100 nM, n = 17). (C) Changes in the EPP amplitude (left) and in the quantal content of EPPs (right) in control ( n = 16) and upon BDNF prodomain (1 nM) in the presence of tertiapin-Q ( n = 19). Insets show MEPP amplitudes.

    Techniques Used: Inhibition

    BDNF prodomain (1 nM) but not proBDNF (1 nM), induces strong inhibition of spontaneous end evoked ACh release at mature NMJs. (A) Mean MEPP amplitude, cumulative probability plots, frequency, and time-course parameters (left to right) in control ( n = 19) and upon application of proBDNF ( n = 26). (B) Representative recordings of MEPPs (top left) and mean MEPP amplitude, cumulative probability plots, frequency, (top right) and their time-course parameters (bottom) in control ( n = 23) and upon application of BDNF prodomain ( n = 33). (C) Representative recordings of EPPs during a short (1 s) high-frequency (50 Hz) train in control (above) and upon application of BDNF prodomain (below). (D) Changes in the EPP amplitude (above) and in the quantal content of EPPs (below) in control ( n = 22) and in the presence of proBDNF ( n = 21). Inset shows MEPP amplitudes.
    Figure Legend Snippet: BDNF prodomain (1 nM) but not proBDNF (1 nM), induces strong inhibition of spontaneous end evoked ACh release at mature NMJs. (A) Mean MEPP amplitude, cumulative probability plots, frequency, and time-course parameters (left to right) in control ( n = 19) and upon application of proBDNF ( n = 26). (B) Representative recordings of MEPPs (top left) and mean MEPP amplitude, cumulative probability plots, frequency, (top right) and their time-course parameters (bottom) in control ( n = 23) and upon application of BDNF prodomain ( n = 33). (C) Representative recordings of EPPs during a short (1 s) high-frequency (50 Hz) train in control (above) and upon application of BDNF prodomain (below). (D) Changes in the EPP amplitude (above) and in the quantal content of EPPs (below) in control ( n = 22) and in the presence of proBDNF ( n = 21). Inset shows MEPP amplitudes.

    Techniques Used: Inhibition

    p75 receptors and Rho-signaling pathway underlie BDNF prodomain-triggered inhibition of evoked ACh release at mature NMJs. Moreover, the inhibitory effect of the BDNF prodomain (1 nM) on the evoked neuromuscular transmission depends on the endogenous activity of synaptic purinoreceptors at mature NMJs. (A) Changes in the EPP amplitude (left) and in the quantal content of EPPs (right) in control ( n = 20) and upon BDNF prodomain (1 nM) in the presence of Rho-GDI-associated p75 signaling inhibitor TAT-Pep5 (1 μM, n = 21). (B) Changes in the EPP amplitude (left) and in the quantal content of EPPs (right) in control ( n = 17) and in the presence of ROCK inhibitor Y-27632 (3 μM, n = 21). (C) Changes in the EPP amplitude (left) and in the quantal content of EPPs (right) in control ( n = 15) and upon BDNF prodomain (1 nM) in the presence of Y-27632 ( n = 21). (D) Changes in the EPP amplitude (left) and in the quantal content of EPPs (right), registered from NMJs of Panx1 –/– mice in control ( n = 24) and in the presence of BDNF prodomain ( n = 22). Insets show MEPP amplitudes.
    Figure Legend Snippet: p75 receptors and Rho-signaling pathway underlie BDNF prodomain-triggered inhibition of evoked ACh release at mature NMJs. Moreover, the inhibitory effect of the BDNF prodomain (1 nM) on the evoked neuromuscular transmission depends on the endogenous activity of synaptic purinoreceptors at mature NMJs. (A) Changes in the EPP amplitude (left) and in the quantal content of EPPs (right) in control ( n = 20) and upon BDNF prodomain (1 nM) in the presence of Rho-GDI-associated p75 signaling inhibitor TAT-Pep5 (1 μM, n = 21). (B) Changes in the EPP amplitude (left) and in the quantal content of EPPs (right) in control ( n = 17) and in the presence of ROCK inhibitor Y-27632 (3 μM, n = 21). (C) Changes in the EPP amplitude (left) and in the quantal content of EPPs (right) in control ( n = 15) and upon BDNF prodomain (1 nM) in the presence of Y-27632 ( n = 21). (D) Changes in the EPP amplitude (left) and in the quantal content of EPPs (right), registered from NMJs of Panx1 –/– mice in control ( n = 24) and in the presence of BDNF prodomain ( n = 22). Insets show MEPP amplitudes.

    Techniques Used: Inhibition, Transmission Assay, Activity Assay, Mouse Assay

    18) Product Images from "ProBDNF and Brain-Derived Neurotrophic Factor Prodomain Differently Modulate Acetylcholine Release in Regenerating and Mature Mouse Motor Synapses"

    Article Title: ProBDNF and Brain-Derived Neurotrophic Factor Prodomain Differently Modulate Acetylcholine Release in Regenerating and Mature Mouse Motor Synapses

    Journal: Frontiers in Cellular Neuroscience

    doi: 10.3389/fncel.2022.866802

    BDNF prodomain in low concentration (1 nM) pre-synaptically increases ACh quantal size and simultaneously induces oppositely directed presynaptic effects affecting the evoked ACh release at newly formed NMJs of reinnervated mouse m. EDL. (A) Representative recordings of MEPPs (left above) and mean MEPP amplitude and cumulative probability plots (right above), frequency and time-course parameters (left to right below) in control ( n = 20) and upon application of BDNF prodomain ( n = 22). (B) Mean MEPP amplitude in control ( n = 16) and during inhibition of vesicular ACh transporter by vesamicol (1 μM, n = 17) (left) and mean MEPP amplitude and cumulative probability plots in control ( n = 15) and upon application of BDNF prodomain in the presence of vesamicol ( n = 16). (C) Changes in the EPP amplitude (left) and their quantal content (right) in control ( n = 31) and in the presence of BDNF prodomain ( n = 41). Inset shows MEPP amplitudes.
    Figure Legend Snippet: BDNF prodomain in low concentration (1 nM) pre-synaptically increases ACh quantal size and simultaneously induces oppositely directed presynaptic effects affecting the evoked ACh release at newly formed NMJs of reinnervated mouse m. EDL. (A) Representative recordings of MEPPs (left above) and mean MEPP amplitude and cumulative probability plots (right above), frequency and time-course parameters (left to right below) in control ( n = 20) and upon application of BDNF prodomain ( n = 22). (B) Mean MEPP amplitude in control ( n = 16) and during inhibition of vesicular ACh transporter by vesamicol (1 μM, n = 17) (left) and mean MEPP amplitude and cumulative probability plots in control ( n = 15) and upon application of BDNF prodomain in the presence of vesamicol ( n = 16). (C) Changes in the EPP amplitude (left) and their quantal content (right) in control ( n = 31) and in the presence of BDNF prodomain ( n = 41). Inset shows MEPP amplitudes.

    Techniques Used: Concentration Assay, Inhibition

    BK channels do not but GIRK channels mediate BDNF prodomain-induced inhibition of evoked ACh release at mature NMJs. (A) Changes in the EPP amplitude (left) and in the quantal content of EPPs (right) in control ( n = 15) and upon BDNF prodomain (1 nM) in the presence of BK-blocker iberiotoxin (ITx, 100 nM) with L-type Ca 2+ -channel blocker nitrendipine (Nitr., 1 μM) ( n = 21). (B) Changes in the EPP amplitude (left) and in the quantal content of EPPs (right) in control ( n = 15) and in the presence of GIRK blocker tertiapin-Q (100 nM, n = 17). (C) Changes in the EPP amplitude (left) and in the quantal content of EPPs (right) in control ( n = 16) and upon BDNF prodomain (1 nM) in the presence of tertiapin-Q ( n = 19). Insets show MEPP amplitudes.
    Figure Legend Snippet: BK channels do not but GIRK channels mediate BDNF prodomain-induced inhibition of evoked ACh release at mature NMJs. (A) Changes in the EPP amplitude (left) and in the quantal content of EPPs (right) in control ( n = 15) and upon BDNF prodomain (1 nM) in the presence of BK-blocker iberiotoxin (ITx, 100 nM) with L-type Ca 2+ -channel blocker nitrendipine (Nitr., 1 μM) ( n = 21). (B) Changes in the EPP amplitude (left) and in the quantal content of EPPs (right) in control ( n = 15) and in the presence of GIRK blocker tertiapin-Q (100 nM, n = 17). (C) Changes in the EPP amplitude (left) and in the quantal content of EPPs (right) in control ( n = 16) and upon BDNF prodomain (1 nM) in the presence of tertiapin-Q ( n = 19). Insets show MEPP amplitudes.

    Techniques Used: Inhibition

    BDNF prodomain (1 nM) but not proBDNF (1 nM), induces strong inhibition of spontaneous end evoked ACh release at mature NMJs. (A) Mean MEPP amplitude, cumulative probability plots, frequency, and time-course parameters (left to right) in control ( n = 19) and upon application of proBDNF ( n = 26). (B) Representative recordings of MEPPs (top left) and mean MEPP amplitude, cumulative probability plots, frequency, (top right) and their time-course parameters (bottom) in control ( n = 23) and upon application of BDNF prodomain ( n = 33). (C) Representative recordings of EPPs during a short (1 s) high-frequency (50 Hz) train in control (above) and upon application of BDNF prodomain (below). (D) Changes in the EPP amplitude (above) and in the quantal content of EPPs (below) in control ( n = 22) and in the presence of proBDNF ( n = 21). Inset shows MEPP amplitudes.
    Figure Legend Snippet: BDNF prodomain (1 nM) but not proBDNF (1 nM), induces strong inhibition of spontaneous end evoked ACh release at mature NMJs. (A) Mean MEPP amplitude, cumulative probability plots, frequency, and time-course parameters (left to right) in control ( n = 19) and upon application of proBDNF ( n = 26). (B) Representative recordings of MEPPs (top left) and mean MEPP amplitude, cumulative probability plots, frequency, (top right) and their time-course parameters (bottom) in control ( n = 23) and upon application of BDNF prodomain ( n = 33). (C) Representative recordings of EPPs during a short (1 s) high-frequency (50 Hz) train in control (above) and upon application of BDNF prodomain (below). (D) Changes in the EPP amplitude (above) and in the quantal content of EPPs (below) in control ( n = 22) and in the presence of proBDNF ( n = 21). Inset shows MEPP amplitudes.

    Techniques Used: Inhibition

    p75 receptors and Rho-signaling pathway underlie BDNF prodomain-triggered inhibition of evoked ACh release at mature NMJs. Moreover, the inhibitory effect of the BDNF prodomain (1 nM) on the evoked neuromuscular transmission depends on the endogenous activity of synaptic purinoreceptors at mature NMJs. (A) Changes in the EPP amplitude (left) and in the quantal content of EPPs (right) in control ( n = 20) and upon BDNF prodomain (1 nM) in the presence of Rho-GDI-associated p75 signaling inhibitor TAT-Pep5 (1 μM, n = 21). (B) Changes in the EPP amplitude (left) and in the quantal content of EPPs (right) in control ( n = 17) and in the presence of ROCK inhibitor Y-27632 (3 μM, n = 21). (C) Changes in the EPP amplitude (left) and in the quantal content of EPPs (right) in control ( n = 15) and upon BDNF prodomain (1 nM) in the presence of Y-27632 ( n = 21). (D) Changes in the EPP amplitude (left) and in the quantal content of EPPs (right), registered from NMJs of Panx1 –/– mice in control ( n = 24) and in the presence of BDNF prodomain ( n = 22). Insets show MEPP amplitudes.
    Figure Legend Snippet: p75 receptors and Rho-signaling pathway underlie BDNF prodomain-triggered inhibition of evoked ACh release at mature NMJs. Moreover, the inhibitory effect of the BDNF prodomain (1 nM) on the evoked neuromuscular transmission depends on the endogenous activity of synaptic purinoreceptors at mature NMJs. (A) Changes in the EPP amplitude (left) and in the quantal content of EPPs (right) in control ( n = 20) and upon BDNF prodomain (1 nM) in the presence of Rho-GDI-associated p75 signaling inhibitor TAT-Pep5 (1 μM, n = 21). (B) Changes in the EPP amplitude (left) and in the quantal content of EPPs (right) in control ( n = 17) and in the presence of ROCK inhibitor Y-27632 (3 μM, n = 21). (C) Changes in the EPP amplitude (left) and in the quantal content of EPPs (right) in control ( n = 15) and upon BDNF prodomain (1 nM) in the presence of Y-27632 ( n = 21). (D) Changes in the EPP amplitude (left) and in the quantal content of EPPs (right), registered from NMJs of Panx1 –/– mice in control ( n = 24) and in the presence of BDNF prodomain ( n = 22). Insets show MEPP amplitudes.

    Techniques Used: Inhibition, Transmission Assay, Activity Assay, Mouse Assay

    19) Product Images from "ProBDNF and Brain-Derived Neurotrophic Factor Prodomain Differently Modulate Acetylcholine Release in Regenerating and Mature Mouse Motor Synapses"

    Article Title: ProBDNF and Brain-Derived Neurotrophic Factor Prodomain Differently Modulate Acetylcholine Release in Regenerating and Mature Mouse Motor Synapses

    Journal: Frontiers in Cellular Neuroscience

    doi: 10.3389/fncel.2022.866802

    BDNF prodomain in low concentration (1 nM) pre-synaptically increases ACh quantal size and simultaneously induces oppositely directed presynaptic effects affecting the evoked ACh release at newly formed NMJs of reinnervated mouse m. EDL. (A) Representative recordings of MEPPs (left above) and mean MEPP amplitude and cumulative probability plots (right above), frequency and time-course parameters (left to right below) in control ( n = 20) and upon application of BDNF prodomain ( n = 22). (B) Mean MEPP amplitude in control ( n = 16) and during inhibition of vesicular ACh transporter by vesamicol (1 μM, n = 17) (left) and mean MEPP amplitude and cumulative probability plots in control ( n = 15) and upon application of BDNF prodomain in the presence of vesamicol ( n = 16). (C) Changes in the EPP amplitude (left) and their quantal content (right) in control ( n = 31) and in the presence of BDNF prodomain ( n = 41). Inset shows MEPP amplitudes.
    Figure Legend Snippet: BDNF prodomain in low concentration (1 nM) pre-synaptically increases ACh quantal size and simultaneously induces oppositely directed presynaptic effects affecting the evoked ACh release at newly formed NMJs of reinnervated mouse m. EDL. (A) Representative recordings of MEPPs (left above) and mean MEPP amplitude and cumulative probability plots (right above), frequency and time-course parameters (left to right below) in control ( n = 20) and upon application of BDNF prodomain ( n = 22). (B) Mean MEPP amplitude in control ( n = 16) and during inhibition of vesicular ACh transporter by vesamicol (1 μM, n = 17) (left) and mean MEPP amplitude and cumulative probability plots in control ( n = 15) and upon application of BDNF prodomain in the presence of vesamicol ( n = 16). (C) Changes in the EPP amplitude (left) and their quantal content (right) in control ( n = 31) and in the presence of BDNF prodomain ( n = 41). Inset shows MEPP amplitudes.

    Techniques Used: Concentration Assay, Inhibition

    BK channels do not but GIRK channels mediate BDNF prodomain-induced inhibition of evoked ACh release at mature NMJs. (A) Changes in the EPP amplitude (left) and in the quantal content of EPPs (right) in control ( n = 15) and upon BDNF prodomain (1 nM) in the presence of BK-blocker iberiotoxin (ITx, 100 nM) with L-type Ca 2+ -channel blocker nitrendipine (Nitr., 1 μM) ( n = 21). (B) Changes in the EPP amplitude (left) and in the quantal content of EPPs (right) in control ( n = 15) and in the presence of GIRK blocker tertiapin-Q (100 nM, n = 17). (C) Changes in the EPP amplitude (left) and in the quantal content of EPPs (right) in control ( n = 16) and upon BDNF prodomain (1 nM) in the presence of tertiapin-Q ( n = 19). Insets show MEPP amplitudes.
    Figure Legend Snippet: BK channels do not but GIRK channels mediate BDNF prodomain-induced inhibition of evoked ACh release at mature NMJs. (A) Changes in the EPP amplitude (left) and in the quantal content of EPPs (right) in control ( n = 15) and upon BDNF prodomain (1 nM) in the presence of BK-blocker iberiotoxin (ITx, 100 nM) with L-type Ca 2+ -channel blocker nitrendipine (Nitr., 1 μM) ( n = 21). (B) Changes in the EPP amplitude (left) and in the quantal content of EPPs (right) in control ( n = 15) and in the presence of GIRK blocker tertiapin-Q (100 nM, n = 17). (C) Changes in the EPP amplitude (left) and in the quantal content of EPPs (right) in control ( n = 16) and upon BDNF prodomain (1 nM) in the presence of tertiapin-Q ( n = 19). Insets show MEPP amplitudes.

    Techniques Used: Inhibition

    BDNF prodomain (1 nM) but not proBDNF (1 nM), induces strong inhibition of spontaneous end evoked ACh release at mature NMJs. (A) Mean MEPP amplitude, cumulative probability plots, frequency, and time-course parameters (left to right) in control ( n = 19) and upon application of proBDNF ( n = 26). (B) Representative recordings of MEPPs (top left) and mean MEPP amplitude, cumulative probability plots, frequency, (top right) and their time-course parameters (bottom) in control ( n = 23) and upon application of BDNF prodomain ( n = 33). (C) Representative recordings of EPPs during a short (1 s) high-frequency (50 Hz) train in control (above) and upon application of BDNF prodomain (below). (D) Changes in the EPP amplitude (above) and in the quantal content of EPPs (below) in control ( n = 22) and in the presence of proBDNF ( n = 21). Inset shows MEPP amplitudes.
    Figure Legend Snippet: BDNF prodomain (1 nM) but not proBDNF (1 nM), induces strong inhibition of spontaneous end evoked ACh release at mature NMJs. (A) Mean MEPP amplitude, cumulative probability plots, frequency, and time-course parameters (left to right) in control ( n = 19) and upon application of proBDNF ( n = 26). (B) Representative recordings of MEPPs (top left) and mean MEPP amplitude, cumulative probability plots, frequency, (top right) and their time-course parameters (bottom) in control ( n = 23) and upon application of BDNF prodomain ( n = 33). (C) Representative recordings of EPPs during a short (1 s) high-frequency (50 Hz) train in control (above) and upon application of BDNF prodomain (below). (D) Changes in the EPP amplitude (above) and in the quantal content of EPPs (below) in control ( n = 22) and in the presence of proBDNF ( n = 21). Inset shows MEPP amplitudes.

    Techniques Used: Inhibition

    p75 receptors and Rho-signaling pathway underlie BDNF prodomain-triggered inhibition of evoked ACh release at mature NMJs. Moreover, the inhibitory effect of the BDNF prodomain (1 nM) on the evoked neuromuscular transmission depends on the endogenous activity of synaptic purinoreceptors at mature NMJs. (A) Changes in the EPP amplitude (left) and in the quantal content of EPPs (right) in control ( n = 20) and upon BDNF prodomain (1 nM) in the presence of Rho-GDI-associated p75 signaling inhibitor TAT-Pep5 (1 μM, n = 21). (B) Changes in the EPP amplitude (left) and in the quantal content of EPPs (right) in control ( n = 17) and in the presence of ROCK inhibitor Y-27632 (3 μM, n = 21). (C) Changes in the EPP amplitude (left) and in the quantal content of EPPs (right) in control ( n = 15) and upon BDNF prodomain (1 nM) in the presence of Y-27632 ( n = 21). (D) Changes in the EPP amplitude (left) and in the quantal content of EPPs (right), registered from NMJs of Panx1 –/– mice in control ( n = 24) and in the presence of BDNF prodomain ( n = 22). Insets show MEPP amplitudes.
    Figure Legend Snippet: p75 receptors and Rho-signaling pathway underlie BDNF prodomain-triggered inhibition of evoked ACh release at mature NMJs. Moreover, the inhibitory effect of the BDNF prodomain (1 nM) on the evoked neuromuscular transmission depends on the endogenous activity of synaptic purinoreceptors at mature NMJs. (A) Changes in the EPP amplitude (left) and in the quantal content of EPPs (right) in control ( n = 20) and upon BDNF prodomain (1 nM) in the presence of Rho-GDI-associated p75 signaling inhibitor TAT-Pep5 (1 μM, n = 21). (B) Changes in the EPP amplitude (left) and in the quantal content of EPPs (right) in control ( n = 17) and in the presence of ROCK inhibitor Y-27632 (3 μM, n = 21). (C) Changes in the EPP amplitude (left) and in the quantal content of EPPs (right) in control ( n = 15) and upon BDNF prodomain (1 nM) in the presence of Y-27632 ( n = 21). (D) Changes in the EPP amplitude (left) and in the quantal content of EPPs (right), registered from NMJs of Panx1 –/– mice in control ( n = 24) and in the presence of BDNF prodomain ( n = 22). Insets show MEPP amplitudes.

    Techniques Used: Inhibition, Transmission Assay, Activity Assay, Mouse Assay

    20) Product Images from "ProBDNF and Brain-Derived Neurotrophic Factor Prodomain Differently Modulate Acetylcholine Release in Regenerating and Mature Mouse Motor Synapses"

    Article Title: ProBDNF and Brain-Derived Neurotrophic Factor Prodomain Differently Modulate Acetylcholine Release in Regenerating and Mature Mouse Motor Synapses

    Journal: Frontiers in Cellular Neuroscience

    doi: 10.3389/fncel.2022.866802

    BDNF prodomain in low concentration (1 nM) pre-synaptically increases ACh quantal size and simultaneously induces oppositely directed presynaptic effects affecting the evoked ACh release at newly formed NMJs of reinnervated mouse m. EDL. (A) Representative recordings of MEPPs (left above) and mean MEPP amplitude and cumulative probability plots (right above), frequency and time-course parameters (left to right below) in control ( n = 20) and upon application of BDNF prodomain ( n = 22). (B) Mean MEPP amplitude in control ( n = 16) and during inhibition of vesicular ACh transporter by vesamicol (1 μM, n = 17) (left) and mean MEPP amplitude and cumulative probability plots in control ( n = 15) and upon application of BDNF prodomain in the presence of vesamicol ( n = 16). (C) Changes in the EPP amplitude (left) and their quantal content (right) in control ( n = 31) and in the presence of BDNF prodomain ( n = 41). Inset shows MEPP amplitudes.
    Figure Legend Snippet: BDNF prodomain in low concentration (1 nM) pre-synaptically increases ACh quantal size and simultaneously induces oppositely directed presynaptic effects affecting the evoked ACh release at newly formed NMJs of reinnervated mouse m. EDL. (A) Representative recordings of MEPPs (left above) and mean MEPP amplitude and cumulative probability plots (right above), frequency and time-course parameters (left to right below) in control ( n = 20) and upon application of BDNF prodomain ( n = 22). (B) Mean MEPP amplitude in control ( n = 16) and during inhibition of vesicular ACh transporter by vesamicol (1 μM, n = 17) (left) and mean MEPP amplitude and cumulative probability plots in control ( n = 15) and upon application of BDNF prodomain in the presence of vesamicol ( n = 16). (C) Changes in the EPP amplitude (left) and their quantal content (right) in control ( n = 31) and in the presence of BDNF prodomain ( n = 41). Inset shows MEPP amplitudes.

    Techniques Used: Concentration Assay, Inhibition

    BK channels do not but GIRK channels mediate BDNF prodomain-induced inhibition of evoked ACh release at mature NMJs. (A) Changes in the EPP amplitude (left) and in the quantal content of EPPs (right) in control ( n = 15) and upon BDNF prodomain (1 nM) in the presence of BK-blocker iberiotoxin (ITx, 100 nM) with L-type Ca 2+ -channel blocker nitrendipine (Nitr., 1 μM) ( n = 21). (B) Changes in the EPP amplitude (left) and in the quantal content of EPPs (right) in control ( n = 15) and in the presence of GIRK blocker tertiapin-Q (100 nM, n = 17). (C) Changes in the EPP amplitude (left) and in the quantal content of EPPs (right) in control ( n = 16) and upon BDNF prodomain (1 nM) in the presence of tertiapin-Q ( n = 19). Insets show MEPP amplitudes.
    Figure Legend Snippet: BK channels do not but GIRK channels mediate BDNF prodomain-induced inhibition of evoked ACh release at mature NMJs. (A) Changes in the EPP amplitude (left) and in the quantal content of EPPs (right) in control ( n = 15) and upon BDNF prodomain (1 nM) in the presence of BK-blocker iberiotoxin (ITx, 100 nM) with L-type Ca 2+ -channel blocker nitrendipine (Nitr., 1 μM) ( n = 21). (B) Changes in the EPP amplitude (left) and in the quantal content of EPPs (right) in control ( n = 15) and in the presence of GIRK blocker tertiapin-Q (100 nM, n = 17). (C) Changes in the EPP amplitude (left) and in the quantal content of EPPs (right) in control ( n = 16) and upon BDNF prodomain (1 nM) in the presence of tertiapin-Q ( n = 19). Insets show MEPP amplitudes.

    Techniques Used: Inhibition

    BDNF prodomain (1 nM) but not proBDNF (1 nM), induces strong inhibition of spontaneous end evoked ACh release at mature NMJs. (A) Mean MEPP amplitude, cumulative probability plots, frequency, and time-course parameters (left to right) in control ( n = 19) and upon application of proBDNF ( n = 26). (B) Representative recordings of MEPPs (top left) and mean MEPP amplitude, cumulative probability plots, frequency, (top right) and their time-course parameters (bottom) in control ( n = 23) and upon application of BDNF prodomain ( n = 33). (C) Representative recordings of EPPs during a short (1 s) high-frequency (50 Hz) train in control (above) and upon application of BDNF prodomain (below). (D) Changes in the EPP amplitude (above) and in the quantal content of EPPs (below) in control ( n = 22) and in the presence of proBDNF ( n = 21). Inset shows MEPP amplitudes.
    Figure Legend Snippet: BDNF prodomain (1 nM) but not proBDNF (1 nM), induces strong inhibition of spontaneous end evoked ACh release at mature NMJs. (A) Mean MEPP amplitude, cumulative probability plots, frequency, and time-course parameters (left to right) in control ( n = 19) and upon application of proBDNF ( n = 26). (B) Representative recordings of MEPPs (top left) and mean MEPP amplitude, cumulative probability plots, frequency, (top right) and their time-course parameters (bottom) in control ( n = 23) and upon application of BDNF prodomain ( n = 33). (C) Representative recordings of EPPs during a short (1 s) high-frequency (50 Hz) train in control (above) and upon application of BDNF prodomain (below). (D) Changes in the EPP amplitude (above) and in the quantal content of EPPs (below) in control ( n = 22) and in the presence of proBDNF ( n = 21). Inset shows MEPP amplitudes.

    Techniques Used: Inhibition

    p75 receptors and Rho-signaling pathway underlie BDNF prodomain-triggered inhibition of evoked ACh release at mature NMJs. Moreover, the inhibitory effect of the BDNF prodomain (1 nM) on the evoked neuromuscular transmission depends on the endogenous activity of synaptic purinoreceptors at mature NMJs. (A) Changes in the EPP amplitude (left) and in the quantal content of EPPs (right) in control ( n = 20) and upon BDNF prodomain (1 nM) in the presence of Rho-GDI-associated p75 signaling inhibitor TAT-Pep5 (1 μM, n = 21). (B) Changes in the EPP amplitude (left) and in the quantal content of EPPs (right) in control ( n = 17) and in the presence of ROCK inhibitor Y-27632 (3 μM, n = 21). (C) Changes in the EPP amplitude (left) and in the quantal content of EPPs (right) in control ( n = 15) and upon BDNF prodomain (1 nM) in the presence of Y-27632 ( n = 21). (D) Changes in the EPP amplitude (left) and in the quantal content of EPPs (right), registered from NMJs of Panx1 –/– mice in control ( n = 24) and in the presence of BDNF prodomain ( n = 22). Insets show MEPP amplitudes.
    Figure Legend Snippet: p75 receptors and Rho-signaling pathway underlie BDNF prodomain-triggered inhibition of evoked ACh release at mature NMJs. Moreover, the inhibitory effect of the BDNF prodomain (1 nM) on the evoked neuromuscular transmission depends on the endogenous activity of synaptic purinoreceptors at mature NMJs. (A) Changes in the EPP amplitude (left) and in the quantal content of EPPs (right) in control ( n = 20) and upon BDNF prodomain (1 nM) in the presence of Rho-GDI-associated p75 signaling inhibitor TAT-Pep5 (1 μM, n = 21). (B) Changes in the EPP amplitude (left) and in the quantal content of EPPs (right) in control ( n = 17) and in the presence of ROCK inhibitor Y-27632 (3 μM, n = 21). (C) Changes in the EPP amplitude (left) and in the quantal content of EPPs (right) in control ( n = 15) and upon BDNF prodomain (1 nM) in the presence of Y-27632 ( n = 21). (D) Changes in the EPP amplitude (left) and in the quantal content of EPPs (right), registered from NMJs of Panx1 –/– mice in control ( n = 24) and in the presence of BDNF prodomain ( n = 22). Insets show MEPP amplitudes.

    Techniques Used: Inhibition, Transmission Assay, Activity Assay, Mouse Assay

    21) Product Images from "ProBDNF and Brain-Derived Neurotrophic Factor Prodomain Differently Modulate Acetylcholine Release in Regenerating and Mature Mouse Motor Synapses"

    Article Title: ProBDNF and Brain-Derived Neurotrophic Factor Prodomain Differently Modulate Acetylcholine Release in Regenerating and Mature Mouse Motor Synapses

    Journal: Frontiers in Cellular Neuroscience

    doi: 10.3389/fncel.2022.866802

    BDNF prodomain in low concentration (1 nM) pre-synaptically increases ACh quantal size and simultaneously induces oppositely directed presynaptic effects affecting the evoked ACh release at newly formed NMJs of reinnervated mouse m. EDL. (A) Representative recordings of MEPPs (left above) and mean MEPP amplitude and cumulative probability plots (right above), frequency and time-course parameters (left to right below) in control ( n = 20) and upon application of BDNF prodomain ( n = 22). (B) Mean MEPP amplitude in control ( n = 16) and during inhibition of vesicular ACh transporter by vesamicol (1 μM, n = 17) (left) and mean MEPP amplitude and cumulative probability plots in control ( n = 15) and upon application of BDNF prodomain in the presence of vesamicol ( n = 16). (C) Changes in the EPP amplitude (left) and their quantal content (right) in control ( n = 31) and in the presence of BDNF prodomain ( n = 41). Inset shows MEPP amplitudes.
    Figure Legend Snippet: BDNF prodomain in low concentration (1 nM) pre-synaptically increases ACh quantal size and simultaneously induces oppositely directed presynaptic effects affecting the evoked ACh release at newly formed NMJs of reinnervated mouse m. EDL. (A) Representative recordings of MEPPs (left above) and mean MEPP amplitude and cumulative probability plots (right above), frequency and time-course parameters (left to right below) in control ( n = 20) and upon application of BDNF prodomain ( n = 22). (B) Mean MEPP amplitude in control ( n = 16) and during inhibition of vesicular ACh transporter by vesamicol (1 μM, n = 17) (left) and mean MEPP amplitude and cumulative probability plots in control ( n = 15) and upon application of BDNF prodomain in the presence of vesamicol ( n = 16). (C) Changes in the EPP amplitude (left) and their quantal content (right) in control ( n = 31) and in the presence of BDNF prodomain ( n = 41). Inset shows MEPP amplitudes.

    Techniques Used: Concentration Assay, Inhibition

    BK channels do not but GIRK channels mediate BDNF prodomain-induced inhibition of evoked ACh release at mature NMJs. (A) Changes in the EPP amplitude (left) and in the quantal content of EPPs (right) in control ( n = 15) and upon BDNF prodomain (1 nM) in the presence of BK-blocker iberiotoxin (ITx, 100 nM) with L-type Ca 2+ -channel blocker nitrendipine (Nitr., 1 μM) ( n = 21). (B) Changes in the EPP amplitude (left) and in the quantal content of EPPs (right) in control ( n = 15) and in the presence of GIRK blocker tertiapin-Q (100 nM, n = 17). (C) Changes in the EPP amplitude (left) and in the quantal content of EPPs (right) in control ( n = 16) and upon BDNF prodomain (1 nM) in the presence of tertiapin-Q ( n = 19). Insets show MEPP amplitudes.
    Figure Legend Snippet: BK channels do not but GIRK channels mediate BDNF prodomain-induced inhibition of evoked ACh release at mature NMJs. (A) Changes in the EPP amplitude (left) and in the quantal content of EPPs (right) in control ( n = 15) and upon BDNF prodomain (1 nM) in the presence of BK-blocker iberiotoxin (ITx, 100 nM) with L-type Ca 2+ -channel blocker nitrendipine (Nitr., 1 μM) ( n = 21). (B) Changes in the EPP amplitude (left) and in the quantal content of EPPs (right) in control ( n = 15) and in the presence of GIRK blocker tertiapin-Q (100 nM, n = 17). (C) Changes in the EPP amplitude (left) and in the quantal content of EPPs (right) in control ( n = 16) and upon BDNF prodomain (1 nM) in the presence of tertiapin-Q ( n = 19). Insets show MEPP amplitudes.

    Techniques Used: Inhibition

    BDNF prodomain (1 nM) but not proBDNF (1 nM), induces strong inhibition of spontaneous end evoked ACh release at mature NMJs. (A) Mean MEPP amplitude, cumulative probability plots, frequency, and time-course parameters (left to right) in control ( n = 19) and upon application of proBDNF ( n = 26). (B) Representative recordings of MEPPs (top left) and mean MEPP amplitude, cumulative probability plots, frequency, (top right) and their time-course parameters (bottom) in control ( n = 23) and upon application of BDNF prodomain ( n = 33). (C) Representative recordings of EPPs during a short (1 s) high-frequency (50 Hz) train in control (above) and upon application of BDNF prodomain (below). (D) Changes in the EPP amplitude (above) and in the quantal content of EPPs (below) in control ( n = 22) and in the presence of proBDNF ( n = 21). Inset shows MEPP amplitudes.
    Figure Legend Snippet: BDNF prodomain (1 nM) but not proBDNF (1 nM), induces strong inhibition of spontaneous end evoked ACh release at mature NMJs. (A) Mean MEPP amplitude, cumulative probability plots, frequency, and time-course parameters (left to right) in control ( n = 19) and upon application of proBDNF ( n = 26). (B) Representative recordings of MEPPs (top left) and mean MEPP amplitude, cumulative probability plots, frequency, (top right) and their time-course parameters (bottom) in control ( n = 23) and upon application of BDNF prodomain ( n = 33). (C) Representative recordings of EPPs during a short (1 s) high-frequency (50 Hz) train in control (above) and upon application of BDNF prodomain (below). (D) Changes in the EPP amplitude (above) and in the quantal content of EPPs (below) in control ( n = 22) and in the presence of proBDNF ( n = 21). Inset shows MEPP amplitudes.

    Techniques Used: Inhibition

    p75 receptors and Rho-signaling pathway underlie BDNF prodomain-triggered inhibition of evoked ACh release at mature NMJs. Moreover, the inhibitory effect of the BDNF prodomain (1 nM) on the evoked neuromuscular transmission depends on the endogenous activity of synaptic purinoreceptors at mature NMJs. (A) Changes in the EPP amplitude (left) and in the quantal content of EPPs (right) in control ( n = 20) and upon BDNF prodomain (1 nM) in the presence of Rho-GDI-associated p75 signaling inhibitor TAT-Pep5 (1 μM, n = 21). (B) Changes in the EPP amplitude (left) and in the quantal content of EPPs (right) in control ( n = 17) and in the presence of ROCK inhibitor Y-27632 (3 μM, n = 21). (C) Changes in the EPP amplitude (left) and in the quantal content of EPPs (right) in control ( n = 15) and upon BDNF prodomain (1 nM) in the presence of Y-27632 ( n = 21). (D) Changes in the EPP amplitude (left) and in the quantal content of EPPs (right), registered from NMJs of Panx1 –/– mice in control ( n = 24) and in the presence of BDNF prodomain ( n = 22). Insets show MEPP amplitudes.
    Figure Legend Snippet: p75 receptors and Rho-signaling pathway underlie BDNF prodomain-triggered inhibition of evoked ACh release at mature NMJs. Moreover, the inhibitory effect of the BDNF prodomain (1 nM) on the evoked neuromuscular transmission depends on the endogenous activity of synaptic purinoreceptors at mature NMJs. (A) Changes in the EPP amplitude (left) and in the quantal content of EPPs (right) in control ( n = 20) and upon BDNF prodomain (1 nM) in the presence of Rho-GDI-associated p75 signaling inhibitor TAT-Pep5 (1 μM, n = 21). (B) Changes in the EPP amplitude (left) and in the quantal content of EPPs (right) in control ( n = 17) and in the presence of ROCK inhibitor Y-27632 (3 μM, n = 21). (C) Changes in the EPP amplitude (left) and in the quantal content of EPPs (right) in control ( n = 15) and upon BDNF prodomain (1 nM) in the presence of Y-27632 ( n = 21). (D) Changes in the EPP amplitude (left) and in the quantal content of EPPs (right), registered from NMJs of Panx1 –/– mice in control ( n = 24) and in the presence of BDNF prodomain ( n = 22). Insets show MEPP amplitudes.

    Techniques Used: Inhibition, Transmission Assay, Activity Assay, Mouse Assay

    22) Product Images from "ProBDNF and Brain-Derived Neurotrophic Factor Prodomain Differently Modulate Acetylcholine Release in Regenerating and Mature Mouse Motor Synapses"

    Article Title: ProBDNF and Brain-Derived Neurotrophic Factor Prodomain Differently Modulate Acetylcholine Release in Regenerating and Mature Mouse Motor Synapses

    Journal: Frontiers in Cellular Neuroscience

    doi: 10.3389/fncel.2022.866802

    BDNF prodomain in low concentration (1 nM) pre-synaptically increases ACh quantal size and simultaneously induces oppositely directed presynaptic effects affecting the evoked ACh release at newly formed NMJs of reinnervated mouse m. EDL. (A) Representative recordings of MEPPs (left above) and mean MEPP amplitude and cumulative probability plots (right above), frequency and time-course parameters (left to right below) in control ( n = 20) and upon application of BDNF prodomain ( n = 22). (B) Mean MEPP amplitude in control ( n = 16) and during inhibition of vesicular ACh transporter by vesamicol (1 μM, n = 17) (left) and mean MEPP amplitude and cumulative probability plots in control ( n = 15) and upon application of BDNF prodomain in the presence of vesamicol ( n = 16). (C) Changes in the EPP amplitude (left) and their quantal content (right) in control ( n = 31) and in the presence of BDNF prodomain ( n = 41). Inset shows MEPP amplitudes.
    Figure Legend Snippet: BDNF prodomain in low concentration (1 nM) pre-synaptically increases ACh quantal size and simultaneously induces oppositely directed presynaptic effects affecting the evoked ACh release at newly formed NMJs of reinnervated mouse m. EDL. (A) Representative recordings of MEPPs (left above) and mean MEPP amplitude and cumulative probability plots (right above), frequency and time-course parameters (left to right below) in control ( n = 20) and upon application of BDNF prodomain ( n = 22). (B) Mean MEPP amplitude in control ( n = 16) and during inhibition of vesicular ACh transporter by vesamicol (1 μM, n = 17) (left) and mean MEPP amplitude and cumulative probability plots in control ( n = 15) and upon application of BDNF prodomain in the presence of vesamicol ( n = 16). (C) Changes in the EPP amplitude (left) and their quantal content (right) in control ( n = 31) and in the presence of BDNF prodomain ( n = 41). Inset shows MEPP amplitudes.

    Techniques Used: Concentration Assay, Inhibition

    BK channels do not but GIRK channels mediate BDNF prodomain-induced inhibition of evoked ACh release at mature NMJs. (A) Changes in the EPP amplitude (left) and in the quantal content of EPPs (right) in control ( n = 15) and upon BDNF prodomain (1 nM) in the presence of BK-blocker iberiotoxin (ITx, 100 nM) with L-type Ca 2+ -channel blocker nitrendipine (Nitr., 1 μM) ( n = 21). (B) Changes in the EPP amplitude (left) and in the quantal content of EPPs (right) in control ( n = 15) and in the presence of GIRK blocker tertiapin-Q (100 nM, n = 17). (C) Changes in the EPP amplitude (left) and in the quantal content of EPPs (right) in control ( n = 16) and upon BDNF prodomain (1 nM) in the presence of tertiapin-Q ( n = 19). Insets show MEPP amplitudes.
    Figure Legend Snippet: BK channels do not but GIRK channels mediate BDNF prodomain-induced inhibition of evoked ACh release at mature NMJs. (A) Changes in the EPP amplitude (left) and in the quantal content of EPPs (right) in control ( n = 15) and upon BDNF prodomain (1 nM) in the presence of BK-blocker iberiotoxin (ITx, 100 nM) with L-type Ca 2+ -channel blocker nitrendipine (Nitr., 1 μM) ( n = 21). (B) Changes in the EPP amplitude (left) and in the quantal content of EPPs (right) in control ( n = 15) and in the presence of GIRK blocker tertiapin-Q (100 nM, n = 17). (C) Changes in the EPP amplitude (left) and in the quantal content of EPPs (right) in control ( n = 16) and upon BDNF prodomain (1 nM) in the presence of tertiapin-Q ( n = 19). Insets show MEPP amplitudes.

    Techniques Used: Inhibition

    BDNF prodomain (1 nM) but not proBDNF (1 nM), induces strong inhibition of spontaneous end evoked ACh release at mature NMJs. (A) Mean MEPP amplitude, cumulative probability plots, frequency, and time-course parameters (left to right) in control ( n = 19) and upon application of proBDNF ( n = 26). (B) Representative recordings of MEPPs (top left) and mean MEPP amplitude, cumulative probability plots, frequency, (top right) and their time-course parameters (bottom) in control ( n = 23) and upon application of BDNF prodomain ( n = 33). (C) Representative recordings of EPPs during a short (1 s) high-frequency (50 Hz) train in control (above) and upon application of BDNF prodomain (below). (D) Changes in the EPP amplitude (above) and in the quantal content of EPPs (below) in control ( n = 22) and in the presence of proBDNF ( n = 21). Inset shows MEPP amplitudes.
    Figure Legend Snippet: BDNF prodomain (1 nM) but not proBDNF (1 nM), induces strong inhibition of spontaneous end evoked ACh release at mature NMJs. (A) Mean MEPP amplitude, cumulative probability plots, frequency, and time-course parameters (left to right) in control ( n = 19) and upon application of proBDNF ( n = 26). (B) Representative recordings of MEPPs (top left) and mean MEPP amplitude, cumulative probability plots, frequency, (top right) and their time-course parameters (bottom) in control ( n = 23) and upon application of BDNF prodomain ( n = 33). (C) Representative recordings of EPPs during a short (1 s) high-frequency (50 Hz) train in control (above) and upon application of BDNF prodomain (below). (D) Changes in the EPP amplitude (above) and in the quantal content of EPPs (below) in control ( n = 22) and in the presence of proBDNF ( n = 21). Inset shows MEPP amplitudes.

    Techniques Used: Inhibition

    p75 receptors and Rho-signaling pathway underlie BDNF prodomain-triggered inhibition of evoked ACh release at mature NMJs. Moreover, the inhibitory effect of the BDNF prodomain (1 nM) on the evoked neuromuscular transmission depends on the endogenous activity of synaptic purinoreceptors at mature NMJs. (A) Changes in the EPP amplitude (left) and in the quantal content of EPPs (right) in control ( n = 20) and upon BDNF prodomain (1 nM) in the presence of Rho-GDI-associated p75 signaling inhibitor TAT-Pep5 (1 μM, n = 21). (B) Changes in the EPP amplitude (left) and in the quantal content of EPPs (right) in control ( n = 17) and in the presence of ROCK inhibitor Y-27632 (3 μM, n = 21). (C) Changes in the EPP amplitude (left) and in the quantal content of EPPs (right) in control ( n = 15) and upon BDNF prodomain (1 nM) in the presence of Y-27632 ( n = 21). (D) Changes in the EPP amplitude (left) and in the quantal content of EPPs (right), registered from NMJs of Panx1 –/– mice in control ( n = 24) and in the presence of BDNF prodomain ( n = 22). Insets show MEPP amplitudes.
    Figure Legend Snippet: p75 receptors and Rho-signaling pathway underlie BDNF prodomain-triggered inhibition of evoked ACh release at mature NMJs. Moreover, the inhibitory effect of the BDNF prodomain (1 nM) on the evoked neuromuscular transmission depends on the endogenous activity of synaptic purinoreceptors at mature NMJs. (A) Changes in the EPP amplitude (left) and in the quantal content of EPPs (right) in control ( n = 20) and upon BDNF prodomain (1 nM) in the presence of Rho-GDI-associated p75 signaling inhibitor TAT-Pep5 (1 μM, n = 21). (B) Changes in the EPP amplitude (left) and in the quantal content of EPPs (right) in control ( n = 17) and in the presence of ROCK inhibitor Y-27632 (3 μM, n = 21). (C) Changes in the EPP amplitude (left) and in the quantal content of EPPs (right) in control ( n = 15) and upon BDNF prodomain (1 nM) in the presence of Y-27632 ( n = 21). (D) Changes in the EPP amplitude (left) and in the quantal content of EPPs (right), registered from NMJs of Panx1 –/– mice in control ( n = 24) and in the presence of BDNF prodomain ( n = 22). Insets show MEPP amplitudes.

    Techniques Used: Inhibition, Transmission Assay, Activity Assay, Mouse Assay

    23) Product Images from "ProBDNF and Brain-Derived Neurotrophic Factor Prodomain Differently Modulate Acetylcholine Release in Regenerating and Mature Mouse Motor Synapses"

    Article Title: ProBDNF and Brain-Derived Neurotrophic Factor Prodomain Differently Modulate Acetylcholine Release in Regenerating and Mature Mouse Motor Synapses

    Journal: Frontiers in Cellular Neuroscience

    doi: 10.3389/fncel.2022.866802

    BDNF prodomain in low concentration (1 nM) pre-synaptically increases ACh quantal size and simultaneously induces oppositely directed presynaptic effects affecting the evoked ACh release at newly formed NMJs of reinnervated mouse m. EDL. (A) Representative recordings of MEPPs (left above) and mean MEPP amplitude and cumulative probability plots (right above), frequency and time-course parameters (left to right below) in control ( n = 20) and upon application of BDNF prodomain ( n = 22). (B) Mean MEPP amplitude in control ( n = 16) and during inhibition of vesicular ACh transporter by vesamicol (1 μM, n = 17) (left) and mean MEPP amplitude and cumulative probability plots in control ( n = 15) and upon application of BDNF prodomain in the presence of vesamicol ( n = 16). (C) Changes in the EPP amplitude (left) and their quantal content (right) in control ( n = 31) and in the presence of BDNF prodomain ( n = 41). Inset shows MEPP amplitudes.
    Figure Legend Snippet: BDNF prodomain in low concentration (1 nM) pre-synaptically increases ACh quantal size and simultaneously induces oppositely directed presynaptic effects affecting the evoked ACh release at newly formed NMJs of reinnervated mouse m. EDL. (A) Representative recordings of MEPPs (left above) and mean MEPP amplitude and cumulative probability plots (right above), frequency and time-course parameters (left to right below) in control ( n = 20) and upon application of BDNF prodomain ( n = 22). (B) Mean MEPP amplitude in control ( n = 16) and during inhibition of vesicular ACh transporter by vesamicol (1 μM, n = 17) (left) and mean MEPP amplitude and cumulative probability plots in control ( n = 15) and upon application of BDNF prodomain in the presence of vesamicol ( n = 16). (C) Changes in the EPP amplitude (left) and their quantal content (right) in control ( n = 31) and in the presence of BDNF prodomain ( n = 41). Inset shows MEPP amplitudes.

    Techniques Used: Concentration Assay, Inhibition

    BK channels do not but GIRK channels mediate BDNF prodomain-induced inhibition of evoked ACh release at mature NMJs. (A) Changes in the EPP amplitude (left) and in the quantal content of EPPs (right) in control ( n = 15) and upon BDNF prodomain (1 nM) in the presence of BK-blocker iberiotoxin (ITx, 100 nM) with L-type Ca 2+ -channel blocker nitrendipine (Nitr., 1 μM) ( n = 21). (B) Changes in the EPP amplitude (left) and in the quantal content of EPPs (right) in control ( n = 15) and in the presence of GIRK blocker tertiapin-Q (100 nM, n = 17). (C) Changes in the EPP amplitude (left) and in the quantal content of EPPs (right) in control ( n = 16) and upon BDNF prodomain (1 nM) in the presence of tertiapin-Q ( n = 19). Insets show MEPP amplitudes.
    Figure Legend Snippet: BK channels do not but GIRK channels mediate BDNF prodomain-induced inhibition of evoked ACh release at mature NMJs. (A) Changes in the EPP amplitude (left) and in the quantal content of EPPs (right) in control ( n = 15) and upon BDNF prodomain (1 nM) in the presence of BK-blocker iberiotoxin (ITx, 100 nM) with L-type Ca 2+ -channel blocker nitrendipine (Nitr., 1 μM) ( n = 21). (B) Changes in the EPP amplitude (left) and in the quantal content of EPPs (right) in control ( n = 15) and in the presence of GIRK blocker tertiapin-Q (100 nM, n = 17). (C) Changes in the EPP amplitude (left) and in the quantal content of EPPs (right) in control ( n = 16) and upon BDNF prodomain (1 nM) in the presence of tertiapin-Q ( n = 19). Insets show MEPP amplitudes.

    Techniques Used: Inhibition

    BDNF prodomain (1 nM) but not proBDNF (1 nM), induces strong inhibition of spontaneous end evoked ACh release at mature NMJs. (A) Mean MEPP amplitude, cumulative probability plots, frequency, and time-course parameters (left to right) in control ( n = 19) and upon application of proBDNF ( n = 26). (B) Representative recordings of MEPPs (top left) and mean MEPP amplitude, cumulative probability plots, frequency, (top right) and their time-course parameters (bottom) in control ( n = 23) and upon application of BDNF prodomain ( n = 33). (C) Representative recordings of EPPs during a short (1 s) high-frequency (50 Hz) train in control (above) and upon application of BDNF prodomain (below). (D) Changes in the EPP amplitude (above) and in the quantal content of EPPs (below) in control ( n = 22) and in the presence of proBDNF ( n = 21). Inset shows MEPP amplitudes.
    Figure Legend Snippet: BDNF prodomain (1 nM) but not proBDNF (1 nM), induces strong inhibition of spontaneous end evoked ACh release at mature NMJs. (A) Mean MEPP amplitude, cumulative probability plots, frequency, and time-course parameters (left to right) in control ( n = 19) and upon application of proBDNF ( n = 26). (B) Representative recordings of MEPPs (top left) and mean MEPP amplitude, cumulative probability plots, frequency, (top right) and their time-course parameters (bottom) in control ( n = 23) and upon application of BDNF prodomain ( n = 33). (C) Representative recordings of EPPs during a short (1 s) high-frequency (50 Hz) train in control (above) and upon application of BDNF prodomain (below). (D) Changes in the EPP amplitude (above) and in the quantal content of EPPs (below) in control ( n = 22) and in the presence of proBDNF ( n = 21). Inset shows MEPP amplitudes.

    Techniques Used: Inhibition

    p75 receptors and Rho-signaling pathway underlie BDNF prodomain-triggered inhibition of evoked ACh release at mature NMJs. Moreover, the inhibitory effect of the BDNF prodomain (1 nM) on the evoked neuromuscular transmission depends on the endogenous activity of synaptic purinoreceptors at mature NMJs. (A) Changes in the EPP amplitude (left) and in the quantal content of EPPs (right) in control ( n = 20) and upon BDNF prodomain (1 nM) in the presence of Rho-GDI-associated p75 signaling inhibitor TAT-Pep5 (1 μM, n = 21). (B) Changes in the EPP amplitude (left) and in the quantal content of EPPs (right) in control ( n = 17) and in the presence of ROCK inhibitor Y-27632 (3 μM, n = 21). (C) Changes in the EPP amplitude (left) and in the quantal content of EPPs (right) in control ( n = 15) and upon BDNF prodomain (1 nM) in the presence of Y-27632 ( n = 21). (D) Changes in the EPP amplitude (left) and in the quantal content of EPPs (right), registered from NMJs of Panx1 –/– mice in control ( n = 24) and in the presence of BDNF prodomain ( n = 22). Insets show MEPP amplitudes.
    Figure Legend Snippet: p75 receptors and Rho-signaling pathway underlie BDNF prodomain-triggered inhibition of evoked ACh release at mature NMJs. Moreover, the inhibitory effect of the BDNF prodomain (1 nM) on the evoked neuromuscular transmission depends on the endogenous activity of synaptic purinoreceptors at mature NMJs. (A) Changes in the EPP amplitude (left) and in the quantal content of EPPs (right) in control ( n = 20) and upon BDNF prodomain (1 nM) in the presence of Rho-GDI-associated p75 signaling inhibitor TAT-Pep5 (1 μM, n = 21). (B) Changes in the EPP amplitude (left) and in the quantal content of EPPs (right) in control ( n = 17) and in the presence of ROCK inhibitor Y-27632 (3 μM, n = 21). (C) Changes in the EPP amplitude (left) and in the quantal content of EPPs (right) in control ( n = 15) and upon BDNF prodomain (1 nM) in the presence of Y-27632 ( n = 21). (D) Changes in the EPP amplitude (left) and in the quantal content of EPPs (right), registered from NMJs of Panx1 –/– mice in control ( n = 24) and in the presence of BDNF prodomain ( n = 22). Insets show MEPP amplitudes.

    Techniques Used: Inhibition, Transmission Assay, Activity Assay, Mouse Assay

    24) Product Images from "ProBDNF and Brain-Derived Neurotrophic Factor Prodomain Differently Modulate Acetylcholine Release in Regenerating and Mature Mouse Motor Synapses"

    Article Title: ProBDNF and Brain-Derived Neurotrophic Factor Prodomain Differently Modulate Acetylcholine Release in Regenerating and Mature Mouse Motor Synapses

    Journal: Frontiers in Cellular Neuroscience

    doi: 10.3389/fncel.2022.866802

    BDNF prodomain in low concentration (1 nM) pre-synaptically increases ACh quantal size and simultaneously induces oppositely directed presynaptic effects affecting the evoked ACh release at newly formed NMJs of reinnervated mouse m. EDL. (A) Representative recordings of MEPPs (left above) and mean MEPP amplitude and cumulative probability plots (right above), frequency and time-course parameters (left to right below) in control ( n = 20) and upon application of BDNF prodomain ( n = 22). (B) Mean MEPP amplitude in control ( n = 16) and during inhibition of vesicular ACh transporter by vesamicol (1 μM, n = 17) (left) and mean MEPP amplitude and cumulative probability plots in control ( n = 15) and upon application of BDNF prodomain in the presence of vesamicol ( n = 16). (C) Changes in the EPP amplitude (left) and their quantal content (right) in control ( n = 31) and in the presence of BDNF prodomain ( n = 41). Inset shows MEPP amplitudes.
    Figure Legend Snippet: BDNF prodomain in low concentration (1 nM) pre-synaptically increases ACh quantal size and simultaneously induces oppositely directed presynaptic effects affecting the evoked ACh release at newly formed NMJs of reinnervated mouse m. EDL. (A) Representative recordings of MEPPs (left above) and mean MEPP amplitude and cumulative probability plots (right above), frequency and time-course parameters (left to right below) in control ( n = 20) and upon application of BDNF prodomain ( n = 22). (B) Mean MEPP amplitude in control ( n = 16) and during inhibition of vesicular ACh transporter by vesamicol (1 μM, n = 17) (left) and mean MEPP amplitude and cumulative probability plots in control ( n = 15) and upon application of BDNF prodomain in the presence of vesamicol ( n = 16). (C) Changes in the EPP amplitude (left) and their quantal content (right) in control ( n = 31) and in the presence of BDNF prodomain ( n = 41). Inset shows MEPP amplitudes.

    Techniques Used: Concentration Assay, Inhibition

    BK channels do not but GIRK channels mediate BDNF prodomain-induced inhibition of evoked ACh release at mature NMJs. (A) Changes in the EPP amplitude (left) and in the quantal content of EPPs (right) in control ( n = 15) and upon BDNF prodomain (1 nM) in the presence of BK-blocker iberiotoxin (ITx, 100 nM) with L-type Ca 2+ -channel blocker nitrendipine (Nitr., 1 μM) ( n = 21). (B) Changes in the EPP amplitude (left) and in the quantal content of EPPs (right) in control ( n = 15) and in the presence of GIRK blocker tertiapin-Q (100 nM, n = 17). (C) Changes in the EPP amplitude (left) and in the quantal content of EPPs (right) in control ( n = 16) and upon BDNF prodomain (1 nM) in the presence of tertiapin-Q ( n = 19). Insets show MEPP amplitudes.
    Figure Legend Snippet: BK channels do not but GIRK channels mediate BDNF prodomain-induced inhibition of evoked ACh release at mature NMJs. (A) Changes in the EPP amplitude (left) and in the quantal content of EPPs (right) in control ( n = 15) and upon BDNF prodomain (1 nM) in the presence of BK-blocker iberiotoxin (ITx, 100 nM) with L-type Ca 2+ -channel blocker nitrendipine (Nitr., 1 μM) ( n = 21). (B) Changes in the EPP amplitude (left) and in the quantal content of EPPs (right) in control ( n = 15) and in the presence of GIRK blocker tertiapin-Q (100 nM, n = 17). (C) Changes in the EPP amplitude (left) and in the quantal content of EPPs (right) in control ( n = 16) and upon BDNF prodomain (1 nM) in the presence of tertiapin-Q ( n = 19). Insets show MEPP amplitudes.

    Techniques Used: Inhibition

    BDNF prodomain (1 nM) but not proBDNF (1 nM), induces strong inhibition of spontaneous end evoked ACh release at mature NMJs. (A) Mean MEPP amplitude, cumulative probability plots, frequency, and time-course parameters (left to right) in control ( n = 19) and upon application of proBDNF ( n = 26). (B) Representative recordings of MEPPs (top left) and mean MEPP amplitude, cumulative probability plots, frequency, (top right) and their time-course parameters (bottom) in control ( n = 23) and upon application of BDNF prodomain ( n = 33). (C) Representative recordings of EPPs during a short (1 s) high-frequency (50 Hz) train in control (above) and upon application of BDNF prodomain (below). (D) Changes in the EPP amplitude (above) and in the quantal content of EPPs (below) in control ( n = 22) and in the presence of proBDNF ( n = 21). Inset shows MEPP amplitudes.
    Figure Legend Snippet: BDNF prodomain (1 nM) but not proBDNF (1 nM), induces strong inhibition of spontaneous end evoked ACh release at mature NMJs. (A) Mean MEPP amplitude, cumulative probability plots, frequency, and time-course parameters (left to right) in control ( n = 19) and upon application of proBDNF ( n = 26). (B) Representative recordings of MEPPs (top left) and mean MEPP amplitude, cumulative probability plots, frequency, (top right) and their time-course parameters (bottom) in control ( n = 23) and upon application of BDNF prodomain ( n = 33). (C) Representative recordings of EPPs during a short (1 s) high-frequency (50 Hz) train in control (above) and upon application of BDNF prodomain (below). (D) Changes in the EPP amplitude (above) and in the quantal content of EPPs (below) in control ( n = 22) and in the presence of proBDNF ( n = 21). Inset shows MEPP amplitudes.

    Techniques Used: Inhibition

    p75 receptors and Rho-signaling pathway underlie BDNF prodomain-triggered inhibition of evoked ACh release at mature NMJs. Moreover, the inhibitory effect of the BDNF prodomain (1 nM) on the evoked neuromuscular transmission depends on the endogenous activity of synaptic purinoreceptors at mature NMJs. (A) Changes in the EPP amplitude (left) and in the quantal content of EPPs (right) in control ( n = 20) and upon BDNF prodomain (1 nM) in the presence of Rho-GDI-associated p75 signaling inhibitor TAT-Pep5 (1 μM, n = 21). (B) Changes in the EPP amplitude (left) and in the quantal content of EPPs (right) in control ( n = 17) and in the presence of ROCK inhibitor Y-27632 (3 μM, n = 21). (C) Changes in the EPP amplitude (left) and in the quantal content of EPPs (right) in control ( n = 15) and upon BDNF prodomain (1 nM) in the presence of Y-27632 ( n = 21). (D) Changes in the EPP amplitude (left) and in the quantal content of EPPs (right), registered from NMJs of Panx1 –/– mice in control ( n = 24) and in the presence of BDNF prodomain ( n = 22). Insets show MEPP amplitudes.
    Figure Legend Snippet: p75 receptors and Rho-signaling pathway underlie BDNF prodomain-triggered inhibition of evoked ACh release at mature NMJs. Moreover, the inhibitory effect of the BDNF prodomain (1 nM) on the evoked neuromuscular transmission depends on the endogenous activity of synaptic purinoreceptors at mature NMJs. (A) Changes in the EPP amplitude (left) and in the quantal content of EPPs (right) in control ( n = 20) and upon BDNF prodomain (1 nM) in the presence of Rho-GDI-associated p75 signaling inhibitor TAT-Pep5 (1 μM, n = 21). (B) Changes in the EPP amplitude (left) and in the quantal content of EPPs (right) in control ( n = 17) and in the presence of ROCK inhibitor Y-27632 (3 μM, n = 21). (C) Changes in the EPP amplitude (left) and in the quantal content of EPPs (right) in control ( n = 15) and upon BDNF prodomain (1 nM) in the presence of Y-27632 ( n = 21). (D) Changes in the EPP amplitude (left) and in the quantal content of EPPs (right), registered from NMJs of Panx1 –/– mice in control ( n = 24) and in the presence of BDNF prodomain ( n = 22). Insets show MEPP amplitudes.

    Techniques Used: Inhibition, Transmission Assay, Activity Assay, Mouse Assay

    25) Product Images from "ProBDNF and Brain-Derived Neurotrophic Factor Prodomain Differently Modulate Acetylcholine Release in Regenerating and Mature Mouse Motor Synapses"

    Article Title: ProBDNF and Brain-Derived Neurotrophic Factor Prodomain Differently Modulate Acetylcholine Release in Regenerating and Mature Mouse Motor Synapses

    Journal: Frontiers in Cellular Neuroscience

    doi: 10.3389/fncel.2022.866802

    BDNF prodomain in low concentration (1 nM) pre-synaptically increases ACh quantal size and simultaneously induces oppositely directed presynaptic effects affecting the evoked ACh release at newly formed NMJs of reinnervated mouse m. EDL. (A) Representative recordings of MEPPs (left above) and mean MEPP amplitude and cumulative probability plots (right above), frequency and time-course parameters (left to right below) in control ( n = 20) and upon application of BDNF prodomain ( n = 22). (B) Mean MEPP amplitude in control ( n = 16) and during inhibition of vesicular ACh transporter by vesamicol (1 μM, n = 17) (left) and mean MEPP amplitude and cumulative probability plots in control ( n = 15) and upon application of BDNF prodomain in the presence of vesamicol ( n = 16). (C) Changes in the EPP amplitude (left) and their quantal content (right) in control ( n = 31) and in the presence of BDNF prodomain ( n = 41). Inset shows MEPP amplitudes.
    Figure Legend Snippet: BDNF prodomain in low concentration (1 nM) pre-synaptically increases ACh quantal size and simultaneously induces oppositely directed presynaptic effects affecting the evoked ACh release at newly formed NMJs of reinnervated mouse m. EDL. (A) Representative recordings of MEPPs (left above) and mean MEPP amplitude and cumulative probability plots (right above), frequency and time-course parameters (left to right below) in control ( n = 20) and upon application of BDNF prodomain ( n = 22). (B) Mean MEPP amplitude in control ( n = 16) and during inhibition of vesicular ACh transporter by vesamicol (1 μM, n = 17) (left) and mean MEPP amplitude and cumulative probability plots in control ( n = 15) and upon application of BDNF prodomain in the presence of vesamicol ( n = 16). (C) Changes in the EPP amplitude (left) and their quantal content (right) in control ( n = 31) and in the presence of BDNF prodomain ( n = 41). Inset shows MEPP amplitudes.

    Techniques Used: Concentration Assay, Inhibition

    BK channels do not but GIRK channels mediate BDNF prodomain-induced inhibition of evoked ACh release at mature NMJs. (A) Changes in the EPP amplitude (left) and in the quantal content of EPPs (right) in control ( n = 15) and upon BDNF prodomain (1 nM) in the presence of BK-blocker iberiotoxin (ITx, 100 nM) with L-type Ca 2+ -channel blocker nitrendipine (Nitr., 1 μM) ( n = 21). (B) Changes in the EPP amplitude (left) and in the quantal content of EPPs (right) in control ( n = 15) and in the presence of GIRK blocker tertiapin-Q (100 nM, n = 17). (C) Changes in the EPP amplitude (left) and in the quantal content of EPPs (right) in control ( n = 16) and upon BDNF prodomain (1 nM) in the presence of tertiapin-Q ( n = 19). Insets show MEPP amplitudes.
    Figure Legend Snippet: BK channels do not but GIRK channels mediate BDNF prodomain-induced inhibition of evoked ACh release at mature NMJs. (A) Changes in the EPP amplitude (left) and in the quantal content of EPPs (right) in control ( n = 15) and upon BDNF prodomain (1 nM) in the presence of BK-blocker iberiotoxin (ITx, 100 nM) with L-type Ca 2+ -channel blocker nitrendipine (Nitr., 1 μM) ( n = 21). (B) Changes in the EPP amplitude (left) and in the quantal content of EPPs (right) in control ( n = 15) and in the presence of GIRK blocker tertiapin-Q (100 nM, n = 17). (C) Changes in the EPP amplitude (left) and in the quantal content of EPPs (right) in control ( n = 16) and upon BDNF prodomain (1 nM) in the presence of tertiapin-Q ( n = 19). Insets show MEPP amplitudes.

    Techniques Used: Inhibition

    BDNF prodomain (1 nM) but not proBDNF (1 nM), induces strong inhibition of spontaneous end evoked ACh release at mature NMJs. (A) Mean MEPP amplitude, cumulative probability plots, frequency, and time-course parameters (left to right) in control ( n = 19) and upon application of proBDNF ( n = 26). (B) Representative recordings of MEPPs (top left) and mean MEPP amplitude, cumulative probability plots, frequency, (top right) and their time-course parameters (bottom) in control ( n = 23) and upon application of BDNF prodomain ( n = 33). (C) Representative recordings of EPPs during a short (1 s) high-frequency (50 Hz) train in control (above) and upon application of BDNF prodomain (below). (D) Changes in the EPP amplitude (above) and in the quantal content of EPPs (below) in control ( n = 22) and in the presence of proBDNF ( n = 21). Inset shows MEPP amplitudes.
    Figure Legend Snippet: BDNF prodomain (1 nM) but not proBDNF (1 nM), induces strong inhibition of spontaneous end evoked ACh release at mature NMJs. (A) Mean MEPP amplitude, cumulative probability plots, frequency, and time-course parameters (left to right) in control ( n = 19) and upon application of proBDNF ( n = 26). (B) Representative recordings of MEPPs (top left) and mean MEPP amplitude, cumulative probability plots, frequency, (top right) and their time-course parameters (bottom) in control ( n = 23) and upon application of BDNF prodomain ( n = 33). (C) Representative recordings of EPPs during a short (1 s) high-frequency (50 Hz) train in control (above) and upon application of BDNF prodomain (below). (D) Changes in the EPP amplitude (above) and in the quantal content of EPPs (below) in control ( n = 22) and in the presence of proBDNF ( n = 21). Inset shows MEPP amplitudes.

    Techniques Used: Inhibition

    p75 receptors and Rho-signaling pathway underlie BDNF prodomain-triggered inhibition of evoked ACh release at mature NMJs. Moreover, the inhibitory effect of the BDNF prodomain (1 nM) on the evoked neuromuscular transmission depends on the endogenous activity of synaptic purinoreceptors at mature NMJs. (A) Changes in the EPP amplitude (left) and in the quantal content of EPPs (right) in control ( n = 20) and upon BDNF prodomain (1 nM) in the presence of Rho-GDI-associated p75 signaling inhibitor TAT-Pep5 (1 μM, n = 21). (B) Changes in the EPP amplitude (left) and in the quantal content of EPPs (right) in control ( n = 17) and in the presence of ROCK inhibitor Y-27632 (3 μM, n = 21). (C) Changes in the EPP amplitude (left) and in the quantal content of EPPs (right) in control ( n = 15) and upon BDNF prodomain (1 nM) in the presence of Y-27632 ( n = 21). (D) Changes in the EPP amplitude (left) and in the quantal content of EPPs (right), registered from NMJs of Panx1 –/– mice in control ( n = 24) and in the presence of BDNF prodomain ( n = 22). Insets show MEPP amplitudes.
    Figure Legend Snippet: p75 receptors and Rho-signaling pathway underlie BDNF prodomain-triggered inhibition of evoked ACh release at mature NMJs. Moreover, the inhibitory effect of the BDNF prodomain (1 nM) on the evoked neuromuscular transmission depends on the endogenous activity of synaptic purinoreceptors at mature NMJs. (A) Changes in the EPP amplitude (left) and in the quantal content of EPPs (right) in control ( n = 20) and upon BDNF prodomain (1 nM) in the presence of Rho-GDI-associated p75 signaling inhibitor TAT-Pep5 (1 μM, n = 21). (B) Changes in the EPP amplitude (left) and in the quantal content of EPPs (right) in control ( n = 17) and in the presence of ROCK inhibitor Y-27632 (3 μM, n = 21). (C) Changes in the EPP amplitude (left) and in the quantal content of EPPs (right) in control ( n = 15) and upon BDNF prodomain (1 nM) in the presence of Y-27632 ( n = 21). (D) Changes in the EPP amplitude (left) and in the quantal content of EPPs (right), registered from NMJs of Panx1 –/– mice in control ( n = 24) and in the presence of BDNF prodomain ( n = 22). Insets show MEPP amplitudes.

    Techniques Used: Inhibition, Transmission Assay, Activity Assay, Mouse Assay

    26) Product Images from "ProBDNF and Brain-Derived Neurotrophic Factor Prodomain Differently Modulate Acetylcholine Release in Regenerating and Mature Mouse Motor Synapses"

    Article Title: ProBDNF and Brain-Derived Neurotrophic Factor Prodomain Differently Modulate Acetylcholine Release in Regenerating and Mature Mouse Motor Synapses

    Journal: Frontiers in Cellular Neuroscience

    doi: 10.3389/fncel.2022.866802

    BDNF prodomain in low concentration (1 nM) pre-synaptically increases ACh quantal size and simultaneously induces oppositely directed presynaptic effects affecting the evoked ACh release at newly formed NMJs of reinnervated mouse m. EDL. (A) Representative recordings of MEPPs (left above) and mean MEPP amplitude and cumulative probability plots (right above), frequency and time-course parameters (left to right below) in control ( n = 20) and upon application of BDNF prodomain ( n = 22). (B) Mean MEPP amplitude in control ( n = 16) and during inhibition of vesicular ACh transporter by vesamicol (1 μM, n = 17) (left) and mean MEPP amplitude and cumulative probability plots in control ( n = 15) and upon application of BDNF prodomain in the presence of vesamicol ( n = 16). (C) Changes in the EPP amplitude (left) and their quantal content (right) in control ( n = 31) and in the presence of BDNF prodomain ( n = 41). Inset shows MEPP amplitudes.
    Figure Legend Snippet: BDNF prodomain in low concentration (1 nM) pre-synaptically increases ACh quantal size and simultaneously induces oppositely directed presynaptic effects affecting the evoked ACh release at newly formed NMJs of reinnervated mouse m. EDL. (A) Representative recordings of MEPPs (left above) and mean MEPP amplitude and cumulative probability plots (right above), frequency and time-course parameters (left to right below) in control ( n = 20) and upon application of BDNF prodomain ( n = 22). (B) Mean MEPP amplitude in control ( n = 16) and during inhibition of vesicular ACh transporter by vesamicol (1 μM, n = 17) (left) and mean MEPP amplitude and cumulative probability plots in control ( n = 15) and upon application of BDNF prodomain in the presence of vesamicol ( n = 16). (C) Changes in the EPP amplitude (left) and their quantal content (right) in control ( n = 31) and in the presence of BDNF prodomain ( n = 41). Inset shows MEPP amplitudes.

    Techniques Used: Concentration Assay, Inhibition

    BK channels do not but GIRK channels mediate BDNF prodomain-induced inhibition of evoked ACh release at mature NMJs. (A) Changes in the EPP amplitude (left) and in the quantal content of EPPs (right) in control ( n = 15) and upon BDNF prodomain (1 nM) in the presence of BK-blocker iberiotoxin (ITx, 100 nM) with L-type Ca 2+ -channel blocker nitrendipine (Nitr., 1 μM) ( n = 21). (B) Changes in the EPP amplitude (left) and in the quantal content of EPPs (right) in control ( n = 15) and in the presence of GIRK blocker tertiapin-Q (100 nM, n = 17). (C) Changes in the EPP amplitude (left) and in the quantal content of EPPs (right) in control ( n = 16) and upon BDNF prodomain (1 nM) in the presence of tertiapin-Q ( n = 19). Insets show MEPP amplitudes.
    Figure Legend Snippet: BK channels do not but GIRK channels mediate BDNF prodomain-induced inhibition of evoked ACh release at mature NMJs. (A) Changes in the EPP amplitude (left) and in the quantal content of EPPs (right) in control ( n = 15) and upon BDNF prodomain (1 nM) in the presence of BK-blocker iberiotoxin (ITx, 100 nM) with L-type Ca 2+ -channel blocker nitrendipine (Nitr., 1 μM) ( n = 21). (B) Changes in the EPP amplitude (left) and in the quantal content of EPPs (right) in control ( n = 15) and in the presence of GIRK blocker tertiapin-Q (100 nM, n = 17). (C) Changes in the EPP amplitude (left) and in the quantal content of EPPs (right) in control ( n = 16) and upon BDNF prodomain (1 nM) in the presence of tertiapin-Q ( n = 19). Insets show MEPP amplitudes.

    Techniques Used: Inhibition

    BDNF prodomain (1 nM) but not proBDNF (1 nM), induces strong inhibition of spontaneous end evoked ACh release at mature NMJs. (A) Mean MEPP amplitude, cumulative probability plots, frequency, and time-course parameters (left to right) in control ( n = 19) and upon application of proBDNF ( n = 26). (B) Representative recordings of MEPPs (top left) and mean MEPP amplitude, cumulative probability plots, frequency, (top right) and their time-course parameters (bottom) in control ( n = 23) and upon application of BDNF prodomain ( n = 33). (C) Representative recordings of EPPs during a short (1 s) high-frequency (50 Hz) train in control (above) and upon application of BDNF prodomain (below). (D) Changes in the EPP amplitude (above) and in the quantal content of EPPs (below) in control ( n = 22) and in the presence of proBDNF ( n = 21). Inset shows MEPP amplitudes.
    Figure Legend Snippet: BDNF prodomain (1 nM) but not proBDNF (1 nM), induces strong inhibition of spontaneous end evoked ACh release at mature NMJs. (A) Mean MEPP amplitude, cumulative probability plots, frequency, and time-course parameters (left to right) in control ( n = 19) and upon application of proBDNF ( n = 26). (B) Representative recordings of MEPPs (top left) and mean MEPP amplitude, cumulative probability plots, frequency, (top right) and their time-course parameters (bottom) in control ( n = 23) and upon application of BDNF prodomain ( n = 33). (C) Representative recordings of EPPs during a short (1 s) high-frequency (50 Hz) train in control (above) and upon application of BDNF prodomain (below). (D) Changes in the EPP amplitude (above) and in the quantal content of EPPs (below) in control ( n = 22) and in the presence of proBDNF ( n = 21). Inset shows MEPP amplitudes.

    Techniques Used: Inhibition

    p75 receptors and Rho-signaling pathway underlie BDNF prodomain-triggered inhibition of evoked ACh release at mature NMJs. Moreover, the inhibitory effect of the BDNF prodomain (1 nM) on the evoked neuromuscular transmission depends on the endogenous activity of synaptic purinoreceptors at mature NMJs. (A) Changes in the EPP amplitude (left) and in the quantal content of EPPs (right) in control ( n = 20) and upon BDNF prodomain (1 nM) in the presence of Rho-GDI-associated p75 signaling inhibitor TAT-Pep5 (1 μM, n = 21). (B) Changes in the EPP amplitude (left) and in the quantal content of EPPs (right) in control ( n = 17) and in the presence of ROCK inhibitor Y-27632 (3 μM, n = 21). (C) Changes in the EPP amplitude (left) and in the quantal content of EPPs (right) in control ( n = 15) and upon BDNF prodomain (1 nM) in the presence of Y-27632 ( n = 21). (D) Changes in the EPP amplitude (left) and in the quantal content of EPPs (right), registered from NMJs of Panx1 –/– mice in control ( n = 24) and in the presence of BDNF prodomain ( n = 22). Insets show MEPP amplitudes.
    Figure Legend Snippet: p75 receptors and Rho-signaling pathway underlie BDNF prodomain-triggered inhibition of evoked ACh release at mature NMJs. Moreover, the inhibitory effect of the BDNF prodomain (1 nM) on the evoked neuromuscular transmission depends on the endogenous activity of synaptic purinoreceptors at mature NMJs. (A) Changes in the EPP amplitude (left) and in the quantal content of EPPs (right) in control ( n = 20) and upon BDNF prodomain (1 nM) in the presence of Rho-GDI-associated p75 signaling inhibitor TAT-Pep5 (1 μM, n = 21). (B) Changes in the EPP amplitude (left) and in the quantal content of EPPs (right) in control ( n = 17) and in the presence of ROCK inhibitor Y-27632 (3 μM, n = 21). (C) Changes in the EPP amplitude (left) and in the quantal content of EPPs (right) in control ( n = 15) and upon BDNF prodomain (1 nM) in the presence of Y-27632 ( n = 21). (D) Changes in the EPP amplitude (left) and in the quantal content of EPPs (right), registered from NMJs of Panx1 –/– mice in control ( n = 24) and in the presence of BDNF prodomain ( n = 22). Insets show MEPP amplitudes.

    Techniques Used: Inhibition, Transmission Assay, Activity Assay, Mouse Assay

    27) Product Images from "ProBDNF and Brain-Derived Neurotrophic Factor Prodomain Differently Modulate Acetylcholine Release in Regenerating and Mature Mouse Motor Synapses"

    Article Title: ProBDNF and Brain-Derived Neurotrophic Factor Prodomain Differently Modulate Acetylcholine Release in Regenerating and Mature Mouse Motor Synapses

    Journal: Frontiers in Cellular Neuroscience

    doi: 10.3389/fncel.2022.866802

    BDNF prodomain in low concentration (1 nM) pre-synaptically increases ACh quantal size and simultaneously induces oppositely directed presynaptic effects affecting the evoked ACh release at newly formed NMJs of reinnervated mouse m. EDL. (A) Representative recordings of MEPPs (left above) and mean MEPP amplitude and cumulative probability plots (right above), frequency and time-course parameters (left to right below) in control ( n = 20) and upon application of BDNF prodomain ( n = 22). (B) Mean MEPP amplitude in control ( n = 16) and during inhibition of vesicular ACh transporter by vesamicol (1 μM, n = 17) (left) and mean MEPP amplitude and cumulative probability plots in control ( n = 15) and upon application of BDNF prodomain in the presence of vesamicol ( n = 16). (C) Changes in the EPP amplitude (left) and their quantal content (right) in control ( n = 31) and in the presence of BDNF prodomain ( n = 41). Inset shows MEPP amplitudes.
    Figure Legend Snippet: BDNF prodomain in low concentration (1 nM) pre-synaptically increases ACh quantal size and simultaneously induces oppositely directed presynaptic effects affecting the evoked ACh release at newly formed NMJs of reinnervated mouse m. EDL. (A) Representative recordings of MEPPs (left above) and mean MEPP amplitude and cumulative probability plots (right above), frequency and time-course parameters (left to right below) in control ( n = 20) and upon application of BDNF prodomain ( n = 22). (B) Mean MEPP amplitude in control ( n = 16) and during inhibition of vesicular ACh transporter by vesamicol (1 μM, n = 17) (left) and mean MEPP amplitude and cumulative probability plots in control ( n = 15) and upon application of BDNF prodomain in the presence of vesamicol ( n = 16). (C) Changes in the EPP amplitude (left) and their quantal content (right) in control ( n = 31) and in the presence of BDNF prodomain ( n = 41). Inset shows MEPP amplitudes.

    Techniques Used: Concentration Assay, Inhibition

    BK channels do not but GIRK channels mediate BDNF prodomain-induced inhibition of evoked ACh release at mature NMJs. (A) Changes in the EPP amplitude (left) and in the quantal content of EPPs (right) in control ( n = 15) and upon BDNF prodomain (1 nM) in the presence of BK-blocker iberiotoxin (ITx, 100 nM) with L-type Ca 2+ -channel blocker nitrendipine (Nitr., 1 μM) ( n = 21). (B) Changes in the EPP amplitude (left) and in the quantal content of EPPs (right) in control ( n = 15) and in the presence of GIRK blocker tertiapin-Q (100 nM, n = 17). (C) Changes in the EPP amplitude (left) and in the quantal content of EPPs (right) in control ( n = 16) and upon BDNF prodomain (1 nM) in the presence of tertiapin-Q ( n = 19). Insets show MEPP amplitudes.
    Figure Legend Snippet: BK channels do not but GIRK channels mediate BDNF prodomain-induced inhibition of evoked ACh release at mature NMJs. (A) Changes in the EPP amplitude (left) and in the quantal content of EPPs (right) in control ( n = 15) and upon BDNF prodomain (1 nM) in the presence of BK-blocker iberiotoxin (ITx, 100 nM) with L-type Ca 2+ -channel blocker nitrendipine (Nitr., 1 μM) ( n = 21). (B) Changes in the EPP amplitude (left) and in the quantal content of EPPs (right) in control ( n = 15) and in the presence of GIRK blocker tertiapin-Q (100 nM, n = 17). (C) Changes in the EPP amplitude (left) and in the quantal content of EPPs (right) in control ( n = 16) and upon BDNF prodomain (1 nM) in the presence of tertiapin-Q ( n = 19). Insets show MEPP amplitudes.

    Techniques Used: Inhibition

    BDNF prodomain (1 nM) but not proBDNF (1 nM), induces strong inhibition of spontaneous end evoked ACh release at mature NMJs. (A) Mean MEPP amplitude, cumulative probability plots, frequency, and time-course parameters (left to right) in control ( n = 19) and upon application of proBDNF ( n = 26). (B) Representative recordings of MEPPs (top left) and mean MEPP amplitude, cumulative probability plots, frequency, (top right) and their time-course parameters (bottom) in control ( n = 23) and upon application of BDNF prodomain ( n = 33). (C) Representative recordings of EPPs during a short (1 s) high-frequency (50 Hz) train in control (above) and upon application of BDNF prodomain (below). (D) Changes in the EPP amplitude (above) and in the quantal content of EPPs (below) in control ( n = 22) and in the presence of proBDNF ( n = 21). Inset shows MEPP amplitudes.
    Figure Legend Snippet: BDNF prodomain (1 nM) but not proBDNF (1 nM), induces strong inhibition of spontaneous end evoked ACh release at mature NMJs. (A) Mean MEPP amplitude, cumulative probability plots, frequency, and time-course parameters (left to right) in control ( n = 19) and upon application of proBDNF ( n = 26). (B) Representative recordings of MEPPs (top left) and mean MEPP amplitude, cumulative probability plots, frequency, (top right) and their time-course parameters (bottom) in control ( n = 23) and upon application of BDNF prodomain ( n = 33). (C) Representative recordings of EPPs during a short (1 s) high-frequency (50 Hz) train in control (above) and upon application of BDNF prodomain (below). (D) Changes in the EPP amplitude (above) and in the quantal content of EPPs (below) in control ( n = 22) and in the presence of proBDNF ( n = 21). Inset shows MEPP amplitudes.

    Techniques Used: Inhibition

    p75 receptors and Rho-signaling pathway underlie BDNF prodomain-triggered inhibition of evoked ACh release at mature NMJs. Moreover, the inhibitory effect of the BDNF prodomain (1 nM) on the evoked neuromuscular transmission depends on the endogenous activity of synaptic purinoreceptors at mature NMJs. (A) Changes in the EPP amplitude (left) and in the quantal content of EPPs (right) in control ( n = 20) and upon BDNF prodomain (1 nM) in the presence of Rho-GDI-associated p75 signaling inhibitor TAT-Pep5 (1 μM, n = 21). (B) Changes in the EPP amplitude (left) and in the quantal content of EPPs (right) in control ( n = 17) and in the presence of ROCK inhibitor Y-27632 (3 μM, n = 21). (C) Changes in the EPP amplitude (left) and in the quantal content of EPPs (right) in control ( n = 15) and upon BDNF prodomain (1 nM) in the presence of Y-27632 ( n = 21). (D) Changes in the EPP amplitude (left) and in the quantal content of EPPs (right), registered from NMJs of Panx1 –/– mice in control ( n = 24) and in the presence of BDNF prodomain ( n = 22). Insets show MEPP amplitudes.
    Figure Legend Snippet: p75 receptors and Rho-signaling pathway underlie BDNF prodomain-triggered inhibition of evoked ACh release at mature NMJs. Moreover, the inhibitory effect of the BDNF prodomain (1 nM) on the evoked neuromuscular transmission depends on the endogenous activity of synaptic purinoreceptors at mature NMJs. (A) Changes in the EPP amplitude (left) and in the quantal content of EPPs (right) in control ( n = 20) and upon BDNF prodomain (1 nM) in the presence of Rho-GDI-associated p75 signaling inhibitor TAT-Pep5 (1 μM, n = 21). (B) Changes in the EPP amplitude (left) and in the quantal content of EPPs (right) in control ( n = 17) and in the presence of ROCK inhibitor Y-27632 (3 μM, n = 21). (C) Changes in the EPP amplitude (left) and in the quantal content of EPPs (right) in control ( n = 15) and upon BDNF prodomain (1 nM) in the presence of Y-27632 ( n = 21). (D) Changes in the EPP amplitude (left) and in the quantal content of EPPs (right), registered from NMJs of Panx1 –/– mice in control ( n = 24) and in the presence of BDNF prodomain ( n = 22). Insets show MEPP amplitudes.

    Techniques Used: Inhibition, Transmission Assay, Activity Assay, Mouse Assay

    28) Product Images from "ProBDNF and Brain-Derived Neurotrophic Factor Prodomain Differently Modulate Acetylcholine Release in Regenerating and Mature Mouse Motor Synapses"

    Article Title: ProBDNF and Brain-Derived Neurotrophic Factor Prodomain Differently Modulate Acetylcholine Release in Regenerating and Mature Mouse Motor Synapses

    Journal: Frontiers in Cellular Neuroscience

    doi: 10.3389/fncel.2022.866802

    BDNF prodomain in low concentration (1 nM) pre-synaptically increases ACh quantal size and simultaneously induces oppositely directed presynaptic effects affecting the evoked ACh release at newly formed NMJs of reinnervated mouse m. EDL. (A) Representative recordings of MEPPs (left above) and mean MEPP amplitude and cumulative probability plots (right above), frequency and time-course parameters (left to right below) in control ( n = 20) and upon application of BDNF prodomain ( n = 22). (B) Mean MEPP amplitude in control ( n = 16) and during inhibition of vesicular ACh transporter by vesamicol (1 μM, n = 17) (left) and mean MEPP amplitude and cumulative probability plots in control ( n = 15) and upon application of BDNF prodomain in the presence of vesamicol ( n = 16). (C) Changes in the EPP amplitude (left) and their quantal content (right) in control ( n = 31) and in the presence of BDNF prodomain ( n = 41). Inset shows MEPP amplitudes.
    Figure Legend Snippet: BDNF prodomain in low concentration (1 nM) pre-synaptically increases ACh quantal size and simultaneously induces oppositely directed presynaptic effects affecting the evoked ACh release at newly formed NMJs of reinnervated mouse m. EDL. (A) Representative recordings of MEPPs (left above) and mean MEPP amplitude and cumulative probability plots (right above), frequency and time-course parameters (left to right below) in control ( n = 20) and upon application of BDNF prodomain ( n = 22). (B) Mean MEPP amplitude in control ( n = 16) and during inhibition of vesicular ACh transporter by vesamicol (1 μM, n = 17) (left) and mean MEPP amplitude and cumulative probability plots in control ( n = 15) and upon application of BDNF prodomain in the presence of vesamicol ( n = 16). (C) Changes in the EPP amplitude (left) and their quantal content (right) in control ( n = 31) and in the presence of BDNF prodomain ( n = 41). Inset shows MEPP amplitudes.

    Techniques Used: Concentration Assay, Inhibition

    BK channels do not but GIRK channels mediate BDNF prodomain-induced inhibition of evoked ACh release at mature NMJs. (A) Changes in the EPP amplitude (left) and in the quantal content of EPPs (right) in control ( n = 15) and upon BDNF prodomain (1 nM) in the presence of BK-blocker iberiotoxin (ITx, 100 nM) with L-type Ca 2+ -channel blocker nitrendipine (Nitr., 1 μM) ( n = 21). (B) Changes in the EPP amplitude (left) and in the quantal content of EPPs (right) in control ( n = 15) and in the presence of GIRK blocker tertiapin-Q (100 nM, n = 17). (C) Changes in the EPP amplitude (left) and in the quantal content of EPPs (right) in control ( n = 16) and upon BDNF prodomain (1 nM) in the presence of tertiapin-Q ( n = 19). Insets show MEPP amplitudes.
    Figure Legend Snippet: BK channels do not but GIRK channels mediate BDNF prodomain-induced inhibition of evoked ACh release at mature NMJs. (A) Changes in the EPP amplitude (left) and in the quantal content of EPPs (right) in control ( n = 15) and upon BDNF prodomain (1 nM) in the presence of BK-blocker iberiotoxin (ITx, 100 nM) with L-type Ca 2+ -channel blocker nitrendipine (Nitr., 1 μM) ( n = 21). (B) Changes in the EPP amplitude (left) and in the quantal content of EPPs (right) in control ( n = 15) and in the presence of GIRK blocker tertiapin-Q (100 nM, n = 17). (C) Changes in the EPP amplitude (left) and in the quantal content of EPPs (right) in control ( n = 16) and upon BDNF prodomain (1 nM) in the presence of tertiapin-Q ( n = 19). Insets show MEPP amplitudes.

    Techniques Used: Inhibition

    BDNF prodomain (1 nM) but not proBDNF (1 nM), induces strong inhibition of spontaneous end evoked ACh release at mature NMJs. (A) Mean MEPP amplitude, cumulative probability plots, frequency, and time-course parameters (left to right) in control ( n = 19) and upon application of proBDNF ( n = 26). (B) Representative recordings of MEPPs (top left) and mean MEPP amplitude, cumulative probability plots, frequency, (top right) and their time-course parameters (bottom) in control ( n = 23) and upon application of BDNF prodomain ( n = 33). (C) Representative recordings of EPPs during a short (1 s) high-frequency (50 Hz) train in control (above) and upon application of BDNF prodomain (below). (D) Changes in the EPP amplitude (above) and in the quantal content of EPPs (below) in control ( n = 22) and in the presence of proBDNF ( n = 21). Inset shows MEPP amplitudes.
    Figure Legend Snippet: BDNF prodomain (1 nM) but not proBDNF (1 nM), induces strong inhibition of spontaneous end evoked ACh release at mature NMJs. (A) Mean MEPP amplitude, cumulative probability plots, frequency, and time-course parameters (left to right) in control ( n = 19) and upon application of proBDNF ( n = 26). (B) Representative recordings of MEPPs (top left) and mean MEPP amplitude, cumulative probability plots, frequency, (top right) and their time-course parameters (bottom) in control ( n = 23) and upon application of BDNF prodomain ( n = 33). (C) Representative recordings of EPPs during a short (1 s) high-frequency (50 Hz) train in control (above) and upon application of BDNF prodomain (below). (D) Changes in the EPP amplitude (above) and in the quantal content of EPPs (below) in control ( n = 22) and in the presence of proBDNF ( n = 21). Inset shows MEPP amplitudes.

    Techniques Used: Inhibition

    p75 receptors and Rho-signaling pathway underlie BDNF prodomain-triggered inhibition of evoked ACh release at mature NMJs. Moreover, the inhibitory effect of the BDNF prodomain (1 nM) on the evoked neuromuscular transmission depends on the endogenous activity of synaptic purinoreceptors at mature NMJs. (A) Changes in the EPP amplitude (left) and in the quantal content of EPPs (right) in control ( n = 20) and upon BDNF prodomain (1 nM) in the presence of Rho-GDI-associated p75 signaling inhibitor TAT-Pep5 (1 μM, n = 21). (B) Changes in the EPP amplitude (left) and in the quantal content of EPPs (right) in control ( n = 17) and in the presence of ROCK inhibitor Y-27632 (3 μM, n = 21). (C) Changes in the EPP amplitude (left) and in the quantal content of EPPs (right) in control ( n = 15) and upon BDNF prodomain (1 nM) in the presence of Y-27632 ( n = 21). (D) Changes in the EPP amplitude (left) and in the quantal content of EPPs (right), registered from NMJs of Panx1 –/– mice in control ( n = 24) and in the presence of BDNF prodomain ( n = 22). Insets show MEPP amplitudes.
    Figure Legend Snippet: p75 receptors and Rho-signaling pathway underlie BDNF prodomain-triggered inhibition of evoked ACh release at mature NMJs. Moreover, the inhibitory effect of the BDNF prodomain (1 nM) on the evoked neuromuscular transmission depends on the endogenous activity of synaptic purinoreceptors at mature NMJs. (A) Changes in the EPP amplitude (left) and in the quantal content of EPPs (right) in control ( n = 20) and upon BDNF prodomain (1 nM) in the presence of Rho-GDI-associated p75 signaling inhibitor TAT-Pep5 (1 μM, n = 21). (B) Changes in the EPP amplitude (left) and in the quantal content of EPPs (right) in control ( n = 17) and in the presence of ROCK inhibitor Y-27632 (3 μM, n = 21). (C) Changes in the EPP amplitude (left) and in the quantal content of EPPs (right) in control ( n = 15) and upon BDNF prodomain (1 nM) in the presence of Y-27632 ( n = 21). (D) Changes in the EPP amplitude (left) and in the quantal content of EPPs (right), registered from NMJs of Panx1 –/– mice in control ( n = 24) and in the presence of BDNF prodomain ( n = 22). Insets show MEPP amplitudes.

    Techniques Used: Inhibition, Transmission Assay, Activity Assay, Mouse Assay

    29) Product Images from "ProBDNF and Brain-Derived Neurotrophic Factor Prodomain Differently Modulate Acetylcholine Release in Regenerating and Mature Mouse Motor Synapses"

    Article Title: ProBDNF and Brain-Derived Neurotrophic Factor Prodomain Differently Modulate Acetylcholine Release in Regenerating and Mature Mouse Motor Synapses

    Journal: Frontiers in Cellular Neuroscience

    doi: 10.3389/fncel.2022.866802

    BDNF prodomain in low concentration (1 nM) pre-synaptically increases ACh quantal size and simultaneously induces oppositely directed presynaptic effects affecting the evoked ACh release at newly formed NMJs of reinnervated mouse m. EDL. (A) Representative recordings of MEPPs (left above) and mean MEPP amplitude and cumulative probability plots (right above), frequency and time-course parameters (left to right below) in control ( n = 20) and upon application of BDNF prodomain ( n = 22). (B) Mean MEPP amplitude in control ( n = 16) and during inhibition of vesicular ACh transporter by vesamicol (1 μM, n = 17) (left) and mean MEPP amplitude and cumulative probability plots in control ( n = 15) and upon application of BDNF prodomain in the presence of vesamicol ( n = 16). (C) Changes in the EPP amplitude (left) and their quantal content (right) in control ( n = 31) and in the presence of BDNF prodomain ( n = 41). Inset shows MEPP amplitudes.
    Figure Legend Snippet: BDNF prodomain in low concentration (1 nM) pre-synaptically increases ACh quantal size and simultaneously induces oppositely directed presynaptic effects affecting the evoked ACh release at newly formed NMJs of reinnervated mouse m. EDL. (A) Representative recordings of MEPPs (left above) and mean MEPP amplitude and cumulative probability plots (right above), frequency and time-course parameters (left to right below) in control ( n = 20) and upon application of BDNF prodomain ( n = 22). (B) Mean MEPP amplitude in control ( n = 16) and during inhibition of vesicular ACh transporter by vesamicol (1 μM, n = 17) (left) and mean MEPP amplitude and cumulative probability plots in control ( n = 15) and upon application of BDNF prodomain in the presence of vesamicol ( n = 16). (C) Changes in the EPP amplitude (left) and their quantal content (right) in control ( n = 31) and in the presence of BDNF prodomain ( n = 41). Inset shows MEPP amplitudes.

    Techniques Used: Concentration Assay, Inhibition

    BK channels do not but GIRK channels mediate BDNF prodomain-induced inhibition of evoked ACh release at mature NMJs. (A) Changes in the EPP amplitude (left) and in the quantal content of EPPs (right) in control ( n = 15) and upon BDNF prodomain (1 nM) in the presence of BK-blocker iberiotoxin (ITx, 100 nM) with L-type Ca 2+ -channel blocker nitrendipine (Nitr., 1 μM) ( n = 21). (B) Changes in the EPP amplitude (left) and in the quantal content of EPPs (right) in control ( n = 15) and in the presence of GIRK blocker tertiapin-Q (100 nM, n = 17). (C) Changes in the EPP amplitude (left) and in the quantal content of EPPs (right) in control ( n = 16) and upon BDNF prodomain (1 nM) in the presence of tertiapin-Q ( n = 19). Insets show MEPP amplitudes.
    Figure Legend Snippet: BK channels do not but GIRK channels mediate BDNF prodomain-induced inhibition of evoked ACh release at mature NMJs. (A) Changes in the EPP amplitude (left) and in the quantal content of EPPs (right) in control ( n = 15) and upon BDNF prodomain (1 nM) in the presence of BK-blocker iberiotoxin (ITx, 100 nM) with L-type Ca 2+ -channel blocker nitrendipine (Nitr., 1 μM) ( n = 21). (B) Changes in the EPP amplitude (left) and in the quantal content of EPPs (right) in control ( n = 15) and in the presence of GIRK blocker tertiapin-Q (100 nM, n = 17). (C) Changes in the EPP amplitude (left) and in the quantal content of EPPs (right) in control ( n = 16) and upon BDNF prodomain (1 nM) in the presence of tertiapin-Q ( n = 19). Insets show MEPP amplitudes.

    Techniques Used: Inhibition

    BDNF prodomain (1 nM) but not proBDNF (1 nM), induces strong inhibition of spontaneous end evoked ACh release at mature NMJs. (A) Mean MEPP amplitude, cumulative probability plots, frequency, and time-course parameters (left to right) in control ( n = 19) and upon application of proBDNF ( n = 26). (B) Representative recordings of MEPPs (top left) and mean MEPP amplitude, cumulative probability plots, frequency, (top right) and their time-course parameters (bottom) in control ( n = 23) and upon application of BDNF prodomain ( n = 33). (C) Representative recordings of EPPs during a short (1 s) high-frequency (50 Hz) train in control (above) and upon application of BDNF prodomain (below). (D) Changes in the EPP amplitude (above) and in the quantal content of EPPs (below) in control ( n = 22) and in the presence of proBDNF ( n = 21). Inset shows MEPP amplitudes.
    Figure Legend Snippet: BDNF prodomain (1 nM) but not proBDNF (1 nM), induces strong inhibition of spontaneous end evoked ACh release at mature NMJs. (A) Mean MEPP amplitude, cumulative probability plots, frequency, and time-course parameters (left to right) in control ( n = 19) and upon application of proBDNF ( n = 26). (B) Representative recordings of MEPPs (top left) and mean MEPP amplitude, cumulative probability plots, frequency, (top right) and their time-course parameters (bottom) in control ( n = 23) and upon application of BDNF prodomain ( n = 33). (C) Representative recordings of EPPs during a short (1 s) high-frequency (50 Hz) train in control (above) and upon application of BDNF prodomain (below). (D) Changes in the EPP amplitude (above) and in the quantal content of EPPs (below) in control ( n = 22) and in the presence of proBDNF ( n = 21). Inset shows MEPP amplitudes.

    Techniques Used: Inhibition

    p75 receptors and Rho-signaling pathway underlie BDNF prodomain-triggered inhibition of evoked ACh release at mature NMJs. Moreover, the inhibitory effect of the BDNF prodomain (1 nM) on the evoked neuromuscular transmission depends on the endogenous activity of synaptic purinoreceptors at mature NMJs. (A) Changes in the EPP amplitude (left) and in the quantal content of EPPs (right) in control ( n = 20) and upon BDNF prodomain (1 nM) in the presence of Rho-GDI-associated p75 signaling inhibitor TAT-Pep5 (1 μM, n = 21). (B) Changes in the EPP amplitude (left) and in the quantal content of EPPs (right) in control ( n = 17) and in the presence of ROCK inhibitor Y-27632 (3 μM, n = 21). (C) Changes in the EPP amplitude (left) and in the quantal content of EPPs (right) in control ( n = 15) and upon BDNF prodomain (1 nM) in the presence of Y-27632 ( n = 21). (D) Changes in the EPP amplitude (left) and in the quantal content of EPPs (right), registered from NMJs of Panx1 –/– mice in control ( n = 24) and in the presence of BDNF prodomain ( n = 22). Insets show MEPP amplitudes.
    Figure Legend Snippet: p75 receptors and Rho-signaling pathway underlie BDNF prodomain-triggered inhibition of evoked ACh release at mature NMJs. Moreover, the inhibitory effect of the BDNF prodomain (1 nM) on the evoked neuromuscular transmission depends on the endogenous activity of synaptic purinoreceptors at mature NMJs. (A) Changes in the EPP amplitude (left) and in the quantal content of EPPs (right) in control ( n = 20) and upon BDNF prodomain (1 nM) in the presence of Rho-GDI-associated p75 signaling inhibitor TAT-Pep5 (1 μM, n = 21). (B) Changes in the EPP amplitude (left) and in the quantal content of EPPs (right) in control ( n = 17) and in the presence of ROCK inhibitor Y-27632 (3 μM, n = 21). (C) Changes in the EPP amplitude (left) and in the quantal content of EPPs (right) in control ( n = 15) and upon BDNF prodomain (1 nM) in the presence of Y-27632 ( n = 21). (D) Changes in the EPP amplitude (left) and in the quantal content of EPPs (right), registered from NMJs of Panx1 –/– mice in control ( n = 24) and in the presence of BDNF prodomain ( n = 22). Insets show MEPP amplitudes.

    Techniques Used: Inhibition, Transmission Assay, Activity Assay, Mouse Assay

    30) Product Images from "ProBDNF and Brain-Derived Neurotrophic Factor Prodomain Differently Modulate Acetylcholine Release in Regenerating and Mature Mouse Motor Synapses"

    Article Title: ProBDNF and Brain-Derived Neurotrophic Factor Prodomain Differently Modulate Acetylcholine Release in Regenerating and Mature Mouse Motor Synapses

    Journal: Frontiers in Cellular Neuroscience

    doi: 10.3389/fncel.2022.866802

    BDNF prodomain in low concentration (1 nM) pre-synaptically increases ACh quantal size and simultaneously induces oppositely directed presynaptic effects affecting the evoked ACh release at newly formed NMJs of reinnervated mouse m. EDL. (A) Representative recordings of MEPPs (left above) and mean MEPP amplitude and cumulative probability plots (right above), frequency and time-course parameters (left to right below) in control ( n = 20) and upon application of BDNF prodomain ( n = 22). (B) Mean MEPP amplitude in control ( n = 16) and during inhibition of vesicular ACh transporter by vesamicol (1 μM, n = 17) (left) and mean MEPP amplitude and cumulative probability plots in control ( n = 15) and upon application of BDNF prodomain in the presence of vesamicol ( n = 16). (C) Changes in the EPP amplitude (left) and their quantal content (right) in control ( n = 31) and in the presence of BDNF prodomain ( n = 41). Inset shows MEPP amplitudes.
    Figure Legend Snippet: BDNF prodomain in low concentration (1 nM) pre-synaptically increases ACh quantal size and simultaneously induces oppositely directed presynaptic effects affecting the evoked ACh release at newly formed NMJs of reinnervated mouse m. EDL. (A) Representative recordings of MEPPs (left above) and mean MEPP amplitude and cumulative probability plots (right above), frequency and time-course parameters (left to right below) in control ( n = 20) and upon application of BDNF prodomain ( n = 22). (B) Mean MEPP amplitude in control ( n = 16) and during inhibition of vesicular ACh transporter by vesamicol (1 μM, n = 17) (left) and mean MEPP amplitude and cumulative probability plots in control ( n = 15) and upon application of BDNF prodomain in the presence of vesamicol ( n = 16). (C) Changes in the EPP amplitude (left) and their quantal content (right) in control ( n = 31) and in the presence of BDNF prodomain ( n = 41). Inset shows MEPP amplitudes.

    Techniques Used: Concentration Assay, Inhibition

    BK channels do not but GIRK channels mediate BDNF prodomain-induced inhibition of evoked ACh release at mature NMJs. (A) Changes in the EPP amplitude (left) and in the quantal content of EPPs (right) in control ( n = 15) and upon BDNF prodomain (1 nM) in the presence of BK-blocker iberiotoxin (ITx, 100 nM) with L-type Ca 2+ -channel blocker nitrendipine (Nitr., 1 μM) ( n = 21). (B) Changes in the EPP amplitude (left) and in the quantal content of EPPs (right) in control ( n = 15) and in the presence of GIRK blocker tertiapin-Q (100 nM, n = 17). (C) Changes in the EPP amplitude (left) and in the quantal content of EPPs (right) in control ( n = 16) and upon BDNF prodomain (1 nM) in the presence of tertiapin-Q ( n = 19). Insets show MEPP amplitudes.
    Figure Legend Snippet: BK channels do not but GIRK channels mediate BDNF prodomain-induced inhibition of evoked ACh release at mature NMJs. (A) Changes in the EPP amplitude (left) and in the quantal content of EPPs (right) in control ( n = 15) and upon BDNF prodomain (1 nM) in the presence of BK-blocker iberiotoxin (ITx, 100 nM) with L-type Ca 2+ -channel blocker nitrendipine (Nitr., 1 μM) ( n = 21). (B) Changes in the EPP amplitude (left) and in the quantal content of EPPs (right) in control ( n = 15) and in the presence of GIRK blocker tertiapin-Q (100 nM, n = 17). (C) Changes in the EPP amplitude (left) and in the quantal content of EPPs (right) in control ( n = 16) and upon BDNF prodomain (1 nM) in the presence of tertiapin-Q ( n = 19). Insets show MEPP amplitudes.

    Techniques Used: Inhibition

    BDNF prodomain (1 nM) but not proBDNF (1 nM), induces strong inhibition of spontaneous end evoked ACh release at mature NMJs. (A) Mean MEPP amplitude, cumulative probability plots, frequency, and time-course parameters (left to right) in control ( n = 19) and upon application of proBDNF ( n = 26). (B) Representative recordings of MEPPs (top left) and mean MEPP amplitude, cumulative probability plots, frequency, (top right) and their time-course parameters (bottom) in control ( n = 23) and upon application of BDNF prodomain ( n = 33). (C) Representative recordings of EPPs during a short (1 s) high-frequency (50 Hz) train in control (above) and upon application of BDNF prodomain (below). (D) Changes in the EPP amplitude (above) and in the quantal content of EPPs (below) in control ( n = 22) and in the presence of proBDNF ( n = 21). Inset shows MEPP amplitudes.
    Figure Legend Snippet: BDNF prodomain (1 nM) but not proBDNF (1 nM), induces strong inhibition of spontaneous end evoked ACh release at mature NMJs. (A) Mean MEPP amplitude, cumulative probability plots, frequency, and time-course parameters (left to right) in control ( n = 19) and upon application of proBDNF ( n = 26). (B) Representative recordings of MEPPs (top left) and mean MEPP amplitude, cumulative probability plots, frequency, (top right) and their time-course parameters (bottom) in control ( n = 23) and upon application of BDNF prodomain ( n = 33). (C) Representative recordings of EPPs during a short (1 s) high-frequency (50 Hz) train in control (above) and upon application of BDNF prodomain (below). (D) Changes in the EPP amplitude (above) and in the quantal content of EPPs (below) in control ( n = 22) and in the presence of proBDNF ( n = 21). Inset shows MEPP amplitudes.

    Techniques Used: Inhibition

    p75 receptors and Rho-signaling pathway underlie BDNF prodomain-triggered inhibition of evoked ACh release at mature NMJs. Moreover, the inhibitory effect of the BDNF prodomain (1 nM) on the evoked neuromuscular transmission depends on the endogenous activity of synaptic purinoreceptors at mature NMJs. (A) Changes in the EPP amplitude (left) and in the quantal content of EPPs (right) in control ( n = 20) and upon BDNF prodomain (1 nM) in the presence of Rho-GDI-associated p75 signaling inhibitor TAT-Pep5 (1 μM, n = 21). (B) Changes in the EPP amplitude (left) and in the quantal content of EPPs (right) in control ( n = 17) and in the presence of ROCK inhibitor Y-27632 (3 μM, n = 21). (C) Changes in the EPP amplitude (left) and in the quantal content of EPPs (right) in control ( n = 15) and upon BDNF prodomain (1 nM) in the presence of Y-27632 ( n = 21). (D) Changes in the EPP amplitude (left) and in the quantal content of EPPs (right), registered from NMJs of Panx1 –/– mice in control ( n = 24) and in the presence of BDNF prodomain ( n = 22). Insets show MEPP amplitudes.
    Figure Legend Snippet: p75 receptors and Rho-signaling pathway underlie BDNF prodomain-triggered inhibition of evoked ACh release at mature NMJs. Moreover, the inhibitory effect of the BDNF prodomain (1 nM) on the evoked neuromuscular transmission depends on the endogenous activity of synaptic purinoreceptors at mature NMJs. (A) Changes in the EPP amplitude (left) and in the quantal content of EPPs (right) in control ( n = 20) and upon BDNF prodomain (1 nM) in the presence of Rho-GDI-associated p75 signaling inhibitor TAT-Pep5 (1 μM, n = 21). (B) Changes in the EPP amplitude (left) and in the quantal content of EPPs (right) in control ( n = 17) and in the presence of ROCK inhibitor Y-27632 (3 μM, n = 21). (C) Changes in the EPP amplitude (left) and in the quantal content of EPPs (right) in control ( n = 15) and upon BDNF prodomain (1 nM) in the presence of Y-27632 ( n = 21). (D) Changes in the EPP amplitude (left) and in the quantal content of EPPs (right), registered from NMJs of Panx1 –/– mice in control ( n = 24) and in the presence of BDNF prodomain ( n = 22). Insets show MEPP amplitudes.

    Techniques Used: Inhibition, Transmission Assay, Activity Assay, Mouse Assay

    31) Product Images from "ProBDNF and Brain-Derived Neurotrophic Factor Prodomain Differently Modulate Acetylcholine Release in Regenerating and Mature Mouse Motor Synapses"

    Article Title: ProBDNF and Brain-Derived Neurotrophic Factor Prodomain Differently Modulate Acetylcholine Release in Regenerating and Mature Mouse Motor Synapses

    Journal: Frontiers in Cellular Neuroscience

    doi: 10.3389/fncel.2022.866802

    BDNF prodomain in low concentration (1 nM) pre-synaptically increases ACh quantal size and simultaneously induces oppositely directed presynaptic effects affecting the evoked ACh release at newly formed NMJs of reinnervated mouse m. EDL. (A) Representative recordings of MEPPs (left above) and mean MEPP amplitude and cumulative probability plots (right above), frequency and time-course parameters (left to right below) in control ( n = 20) and upon application of BDNF prodomain ( n = 22). (B) Mean MEPP amplitude in control ( n = 16) and during inhibition of vesicular ACh transporter by vesamicol (1 μM, n = 17) (left) and mean MEPP amplitude and cumulative probability plots in control ( n = 15) and upon application of BDNF prodomain in the presence of vesamicol ( n = 16). (C) Changes in the EPP amplitude (left) and their quantal content (right) in control ( n = 31) and in the presence of BDNF prodomain ( n = 41). Inset shows MEPP amplitudes.
    Figure Legend Snippet: BDNF prodomain in low concentration (1 nM) pre-synaptically increases ACh quantal size and simultaneously induces oppositely directed presynaptic effects affecting the evoked ACh release at newly formed NMJs of reinnervated mouse m. EDL. (A) Representative recordings of MEPPs (left above) and mean MEPP amplitude and cumulative probability plots (right above), frequency and time-course parameters (left to right below) in control ( n = 20) and upon application of BDNF prodomain ( n = 22). (B) Mean MEPP amplitude in control ( n = 16) and during inhibition of vesicular ACh transporter by vesamicol (1 μM, n = 17) (left) and mean MEPP amplitude and cumulative probability plots in control ( n = 15) and upon application of BDNF prodomain in the presence of vesamicol ( n = 16). (C) Changes in the EPP amplitude (left) and their quantal content (right) in control ( n = 31) and in the presence of BDNF prodomain ( n = 41). Inset shows MEPP amplitudes.

    Techniques Used: Concentration Assay, Inhibition

    BK channels do not but GIRK channels mediate BDNF prodomain-induced inhibition of evoked ACh release at mature NMJs. (A) Changes in the EPP amplitude (left) and in the quantal content of EPPs (right) in control ( n = 15) and upon BDNF prodomain (1 nM) in the presence of BK-blocker iberiotoxin (ITx, 100 nM) with L-type Ca 2+ -channel blocker nitrendipine (Nitr., 1 μM) ( n = 21). (B) Changes in the EPP amplitude (left) and in the quantal content of EPPs (right) in control ( n = 15) and in the presence of GIRK blocker tertiapin-Q (100 nM, n = 17). (C) Changes in the EPP amplitude (left) and in the quantal content of EPPs (right) in control ( n = 16) and upon BDNF prodomain (1 nM) in the presence of tertiapin-Q ( n = 19). Insets show MEPP amplitudes.
    Figure Legend Snippet: BK channels do not but GIRK channels mediate BDNF prodomain-induced inhibition of evoked ACh release at mature NMJs. (A) Changes in the EPP amplitude (left) and in the quantal content of EPPs (right) in control ( n = 15) and upon BDNF prodomain (1 nM) in the presence of BK-blocker iberiotoxin (ITx, 100 nM) with L-type Ca 2+ -channel blocker nitrendipine (Nitr., 1 μM) ( n = 21). (B) Changes in the EPP amplitude (left) and in the quantal content of EPPs (right) in control ( n = 15) and in the presence of GIRK blocker tertiapin-Q (100 nM, n = 17). (C) Changes in the EPP amplitude (left) and in the quantal content of EPPs (right) in control ( n = 16) and upon BDNF prodomain (1 nM) in the presence of tertiapin-Q ( n = 19). Insets show MEPP amplitudes.

    Techniques Used: Inhibition

    BDNF prodomain (1 nM) but not proBDNF (1 nM), induces strong inhibition of spontaneous end evoked ACh release at mature NMJs. (A) Mean MEPP amplitude, cumulative probability plots, frequency, and time-course parameters (left to right) in control ( n = 19) and upon application of proBDNF ( n = 26). (B) Representative recordings of MEPPs (top left) and mean MEPP amplitude, cumulative probability plots, frequency, (top right) and their time-course parameters (bottom) in control ( n = 23) and upon application of BDNF prodomain ( n = 33). (C) Representative recordings of EPPs during a short (1 s) high-frequency (50 Hz) train in control (above) and upon application of BDNF prodomain (below). (D) Changes in the EPP amplitude (above) and in the quantal content of EPPs (below) in control ( n = 22) and in the presence of proBDNF ( n = 21). Inset shows MEPP amplitudes.
    Figure Legend Snippet: BDNF prodomain (1 nM) but not proBDNF (1 nM), induces strong inhibition of spontaneous end evoked ACh release at mature NMJs. (A) Mean MEPP amplitude, cumulative probability plots, frequency, and time-course parameters (left to right) in control ( n = 19) and upon application of proBDNF ( n = 26). (B) Representative recordings of MEPPs (top left) and mean MEPP amplitude, cumulative probability plots, frequency, (top right) and their time-course parameters (bottom) in control ( n = 23) and upon application of BDNF prodomain ( n = 33). (C) Representative recordings of EPPs during a short (1 s) high-frequency (50 Hz) train in control (above) and upon application of BDNF prodomain (below). (D) Changes in the EPP amplitude (above) and in the quantal content of EPPs (below) in control ( n = 22) and in the presence of proBDNF ( n = 21). Inset shows MEPP amplitudes.

    Techniques Used: Inhibition

    p75 receptors and Rho-signaling pathway underlie BDNF prodomain-triggered inhibition of evoked ACh release at mature NMJs. Moreover, the inhibitory effect of the BDNF prodomain (1 nM) on the evoked neuromuscular transmission depends on the endogenous activity of synaptic purinoreceptors at mature NMJs. (A) Changes in the EPP amplitude (left) and in the quantal content of EPPs (right) in control ( n = 20) and upon BDNF prodomain (1 nM) in the presence of Rho-GDI-associated p75 signaling inhibitor TAT-Pep5 (1 μM, n = 21). (B) Changes in the EPP amplitude (left) and in the quantal content of EPPs (right) in control ( n = 17) and in the presence of ROCK inhibitor Y-27632 (3 μM, n = 21). (C) Changes in the EPP amplitude (left) and in the quantal content of EPPs (right) in control ( n = 15) and upon BDNF prodomain (1 nM) in the presence of Y-27632 ( n = 21). (D) Changes in the EPP amplitude (left) and in the quantal content of EPPs (right), registered from NMJs of Panx1 –/– mice in control ( n = 24) and in the presence of BDNF prodomain ( n = 22). Insets show MEPP amplitudes.
    Figure Legend Snippet: p75 receptors and Rho-signaling pathway underlie BDNF prodomain-triggered inhibition of evoked ACh release at mature NMJs. Moreover, the inhibitory effect of the BDNF prodomain (1 nM) on the evoked neuromuscular transmission depends on the endogenous activity of synaptic purinoreceptors at mature NMJs. (A) Changes in the EPP amplitude (left) and in the quantal content of EPPs (right) in control ( n = 20) and upon BDNF prodomain (1 nM) in the presence of Rho-GDI-associated p75 signaling inhibitor TAT-Pep5 (1 μM, n = 21). (B) Changes in the EPP amplitude (left) and in the quantal content of EPPs (right) in control ( n = 17) and in the presence of ROCK inhibitor Y-27632 (3 μM, n = 21). (C) Changes in the EPP amplitude (left) and in the quantal content of EPPs (right) in control ( n = 15) and upon BDNF prodomain (1 nM) in the presence of Y-27632 ( n = 21). (D) Changes in the EPP amplitude (left) and in the quantal content of EPPs (right), registered from NMJs of Panx1 –/– mice in control ( n = 24) and in the presence of BDNF prodomain ( n = 22). Insets show MEPP amplitudes.

    Techniques Used: Inhibition, Transmission Assay, Activity Assay, Mouse Assay

    32) Product Images from "ProBDNF and Brain-Derived Neurotrophic Factor Prodomain Differently Modulate Acetylcholine Release in Regenerating and Mature Mouse Motor Synapses"

    Article Title: ProBDNF and Brain-Derived Neurotrophic Factor Prodomain Differently Modulate Acetylcholine Release in Regenerating and Mature Mouse Motor Synapses

    Journal: Frontiers in Cellular Neuroscience

    doi: 10.3389/fncel.2022.866802

    BDNF prodomain in low concentration (1 nM) pre-synaptically increases ACh quantal size and simultaneously induces oppositely directed presynaptic effects affecting the evoked ACh release at newly formed NMJs of reinnervated mouse m. EDL. (A) Representative recordings of MEPPs (left above) and mean MEPP amplitude and cumulative probability plots (right above), frequency and time-course parameters (left to right below) in control ( n = 20) and upon application of BDNF prodomain ( n = 22). (B) Mean MEPP amplitude in control ( n = 16) and during inhibition of vesicular ACh transporter by vesamicol (1 μM, n = 17) (left) and mean MEPP amplitude and cumulative probability plots in control ( n = 15) and upon application of BDNF prodomain in the presence of vesamicol ( n = 16). (C) Changes in the EPP amplitude (left) and their quantal content (right) in control ( n = 31) and in the presence of BDNF prodomain ( n = 41). Inset shows MEPP amplitudes.
    Figure Legend Snippet: BDNF prodomain in low concentration (1 nM) pre-synaptically increases ACh quantal size and simultaneously induces oppositely directed presynaptic effects affecting the evoked ACh release at newly formed NMJs of reinnervated mouse m. EDL. (A) Representative recordings of MEPPs (left above) and mean MEPP amplitude and cumulative probability plots (right above), frequency and time-course parameters (left to right below) in control ( n = 20) and upon application of BDNF prodomain ( n = 22). (B) Mean MEPP amplitude in control ( n = 16) and during inhibition of vesicular ACh transporter by vesamicol (1 μM, n = 17) (left) and mean MEPP amplitude and cumulative probability plots in control ( n = 15) and upon application of BDNF prodomain in the presence of vesamicol ( n = 16). (C) Changes in the EPP amplitude (left) and their quantal content (right) in control ( n = 31) and in the presence of BDNF prodomain ( n = 41). Inset shows MEPP amplitudes.

    Techniques Used: Concentration Assay, Inhibition

    BK channels do not but GIRK channels mediate BDNF prodomain-induced inhibition of evoked ACh release at mature NMJs. (A) Changes in the EPP amplitude (left) and in the quantal content of EPPs (right) in control ( n = 15) and upon BDNF prodomain (1 nM) in the presence of BK-blocker iberiotoxin (ITx, 100 nM) with L-type Ca 2+ -channel blocker nitrendipine (Nitr., 1 μM) ( n = 21). (B) Changes in the EPP amplitude (left) and in the quantal content of EPPs (right) in control ( n = 15) and in the presence of GIRK blocker tertiapin-Q (100 nM, n = 17). (C) Changes in the EPP amplitude (left) and in the quantal content of EPPs (right) in control ( n = 16) and upon BDNF prodomain (1 nM) in the presence of tertiapin-Q ( n = 19). Insets show MEPP amplitudes.
    Figure Legend Snippet: BK channels do not but GIRK channels mediate BDNF prodomain-induced inhibition of evoked ACh release at mature NMJs. (A) Changes in the EPP amplitude (left) and in the quantal content of EPPs (right) in control ( n = 15) and upon BDNF prodomain (1 nM) in the presence of BK-blocker iberiotoxin (ITx, 100 nM) with L-type Ca 2+ -channel blocker nitrendipine (Nitr., 1 μM) ( n = 21). (B) Changes in the EPP amplitude (left) and in the quantal content of EPPs (right) in control ( n = 15) and in the presence of GIRK blocker tertiapin-Q (100 nM, n = 17). (C) Changes in the EPP amplitude (left) and in the quantal content of EPPs (right) in control ( n = 16) and upon BDNF prodomain (1 nM) in the presence of tertiapin-Q ( n = 19). Insets show MEPP amplitudes.

    Techniques Used: Inhibition

    BDNF prodomain (1 nM) but not proBDNF (1 nM), induces strong inhibition of spontaneous end evoked ACh release at mature NMJs. (A) Mean MEPP amplitude, cumulative probability plots, frequency, and time-course parameters (left to right) in control ( n = 19) and upon application of proBDNF ( n = 26). (B) Representative recordings of MEPPs (top left) and mean MEPP amplitude, cumulative probability plots, frequency, (top right) and their time-course parameters (bottom) in control ( n = 23) and upon application of BDNF prodomain ( n = 33). (C) Representative recordings of EPPs during a short (1 s) high-frequency (50 Hz) train in control (above) and upon application of BDNF prodomain (below). (D) Changes in the EPP amplitude (above) and in the quantal content of EPPs (below) in control ( n = 22) and in the presence of proBDNF ( n = 21). Inset shows MEPP amplitudes.
    Figure Legend Snippet: BDNF prodomain (1 nM) but not proBDNF (1 nM), induces strong inhibition of spontaneous end evoked ACh release at mature NMJs. (A) Mean MEPP amplitude, cumulative probability plots, frequency, and time-course parameters (left to right) in control ( n = 19) and upon application of proBDNF ( n = 26). (B) Representative recordings of MEPPs (top left) and mean MEPP amplitude, cumulative probability plots, frequency, (top right) and their time-course parameters (bottom) in control ( n = 23) and upon application of BDNF prodomain ( n = 33). (C) Representative recordings of EPPs during a short (1 s) high-frequency (50 Hz) train in control (above) and upon application of BDNF prodomain (below). (D) Changes in the EPP amplitude (above) and in the quantal content of EPPs (below) in control ( n = 22) and in the presence of proBDNF ( n = 21). Inset shows MEPP amplitudes.

    Techniques Used: Inhibition

    p75 receptors and Rho-signaling pathway underlie BDNF prodomain-triggered inhibition of evoked ACh release at mature NMJs. Moreover, the inhibitory effect of the BDNF prodomain (1 nM) on the evoked neuromuscular transmission depends on the endogenous activity of synaptic purinoreceptors at mature NMJs. (A) Changes in the EPP amplitude (left) and in the quantal content of EPPs (right) in control ( n = 20) and upon BDNF prodomain (1 nM) in the presence of Rho-GDI-associated p75 signaling inhibitor TAT-Pep5 (1 μM, n = 21). (B) Changes in the EPP amplitude (left) and in the quantal content of EPPs (right) in control ( n = 17) and in the presence of ROCK inhibitor Y-27632 (3 μM, n = 21). (C) Changes in the EPP amplitude (left) and in the quantal content of EPPs (right) in control ( n = 15) and upon BDNF prodomain (1 nM) in the presence of Y-27632 ( n = 21). (D) Changes in the EPP amplitude (left) and in the quantal content of EPPs (right), registered from NMJs of Panx1 –/– mice in control ( n = 24) and in the presence of BDNF prodomain ( n = 22). Insets show MEPP amplitudes.
    Figure Legend Snippet: p75 receptors and Rho-signaling pathway underlie BDNF prodomain-triggered inhibition of evoked ACh release at mature NMJs. Moreover, the inhibitory effect of the BDNF prodomain (1 nM) on the evoked neuromuscular transmission depends on the endogenous activity of synaptic purinoreceptors at mature NMJs. (A) Changes in the EPP amplitude (left) and in the quantal content of EPPs (right) in control ( n = 20) and upon BDNF prodomain (1 nM) in the presence of Rho-GDI-associated p75 signaling inhibitor TAT-Pep5 (1 μM, n = 21). (B) Changes in the EPP amplitude (left) and in the quantal content of EPPs (right) in control ( n = 17) and in the presence of ROCK inhibitor Y-27632 (3 μM, n = 21). (C) Changes in the EPP amplitude (left) and in the quantal content of EPPs (right) in control ( n = 15) and upon BDNF prodomain (1 nM) in the presence of Y-27632 ( n = 21). (D) Changes in the EPP amplitude (left) and in the quantal content of EPPs (right), registered from NMJs of Panx1 –/– mice in control ( n = 24) and in the presence of BDNF prodomain ( n = 22). Insets show MEPP amplitudes.

    Techniques Used: Inhibition, Transmission Assay, Activity Assay, Mouse Assay

    33) Product Images from "ProBDNF and Brain-Derived Neurotrophic Factor Prodomain Differently Modulate Acetylcholine Release in Regenerating and Mature Mouse Motor Synapses"

    Article Title: ProBDNF and Brain-Derived Neurotrophic Factor Prodomain Differently Modulate Acetylcholine Release in Regenerating and Mature Mouse Motor Synapses

    Journal: Frontiers in Cellular Neuroscience

    doi: 10.3389/fncel.2022.866802

    BDNF prodomain in low concentration (1 nM) pre-synaptically increases ACh quantal size and simultaneously induces oppositely directed presynaptic effects affecting the evoked ACh release at newly formed NMJs of reinnervated mouse m. EDL. (A) Representative recordings of MEPPs (left above) and mean MEPP amplitude and cumulative probability plots (right above), frequency and time-course parameters (left to right below) in control ( n = 20) and upon application of BDNF prodomain ( n = 22). (B) Mean MEPP amplitude in control ( n = 16) and during inhibition of vesicular ACh transporter by vesamicol (1 μM, n = 17) (left) and mean MEPP amplitude and cumulative probability plots in control ( n = 15) and upon application of BDNF prodomain in the presence of vesamicol ( n = 16). (C) Changes in the EPP amplitude (left) and their quantal content (right) in control ( n = 31) and in the presence of BDNF prodomain ( n = 41). Inset shows MEPP amplitudes.
    Figure Legend Snippet: BDNF prodomain in low concentration (1 nM) pre-synaptically increases ACh quantal size and simultaneously induces oppositely directed presynaptic effects affecting the evoked ACh release at newly formed NMJs of reinnervated mouse m. EDL. (A) Representative recordings of MEPPs (left above) and mean MEPP amplitude and cumulative probability plots (right above), frequency and time-course parameters (left to right below) in control ( n = 20) and upon application of BDNF prodomain ( n = 22). (B) Mean MEPP amplitude in control ( n = 16) and during inhibition of vesicular ACh transporter by vesamicol (1 μM, n = 17) (left) and mean MEPP amplitude and cumulative probability plots in control ( n = 15) and upon application of BDNF prodomain in the presence of vesamicol ( n = 16). (C) Changes in the EPP amplitude (left) and their quantal content (right) in control ( n = 31) and in the presence of BDNF prodomain ( n = 41). Inset shows MEPP amplitudes.

    Techniques Used: Concentration Assay, Inhibition

    BK channels do not but GIRK channels mediate BDNF prodomain-induced inhibition of evoked ACh release at mature NMJs. (A) Changes in the EPP amplitude (left) and in the quantal content of EPPs (right) in control ( n = 15) and upon BDNF prodomain (1 nM) in the presence of BK-blocker iberiotoxin (ITx, 100 nM) with L-type Ca 2+ -channel blocker nitrendipine (Nitr., 1 μM) ( n = 21). (B) Changes in the EPP amplitude (left) and in the quantal content of EPPs (right) in control ( n = 15) and in the presence of GIRK blocker tertiapin-Q (100 nM, n = 17). (C) Changes in the EPP amplitude (left) and in the quantal content of EPPs (right) in control ( n = 16) and upon BDNF prodomain (1 nM) in the presence of tertiapin-Q ( n = 19). Insets show MEPP amplitudes.
    Figure Legend Snippet: BK channels do not but GIRK channels mediate BDNF prodomain-induced inhibition of evoked ACh release at mature NMJs. (A) Changes in the EPP amplitude (left) and in the quantal content of EPPs (right) in control ( n = 15) and upon BDNF prodomain (1 nM) in the presence of BK-blocker iberiotoxin (ITx, 100 nM) with L-type Ca 2+ -channel blocker nitrendipine (Nitr., 1 μM) ( n = 21). (B) Changes in the EPP amplitude (left) and in the quantal content of EPPs (right) in control ( n = 15) and in the presence of GIRK blocker tertiapin-Q (100 nM, n = 17). (C) Changes in the EPP amplitude (left) and in the quantal content of EPPs (right) in control ( n = 16) and upon BDNF prodomain (1 nM) in the presence of tertiapin-Q ( n = 19). Insets show MEPP amplitudes.

    Techniques Used: Inhibition

    BDNF prodomain (1 nM) but not proBDNF (1 nM), induces strong inhibition of spontaneous end evoked ACh release at mature NMJs. (A) Mean MEPP amplitude, cumulative probability plots, frequency, and time-course parameters (left to right) in control ( n = 19) and upon application of proBDNF ( n = 26). (B) Representative recordings of MEPPs (top left) and mean MEPP amplitude, cumulative probability plots, frequency, (top right) and their time-course parameters (bottom) in control ( n = 23) and upon application of BDNF prodomain ( n = 33). (C) Representative recordings of EPPs during a short (1 s) high-frequency (50 Hz) train in control (above) and upon application of BDNF prodomain (below). (D) Changes in the EPP amplitude (above) and in the quantal content of EPPs (below) in control ( n = 22) and in the presence of proBDNF ( n = 21). Inset shows MEPP amplitudes.
    Figure Legend Snippet: BDNF prodomain (1 nM) but not proBDNF (1 nM), induces strong inhibition of spontaneous end evoked ACh release at mature NMJs. (A) Mean MEPP amplitude, cumulative probability plots, frequency, and time-course parameters (left to right) in control ( n = 19) and upon application of proBDNF ( n = 26). (B) Representative recordings of MEPPs (top left) and mean MEPP amplitude, cumulative probability plots, frequency, (top right) and their time-course parameters (bottom) in control ( n = 23) and upon application of BDNF prodomain ( n = 33). (C) Representative recordings of EPPs during a short (1 s) high-frequency (50 Hz) train in control (above) and upon application of BDNF prodomain (below). (D) Changes in the EPP amplitude (above) and in the quantal content of EPPs (below) in control ( n = 22) and in the presence of proBDNF ( n = 21). Inset shows MEPP amplitudes.

    Techniques Used: Inhibition

    p75 receptors and Rho-signaling pathway underlie BDNF prodomain-triggered inhibition of evoked ACh release at mature NMJs. Moreover, the inhibitory effect of the BDNF prodomain (1 nM) on the evoked neuromuscular transmission depends on the endogenous activity of synaptic purinoreceptors at mature NMJs. (A) Changes in the EPP amplitude (left) and in the quantal content of EPPs (right) in control ( n = 20) and upon BDNF prodomain (1 nM) in the presence of Rho-GDI-associated p75 signaling inhibitor TAT-Pep5 (1 μM, n = 21). (B) Changes in the EPP amplitude (left) and in the quantal content of EPPs (right) in control ( n = 17) and in the presence of ROCK inhibitor Y-27632 (3 μM, n = 21). (C) Changes in the EPP amplitude (left) and in the quantal content of EPPs (right) in control ( n = 15) and upon BDNF prodomain (1 nM) in the presence of Y-27632 ( n = 21). (D) Changes in the EPP amplitude (left) and in the quantal content of EPPs (right), registered from NMJs of Panx1 –/– mice in control ( n = 24) and in the presence of BDNF prodomain ( n = 22). Insets show MEPP amplitudes.
    Figure Legend Snippet: p75 receptors and Rho-signaling pathway underlie BDNF prodomain-triggered inhibition of evoked ACh release at mature NMJs. Moreover, the inhibitory effect of the BDNF prodomain (1 nM) on the evoked neuromuscular transmission depends on the endogenous activity of synaptic purinoreceptors at mature NMJs. (A) Changes in the EPP amplitude (left) and in the quantal content of EPPs (right) in control ( n = 20) and upon BDNF prodomain (1 nM) in the presence of Rho-GDI-associated p75 signaling inhibitor TAT-Pep5 (1 μM, n = 21). (B) Changes in the EPP amplitude (left) and in the quantal content of EPPs (right) in control ( n = 17) and in the presence of ROCK inhibitor Y-27632 (3 μM, n = 21). (C) Changes in the EPP amplitude (left) and in the quantal content of EPPs (right) in control ( n = 15) and upon BDNF prodomain (1 nM) in the presence of Y-27632 ( n = 21). (D) Changes in the EPP amplitude (left) and in the quantal content of EPPs (right), registered from NMJs of Panx1 –/– mice in control ( n = 24) and in the presence of BDNF prodomain ( n = 22). Insets show MEPP amplitudes.

    Techniques Used: Inhibition, Transmission Assay, Activity Assay, Mouse Assay

    34) Product Images from "ProBDNF and Brain-Derived Neurotrophic Factor Prodomain Differently Modulate Acetylcholine Release in Regenerating and Mature Mouse Motor Synapses"

    Article Title: ProBDNF and Brain-Derived Neurotrophic Factor Prodomain Differently Modulate Acetylcholine Release in Regenerating and Mature Mouse Motor Synapses

    Journal: Frontiers in Cellular Neuroscience

    doi: 10.3389/fncel.2022.866802

    BDNF prodomain in low concentration (1 nM) pre-synaptically increases ACh quantal size and simultaneously induces oppositely directed presynaptic effects affecting the evoked ACh release at newly formed NMJs of reinnervated mouse m. EDL. (A) Representative recordings of MEPPs (left above) and mean MEPP amplitude and cumulative probability plots (right above), frequency and time-course parameters (left to right below) in control ( n = 20) and upon application of BDNF prodomain ( n = 22). (B) Mean MEPP amplitude in control ( n = 16) and during inhibition of vesicular ACh transporter by vesamicol (1 μM, n = 17) (left) and mean MEPP amplitude and cumulative probability plots in control ( n = 15) and upon application of BDNF prodomain in the presence of vesamicol ( n = 16). (C) Changes in the EPP amplitude (left) and their quantal content (right) in control ( n = 31) and in the presence of BDNF prodomain ( n = 41). Inset shows MEPP amplitudes.
    Figure Legend Snippet: BDNF prodomain in low concentration (1 nM) pre-synaptically increases ACh quantal size and simultaneously induces oppositely directed presynaptic effects affecting the evoked ACh release at newly formed NMJs of reinnervated mouse m. EDL. (A) Representative recordings of MEPPs (left above) and mean MEPP amplitude and cumulative probability plots (right above), frequency and time-course parameters (left to right below) in control ( n = 20) and upon application of BDNF prodomain ( n = 22). (B) Mean MEPP amplitude in control ( n = 16) and during inhibition of vesicular ACh transporter by vesamicol (1 μM, n = 17) (left) and mean MEPP amplitude and cumulative probability plots in control ( n = 15) and upon application of BDNF prodomain in the presence of vesamicol ( n = 16). (C) Changes in the EPP amplitude (left) and their quantal content (right) in control ( n = 31) and in the presence of BDNF prodomain ( n = 41). Inset shows MEPP amplitudes.

    Techniques Used: Concentration Assay, Inhibition

    BK channels do not but GIRK channels mediate BDNF prodomain-induced inhibition of evoked ACh release at mature NMJs. (A) Changes in the EPP amplitude (left) and in the quantal content of EPPs (right) in control ( n = 15) and upon BDNF prodomain (1 nM) in the presence of BK-blocker iberiotoxin (ITx, 100 nM) with L-type Ca 2+ -channel blocker nitrendipine (Nitr., 1 μM) ( n = 21). (B) Changes in the EPP amplitude (left) and in the quantal content of EPPs (right) in control ( n = 15) and in the presence of GIRK blocker tertiapin-Q (100 nM, n = 17). (C) Changes in the EPP amplitude (left) and in the quantal content of EPPs (right) in control ( n = 16) and upon BDNF prodomain (1 nM) in the presence of tertiapin-Q ( n = 19). Insets show MEPP amplitudes.
    Figure Legend Snippet: BK channels do not but GIRK channels mediate BDNF prodomain-induced inhibition of evoked ACh release at mature NMJs. (A) Changes in the EPP amplitude (left) and in the quantal content of EPPs (right) in control ( n = 15) and upon BDNF prodomain (1 nM) in the presence of BK-blocker iberiotoxin (ITx, 100 nM) with L-type Ca 2+ -channel blocker nitrendipine (Nitr., 1 μM) ( n = 21). (B) Changes in the EPP amplitude (left) and in the quantal content of EPPs (right) in control ( n = 15) and in the presence of GIRK blocker tertiapin-Q (100 nM, n = 17). (C) Changes in the EPP amplitude (left) and in the quantal content of EPPs (right) in control ( n = 16) and upon BDNF prodomain (1 nM) in the presence of tertiapin-Q ( n = 19). Insets show MEPP amplitudes.

    Techniques Used: Inhibition

    BDNF prodomain (1 nM) but not proBDNF (1 nM), induces strong inhibition of spontaneous end evoked ACh release at mature NMJs. (A) Mean MEPP amplitude, cumulative probability plots, frequency, and time-course parameters (left to right) in control ( n = 19) and upon application of proBDNF ( n = 26). (B) Representative recordings of MEPPs (top left) and mean MEPP amplitude, cumulative probability plots, frequency, (top right) and their time-course parameters (bottom) in control ( n = 23) and upon application of BDNF prodomain ( n = 33). (C) Representative recordings of EPPs during a short (1 s) high-frequency (50 Hz) train in control (above) and upon application of BDNF prodomain (below). (D) Changes in the EPP amplitude (above) and in the quantal content of EPPs (below) in control ( n = 22) and in the presence of proBDNF ( n = 21). Inset shows MEPP amplitudes.
    Figure Legend Snippet: BDNF prodomain (1 nM) but not proBDNF (1 nM), induces strong inhibition of spontaneous end evoked ACh release at mature NMJs. (A) Mean MEPP amplitude, cumulative probability plots, frequency, and time-course parameters (left to right) in control ( n = 19) and upon application of proBDNF ( n = 26). (B) Representative recordings of MEPPs (top left) and mean MEPP amplitude, cumulative probability plots, frequency, (top right) and their time-course parameters (bottom) in control ( n = 23) and upon application of BDNF prodomain ( n = 33). (C) Representative recordings of EPPs during a short (1 s) high-frequency (50 Hz) train in control (above) and upon application of BDNF prodomain (below). (D) Changes in the EPP amplitude (above) and in the quantal content of EPPs (below) in control ( n = 22) and in the presence of proBDNF ( n = 21). Inset shows MEPP amplitudes.

    Techniques Used: Inhibition

    p75 receptors and Rho-signaling pathway underlie BDNF prodomain-triggered inhibition of evoked ACh release at mature NMJs. Moreover, the inhibitory effect of the BDNF prodomain (1 nM) on the evoked neuromuscular transmission depends on the endogenous activity of synaptic purinoreceptors at mature NMJs. (A) Changes in the EPP amplitude (left) and in the quantal content of EPPs (right) in control ( n = 20) and upon BDNF prodomain (1 nM) in the presence of Rho-GDI-associated p75 signaling inhibitor TAT-Pep5 (1 μM, n = 21). (B) Changes in the EPP amplitude (left) and in the quantal content of EPPs (right) in control ( n = 17) and in the presence of ROCK inhibitor Y-27632 (3 μM, n = 21). (C) Changes in the EPP amplitude (left) and in the quantal content of EPPs (right) in control ( n = 15) and upon BDNF prodomain (1 nM) in the presence of Y-27632 ( n = 21). (D) Changes in the EPP amplitude (left) and in the quantal content of EPPs (right), registered from NMJs of Panx1 –/– mice in control ( n = 24) and in the presence of BDNF prodomain ( n = 22). Insets show MEPP amplitudes.
    Figure Legend Snippet: p75 receptors and Rho-signaling pathway underlie BDNF prodomain-triggered inhibition of evoked ACh release at mature NMJs. Moreover, the inhibitory effect of the BDNF prodomain (1 nM) on the evoked neuromuscular transmission depends on the endogenous activity of synaptic purinoreceptors at mature NMJs. (A) Changes in the EPP amplitude (left) and in the quantal content of EPPs (right) in control ( n = 20) and upon BDNF prodomain (1 nM) in the presence of Rho-GDI-associated p75 signaling inhibitor TAT-Pep5 (1 μM, n = 21). (B) Changes in the EPP amplitude (left) and in the quantal content of EPPs (right) in control ( n = 17) and in the presence of ROCK inhibitor Y-27632 (3 μM, n = 21). (C) Changes in the EPP amplitude (left) and in the quantal content of EPPs (right) in control ( n = 15) and upon BDNF prodomain (1 nM) in the presence of Y-27632 ( n = 21). (D) Changes in the EPP amplitude (left) and in the quantal content of EPPs (right), registered from NMJs of Panx1 –/– mice in control ( n = 24) and in the presence of BDNF prodomain ( n = 22). Insets show MEPP amplitudes.

    Techniques Used: Inhibition, Transmission Assay, Activity Assay, Mouse Assay

    35) Product Images from "ProBDNF and Brain-Derived Neurotrophic Factor Prodomain Differently Modulate Acetylcholine Release in Regenerating and Mature Mouse Motor Synapses"

    Article Title: ProBDNF and Brain-Derived Neurotrophic Factor Prodomain Differently Modulate Acetylcholine Release in Regenerating and Mature Mouse Motor Synapses

    Journal: Frontiers in Cellular Neuroscience

    doi: 10.3389/fncel.2022.866802

    BDNF prodomain in low concentration (1 nM) pre-synaptically increases ACh quantal size and simultaneously induces oppositely directed presynaptic effects affecting the evoked ACh release at newly formed NMJs of reinnervated mouse m. EDL. (A) Representative recordings of MEPPs (left above) and mean MEPP amplitude and cumulative probability plots (right above), frequency and time-course parameters (left to right below) in control ( n = 20) and upon application of BDNF prodomain ( n = 22). (B) Mean MEPP amplitude in control ( n = 16) and during inhibition of vesicular ACh transporter by vesamicol (1 μM, n = 17) (left) and mean MEPP amplitude and cumulative probability plots in control ( n = 15) and upon application of BDNF prodomain in the presence of vesamicol ( n = 16). (C) Changes in the EPP amplitude (left) and their quantal content (right) in control ( n = 31) and in the presence of BDNF prodomain ( n = 41). Inset shows MEPP amplitudes.
    Figure Legend Snippet: BDNF prodomain in low concentration (1 nM) pre-synaptically increases ACh quantal size and simultaneously induces oppositely directed presynaptic effects affecting the evoked ACh release at newly formed NMJs of reinnervated mouse m. EDL. (A) Representative recordings of MEPPs (left above) and mean MEPP amplitude and cumulative probability plots (right above), frequency and time-course parameters (left to right below) in control ( n = 20) and upon application of BDNF prodomain ( n = 22). (B) Mean MEPP amplitude in control ( n = 16) and during inhibition of vesicular ACh transporter by vesamicol (1 μM, n = 17) (left) and mean MEPP amplitude and cumulative probability plots in control ( n = 15) and upon application of BDNF prodomain in the presence of vesamicol ( n = 16). (C) Changes in the EPP amplitude (left) and their quantal content (right) in control ( n = 31) and in the presence of BDNF prodomain ( n = 41). Inset shows MEPP amplitudes.

    Techniques Used: Concentration Assay, Inhibition

    BK channels do not but GIRK channels mediate BDNF prodomain-induced inhibition of evoked ACh release at mature NMJs. (A) Changes in the EPP amplitude (left) and in the quantal content of EPPs (right) in control ( n = 15) and upon BDNF prodomain (1 nM) in the presence of BK-blocker iberiotoxin (ITx, 100 nM) with L-type Ca 2+ -channel blocker nitrendipine (Nitr., 1 μM) ( n = 21). (B) Changes in the EPP amplitude (left) and in the quantal content of EPPs (right) in control ( n = 15) and in the presence of GIRK blocker tertiapin-Q (100 nM, n = 17). (C) Changes in the EPP amplitude (left) and in the quantal content of EPPs (right) in control ( n = 16) and upon BDNF prodomain (1 nM) in the presence of tertiapin-Q ( n = 19). Insets show MEPP amplitudes.
    Figure Legend Snippet: BK channels do not but GIRK channels mediate BDNF prodomain-induced inhibition of evoked ACh release at mature NMJs. (A) Changes in the EPP amplitude (left) and in the quantal content of EPPs (right) in control ( n = 15) and upon BDNF prodomain (1 nM) in the presence of BK-blocker iberiotoxin (ITx, 100 nM) with L-type Ca 2+ -channel blocker nitrendipine (Nitr., 1 μM) ( n = 21). (B) Changes in the EPP amplitude (left) and in the quantal content of EPPs (right) in control ( n = 15) and in the presence of GIRK blocker tertiapin-Q (100 nM, n = 17). (C) Changes in the EPP amplitude (left) and in the quantal content of EPPs (right) in control ( n = 16) and upon BDNF prodomain (1 nM) in the presence of tertiapin-Q ( n = 19). Insets show MEPP amplitudes.

    Techniques Used: Inhibition

    BDNF prodomain (1 nM) but not proBDNF (1 nM), induces strong inhibition of spontaneous end evoked ACh release at mature NMJs. (A) Mean MEPP amplitude, cumulative probability plots, frequency, and time-course parameters (left to right) in control ( n = 19) and upon application of proBDNF ( n = 26). (B) Representative recordings of MEPPs (top left) and mean MEPP amplitude, cumulative probability plots, frequency, (top right) and their time-course parameters (bottom) in control ( n = 23) and upon application of BDNF prodomain ( n = 33). (C) Representative recordings of EPPs during a short (1 s) high-frequency (50 Hz) train in control (above) and upon application of BDNF prodomain (below). (D) Changes in the EPP amplitude (above) and in the quantal content of EPPs (below) in control ( n = 22) and in the presence of proBDNF ( n = 21). Inset shows MEPP amplitudes.
    Figure Legend Snippet: BDNF prodomain (1 nM) but not proBDNF (1 nM), induces strong inhibition of spontaneous end evoked ACh release at mature NMJs. (A) Mean MEPP amplitude, cumulative probability plots, frequency, and time-course parameters (left to right) in control ( n = 19) and upon application of proBDNF ( n = 26). (B) Representative recordings of MEPPs (top left) and mean MEPP amplitude, cumulative probability plots, frequency, (top right) and their time-course parameters (bottom) in control ( n = 23) and upon application of BDNF prodomain ( n = 33). (C) Representative recordings of EPPs during a short (1 s) high-frequency (50 Hz) train in control (above) and upon application of BDNF prodomain (below). (D) Changes in the EPP amplitude (above) and in the quantal content of EPPs (below) in control ( n = 22) and in the presence of proBDNF ( n = 21). Inset shows MEPP amplitudes.

    Techniques Used: Inhibition

    p75 receptors and Rho-signaling pathway underlie BDNF prodomain-triggered inhibition of evoked ACh release at mature NMJs. Moreover, the inhibitory effect of the BDNF prodomain (1 nM) on the evoked neuromuscular transmission depends on the endogenous activity of synaptic purinoreceptors at mature NMJs. (A) Changes in the EPP amplitude (left) and in the quantal content of EPPs (right) in control ( n = 20) and upon BDNF prodomain (1 nM) in the presence of Rho-GDI-associated p75 signaling inhibitor TAT-Pep5 (1 μM, n = 21). (B) Changes in the EPP amplitude (left) and in the quantal content of EPPs (right) in control ( n = 17) and in the presence of ROCK inhibitor Y-27632 (3 μM, n = 21). (C) Changes in the EPP amplitude (left) and in the quantal content of EPPs (right) in control ( n = 15) and upon BDNF prodomain (1 nM) in the presence of Y-27632 ( n = 21). (D) Changes in the EPP amplitude (left) and in the quantal content of EPPs (right), registered from NMJs of Panx1 –/– mice in control ( n = 24) and in the presence of BDNF prodomain ( n = 22). Insets show MEPP amplitudes.
    Figure Legend Snippet: p75 receptors and Rho-signaling pathway underlie BDNF prodomain-triggered inhibition of evoked ACh release at mature NMJs. Moreover, the inhibitory effect of the BDNF prodomain (1 nM) on the evoked neuromuscular transmission depends on the endogenous activity of synaptic purinoreceptors at mature NMJs. (A) Changes in the EPP amplitude (left) and in the quantal content of EPPs (right) in control ( n = 20) and upon BDNF prodomain (1 nM) in the presence of Rho-GDI-associated p75 signaling inhibitor TAT-Pep5 (1 μM, n = 21). (B) Changes in the EPP amplitude (left) and in the quantal content of EPPs (right) in control ( n = 17) and in the presence of ROCK inhibitor Y-27632 (3 μM, n = 21). (C) Changes in the EPP amplitude (left) and in the quantal content of EPPs (right) in control ( n = 15) and upon BDNF prodomain (1 nM) in the presence of Y-27632 ( n = 21). (D) Changes in the EPP amplitude (left) and in the quantal content of EPPs (right), registered from NMJs of Panx1 –/– mice in control ( n = 24) and in the presence of BDNF prodomain ( n = 22). Insets show MEPP amplitudes.

    Techniques Used: Inhibition, Transmission Assay, Activity Assay, Mouse Assay

    36) Product Images from "ProBDNF and Brain-Derived Neurotrophic Factor Prodomain Differently Modulate Acetylcholine Release in Regenerating and Mature Mouse Motor Synapses"

    Article Title: ProBDNF and Brain-Derived Neurotrophic Factor Prodomain Differently Modulate Acetylcholine Release in Regenerating and Mature Mouse Motor Synapses

    Journal: Frontiers in Cellular Neuroscience

    doi: 10.3389/fncel.2022.866802

    BDNF prodomain in low concentration (1 nM) pre-synaptically increases ACh quantal size and simultaneously induces oppositely directed presynaptic effects affecting the evoked ACh release at newly formed NMJs of reinnervated mouse m. EDL. (A) Representative recordings of MEPPs (left above) and mean MEPP amplitude and cumulative probability plots (right above), frequency and time-course parameters (left to right below) in control ( n = 20) and upon application of BDNF prodomain ( n = 22). (B) Mean MEPP amplitude in control ( n = 16) and during inhibition of vesicular ACh transporter by vesamicol (1 μM, n = 17) (left) and mean MEPP amplitude and cumulative probability plots in control ( n = 15) and upon application of BDNF prodomain in the presence of vesamicol ( n = 16). (C) Changes in the EPP amplitude (left) and their quantal content (right) in control ( n = 31) and in the presence of BDNF prodomain ( n = 41). Inset shows MEPP amplitudes.
    Figure Legend Snippet: BDNF prodomain in low concentration (1 nM) pre-synaptically increases ACh quantal size and simultaneously induces oppositely directed presynaptic effects affecting the evoked ACh release at newly formed NMJs of reinnervated mouse m. EDL. (A) Representative recordings of MEPPs (left above) and mean MEPP amplitude and cumulative probability plots (right above), frequency and time-course parameters (left to right below) in control ( n = 20) and upon application of BDNF prodomain ( n = 22). (B) Mean MEPP amplitude in control ( n = 16) and during inhibition of vesicular ACh transporter by vesamicol (1 μM, n = 17) (left) and mean MEPP amplitude and cumulative probability plots in control ( n = 15) and upon application of BDNF prodomain in the presence of vesamicol ( n = 16). (C) Changes in the EPP amplitude (left) and their quantal content (right) in control ( n = 31) and in the presence of BDNF prodomain ( n = 41). Inset shows MEPP amplitudes.

    Techniques Used: Concentration Assay, Inhibition

    BK channels do not but GIRK channels mediate BDNF prodomain-induced inhibition of evoked ACh release at mature NMJs. (A) Changes in the EPP amplitude (left) and in the quantal content of EPPs (right) in control ( n = 15) and upon BDNF prodomain (1 nM) in the presence of BK-blocker iberiotoxin (ITx, 100 nM) with L-type Ca 2+ -channel blocker nitrendipine (Nitr., 1 μM) ( n = 21). (B) Changes in the EPP amplitude (left) and in the quantal content of EPPs (right) in control ( n = 15) and in the presence of GIRK blocker tertiapin-Q (100 nM, n = 17). (C) Changes in the EPP amplitude (left) and in the quantal content of EPPs (right) in control ( n = 16) and upon BDNF prodomain (1 nM) in the presence of tertiapin-Q ( n = 19). Insets show MEPP amplitudes.
    Figure Legend Snippet: BK channels do not but GIRK channels mediate BDNF prodomain-induced inhibition of evoked ACh release at mature NMJs. (A) Changes in the EPP amplitude (left) and in the quantal content of EPPs (right) in control ( n = 15) and upon BDNF prodomain (1 nM) in the presence of BK-blocker iberiotoxin (ITx, 100 nM) with L-type Ca 2+ -channel blocker nitrendipine (Nitr., 1 μM) ( n = 21). (B) Changes in the EPP amplitude (left) and in the quantal content of EPPs (right) in control ( n = 15) and in the presence of GIRK blocker tertiapin-Q (100 nM, n = 17). (C) Changes in the EPP amplitude (left) and in the quantal content of EPPs (right) in control ( n = 16) and upon BDNF prodomain (1 nM) in the presence of tertiapin-Q ( n = 19). Insets show MEPP amplitudes.

    Techniques Used: Inhibition

    BDNF prodomain (1 nM) but not proBDNF (1 nM), induces strong inhibition of spontaneous end evoked ACh release at mature NMJs. (A) Mean MEPP amplitude, cumulative probability plots, frequency, and time-course parameters (left to right) in control ( n = 19) and upon application of proBDNF ( n = 26). (B) Representative recordings of MEPPs (top left) and mean MEPP amplitude, cumulative probability plots, frequency, (top right) and their time-course parameters (bottom) in control ( n = 23) and upon application of BDNF prodomain ( n = 33). (C) Representative recordings of EPPs during a short (1 s) high-frequency (50 Hz) train in control (above) and upon application of BDNF prodomain (below). (D) Changes in the EPP amplitude (above) and in the quantal content of EPPs (below) in control ( n = 22) and in the presence of proBDNF ( n = 21). Inset shows MEPP amplitudes.
    Figure Legend Snippet: BDNF prodomain (1 nM) but not proBDNF (1 nM), induces strong inhibition of spontaneous end evoked ACh release at mature NMJs. (A) Mean MEPP amplitude, cumulative probability plots, frequency, and time-course parameters (left to right) in control ( n = 19) and upon application of proBDNF ( n = 26). (B) Representative recordings of MEPPs (top left) and mean MEPP amplitude, cumulative probability plots, frequency, (top right) and their time-course parameters (bottom) in control ( n = 23) and upon application of BDNF prodomain ( n = 33). (C) Representative recordings of EPPs during a short (1 s) high-frequency (50 Hz) train in control (above) and upon application of BDNF prodomain (below). (D) Changes in the EPP amplitude (above) and in the quantal content of EPPs (below) in control ( n = 22) and in the presence of proBDNF ( n = 21). Inset shows MEPP amplitudes.

    Techniques Used: Inhibition

    p75 receptors and Rho-signaling pathway underlie BDNF prodomain-triggered inhibition of evoked ACh release at mature NMJs. Moreover, the inhibitory effect of the BDNF prodomain (1 nM) on the evoked neuromuscular transmission depends on the endogenous activity of synaptic purinoreceptors at mature NMJs. (A) Changes in the EPP amplitude (left) and in the quantal content of EPPs (right) in control ( n = 20) and upon BDNF prodomain (1 nM) in the presence of Rho-GDI-associated p75 signaling inhibitor TAT-Pep5 (1 μM, n = 21). (B) Changes in the EPP amplitude (left) and in the quantal content of EPPs (right) in control ( n = 17) and in the presence of ROCK inhibitor Y-27632 (3 μM, n = 21). (C) Changes in the EPP amplitude (left) and in the quantal content of EPPs (right) in control ( n = 15) and upon BDNF prodomain (1 nM) in the presence of Y-27632 ( n = 21). (D) Changes in the EPP amplitude (left) and in the quantal content of EPPs (right), registered from NMJs of Panx1 –/– mice in control ( n = 24) and in the presence of BDNF prodomain ( n = 22). Insets show MEPP amplitudes.
    Figure Legend Snippet: p75 receptors and Rho-signaling pathway underlie BDNF prodomain-triggered inhibition of evoked ACh release at mature NMJs. Moreover, the inhibitory effect of the BDNF prodomain (1 nM) on the evoked neuromuscular transmission depends on the endogenous activity of synaptic purinoreceptors at mature NMJs. (A) Changes in the EPP amplitude (left) and in the quantal content of EPPs (right) in control ( n = 20) and upon BDNF prodomain (1 nM) in the presence of Rho-GDI-associated p75 signaling inhibitor TAT-Pep5 (1 μM, n = 21). (B) Changes in the EPP amplitude (left) and in the quantal content of EPPs (right) in control ( n = 17) and in the presence of ROCK inhibitor Y-27632 (3 μM, n = 21). (C) Changes in the EPP amplitude (left) and in the quantal content of EPPs (right) in control ( n = 15) and upon BDNF prodomain (1 nM) in the presence of Y-27632 ( n = 21). (D) Changes in the EPP amplitude (left) and in the quantal content of EPPs (right), registered from NMJs of Panx1 –/– mice in control ( n = 24) and in the presence of BDNF prodomain ( n = 22). Insets show MEPP amplitudes.

    Techniques Used: Inhibition, Transmission Assay, Activity Assay, Mouse Assay

    37) Product Images from "ProBDNF and Brain-Derived Neurotrophic Factor Prodomain Differently Modulate Acetylcholine Release in Regenerating and Mature Mouse Motor Synapses"

    Article Title: ProBDNF and Brain-Derived Neurotrophic Factor Prodomain Differently Modulate Acetylcholine Release in Regenerating and Mature Mouse Motor Synapses

    Journal: Frontiers in Cellular Neuroscience

    doi: 10.3389/fncel.2022.866802

    BDNF prodomain in low concentration (1 nM) pre-synaptically increases ACh quantal size and simultaneously induces oppositely directed presynaptic effects affecting the evoked ACh release at newly formed NMJs of reinnervated mouse m. EDL. (A) Representative recordings of MEPPs (left above) and mean MEPP amplitude and cumulative probability plots (right above), frequency and time-course parameters (left to right below) in control ( n = 20) and upon application of BDNF prodomain ( n = 22). (B) Mean MEPP amplitude in control ( n = 16) and during inhibition of vesicular ACh transporter by vesamicol (1 μM, n = 17) (left) and mean MEPP amplitude and cumulative probability plots in control ( n = 15) and upon application of BDNF prodomain in the presence of vesamicol ( n = 16). (C) Changes in the EPP amplitude (left) and their quantal content (right) in control ( n = 31) and in the presence of BDNF prodomain ( n = 41). Inset shows MEPP amplitudes.
    Figure Legend Snippet: BDNF prodomain in low concentration (1 nM) pre-synaptically increases ACh quantal size and simultaneously induces oppositely directed presynaptic effects affecting the evoked ACh release at newly formed NMJs of reinnervated mouse m. EDL. (A) Representative recordings of MEPPs (left above) and mean MEPP amplitude and cumulative probability plots (right above), frequency and time-course parameters (left to right below) in control ( n = 20) and upon application of BDNF prodomain ( n = 22). (B) Mean MEPP amplitude in control ( n = 16) and during inhibition of vesicular ACh transporter by vesamicol (1 μM, n = 17) (left) and mean MEPP amplitude and cumulative probability plots in control ( n = 15) and upon application of BDNF prodomain in the presence of vesamicol ( n = 16). (C) Changes in the EPP amplitude (left) and their quantal content (right) in control ( n = 31) and in the presence of BDNF prodomain ( n = 41). Inset shows MEPP amplitudes.

    Techniques Used: Concentration Assay, Inhibition

    BK channels do not but GIRK channels mediate BDNF prodomain-induced inhibition of evoked ACh release at mature NMJs. (A) Changes in the EPP amplitude (left) and in the quantal content of EPPs (right) in control ( n = 15) and upon BDNF prodomain (1 nM) in the presence of BK-blocker iberiotoxin (ITx, 100 nM) with L-type Ca 2+ -channel blocker nitrendipine (Nitr., 1 μM) ( n = 21). (B) Changes in the EPP amplitude (left) and in the quantal content of EPPs (right) in control ( n = 15) and in the presence of GIRK blocker tertiapin-Q (100 nM, n = 17). (C) Changes in the EPP amplitude (left) and in the quantal content of EPPs (right) in control ( n = 16) and upon BDNF prodomain (1 nM) in the presence of tertiapin-Q ( n = 19). Insets show MEPP amplitudes.
    Figure Legend Snippet: BK channels do not but GIRK channels mediate BDNF prodomain-induced inhibition of evoked ACh release at mature NMJs. (A) Changes in the EPP amplitude (left) and in the quantal content of EPPs (right) in control ( n = 15) and upon BDNF prodomain (1 nM) in the presence of BK-blocker iberiotoxin (ITx, 100 nM) with L-type Ca 2+ -channel blocker nitrendipine (Nitr., 1 μM) ( n = 21). (B) Changes in the EPP amplitude (left) and in the quantal content of EPPs (right) in control ( n = 15) and in the presence of GIRK blocker tertiapin-Q (100 nM, n = 17). (C) Changes in the EPP amplitude (left) and in the quantal content of EPPs (right) in control ( n = 16) and upon BDNF prodomain (1 nM) in the presence of tertiapin-Q ( n = 19). Insets show MEPP amplitudes.

    Techniques Used: Inhibition

    BDNF prodomain (1 nM) but not proBDNF (1 nM), induces strong inhibition of spontaneous end evoked ACh release at mature NMJs. (A) Mean MEPP amplitude, cumulative probability plots, frequency, and time-course parameters (left to right) in control ( n = 19) and upon application of proBDNF ( n = 26). (B) Representative recordings of MEPPs (top left) and mean MEPP amplitude, cumulative probability plots, frequency, (top right) and their time-course parameters (bottom) in control ( n = 23) and upon application of BDNF prodomain ( n = 33). (C) Representative recordings of EPPs during a short (1 s) high-frequency (50 Hz) train in control (above) and upon application of BDNF prodomain (below). (D) Changes in the EPP amplitude (above) and in the quantal content of EPPs (below) in control ( n = 22) and in the presence of proBDNF ( n = 21). Inset shows MEPP amplitudes.
    Figure Legend Snippet: BDNF prodomain (1 nM) but not proBDNF (1 nM), induces strong inhibition of spontaneous end evoked ACh release at mature NMJs. (A) Mean MEPP amplitude, cumulative probability plots, frequency, and time-course parameters (left to right) in control ( n = 19) and upon application of proBDNF ( n = 26). (B) Representative recordings of MEPPs (top left) and mean MEPP amplitude, cumulative probability plots, frequency, (top right) and their time-course parameters (bottom) in control ( n = 23) and upon application of BDNF prodomain ( n = 33). (C) Representative recordings of EPPs during a short (1 s) high-frequency (50 Hz) train in control (above) and upon application of BDNF prodomain (below). (D) Changes in the EPP amplitude (above) and in the quantal content of EPPs (below) in control ( n = 22) and in the presence of proBDNF ( n = 21). Inset shows MEPP amplitudes.

    Techniques Used: Inhibition

    p75 receptors and Rho-signaling pathway underlie BDNF prodomain-triggered inhibition of evoked ACh release at mature NMJs. Moreover, the inhibitory effect of the BDNF prodomain (1 nM) on the evoked neuromuscular transmission depends on the endogenous activity of synaptic purinoreceptors at mature NMJs. (A) Changes in the EPP amplitude (left) and in the quantal content of EPPs (right) in control ( n = 20) and upon BDNF prodomain (1 nM) in the presence of Rho-GDI-associated p75 signaling inhibitor TAT-Pep5 (1 μM, n = 21). (B) Changes in the EPP amplitude (left) and in the quantal content of EPPs (right) in control ( n = 17) and in the presence of ROCK inhibitor Y-27632 (3 μM, n = 21). (C) Changes in the EPP amplitude (left) and in the quantal content of EPPs (right) in control ( n = 15) and upon BDNF prodomain (1 nM) in the presence of Y-27632 ( n = 21). (D) Changes in the EPP amplitude (left) and in the quantal content of EPPs (right), registered from NMJs of Panx1 –/– mice in control ( n = 24) and in the presence of BDNF prodomain ( n = 22). Insets show MEPP amplitudes.
    Figure Legend Snippet: p75 receptors and Rho-signaling pathway underlie BDNF prodomain-triggered inhibition of evoked ACh release at mature NMJs. Moreover, the inhibitory effect of the BDNF prodomain (1 nM) on the evoked neuromuscular transmission depends on the endogenous activity of synaptic purinoreceptors at mature NMJs. (A) Changes in the EPP amplitude (left) and in the quantal content of EPPs (right) in control ( n = 20) and upon BDNF prodomain (1 nM) in the presence of Rho-GDI-associated p75 signaling inhibitor TAT-Pep5 (1 μM, n = 21). (B) Changes in the EPP amplitude (left) and in the quantal content of EPPs (right) in control ( n = 17) and in the presence of ROCK inhibitor Y-27632 (3 μM, n = 21). (C) Changes in the EPP amplitude (left) and in the quantal content of EPPs (right) in control ( n = 15) and upon BDNF prodomain (1 nM) in the presence of Y-27632 ( n = 21). (D) Changes in the EPP amplitude (left) and in the quantal content of EPPs (right), registered from NMJs of Panx1 –/– mice in control ( n = 24) and in the presence of BDNF prodomain ( n = 22). Insets show MEPP amplitudes.

    Techniques Used: Inhibition, Transmission Assay, Activity Assay, Mouse Assay

    38) Product Images from "ProBDNF and Brain-Derived Neurotrophic Factor Prodomain Differently Modulate Acetylcholine Release in Regenerating and Mature Mouse Motor Synapses"

    Article Title: ProBDNF and Brain-Derived Neurotrophic Factor Prodomain Differently Modulate Acetylcholine Release in Regenerating and Mature Mouse Motor Synapses

    Journal: Frontiers in Cellular Neuroscience

    doi: 10.3389/fncel.2022.866802

    BDNF prodomain in low concentration (1 nM) pre-synaptically increases ACh quantal size and simultaneously induces oppositely directed presynaptic effects affecting the evoked ACh release at newly formed NMJs of reinnervated mouse m. EDL. (A) Representative recordings of MEPPs (left above) and mean MEPP amplitude and cumulative probability plots (right above), frequency and time-course parameters (left to right below) in control ( n = 20) and upon application of BDNF prodomain ( n = 22). (B) Mean MEPP amplitude in control ( n = 16) and during inhibition of vesicular ACh transporter by vesamicol (1 μM, n = 17) (left) and mean MEPP amplitude and cumulative probability plots in control ( n = 15) and upon application of BDNF prodomain in the presence of vesamicol ( n = 16). (C) Changes in the EPP amplitude (left) and their quantal content (right) in control ( n = 31) and in the presence of BDNF prodomain ( n = 41). Inset shows MEPP amplitudes.
    Figure Legend Snippet: BDNF prodomain in low concentration (1 nM) pre-synaptically increases ACh quantal size and simultaneously induces oppositely directed presynaptic effects affecting the evoked ACh release at newly formed NMJs of reinnervated mouse m. EDL. (A) Representative recordings of MEPPs (left above) and mean MEPP amplitude and cumulative probability plots (right above), frequency and time-course parameters (left to right below) in control ( n = 20) and upon application of BDNF prodomain ( n = 22). (B) Mean MEPP amplitude in control ( n = 16) and during inhibition of vesicular ACh transporter by vesamicol (1 μM, n = 17) (left) and mean MEPP amplitude and cumulative probability plots in control ( n = 15) and upon application of BDNF prodomain in the presence of vesamicol ( n = 16). (C) Changes in the EPP amplitude (left) and their quantal content (right) in control ( n = 31) and in the presence of BDNF prodomain ( n = 41). Inset shows MEPP amplitudes.

    Techniques Used: Concentration Assay, Inhibition

    BK channels do not but GIRK channels mediate BDNF prodomain-induced inhibition of evoked ACh release at mature NMJs. (A) Changes in the EPP amplitude (left) and in the quantal content of EPPs (right) in control ( n = 15) and upon BDNF prodomain (1 nM) in the presence of BK-blocker iberiotoxin (ITx, 100 nM) with L-type Ca 2+ -channel blocker nitrendipine (Nitr., 1 μM) ( n = 21). (B) Changes in the EPP amplitude (left) and in the quantal content of EPPs (right) in control ( n = 15) and in the presence of GIRK blocker tertiapin-Q (100 nM, n = 17). (C) Changes in the EPP amplitude (left) and in the quantal content of EPPs (right) in control ( n = 16) and upon BDNF prodomain (1 nM) in the presence of tertiapin-Q ( n = 19). Insets show MEPP amplitudes.
    Figure Legend Snippet: BK channels do not but GIRK channels mediate BDNF prodomain-induced inhibition of evoked ACh release at mature NMJs. (A) Changes in the EPP amplitude (left) and in the quantal content of EPPs (right) in control ( n = 15) and upon BDNF prodomain (1 nM) in the presence of BK-blocker iberiotoxin (ITx, 100 nM) with L-type Ca 2+ -channel blocker nitrendipine (Nitr., 1 μM) ( n = 21). (B) Changes in the EPP amplitude (left) and in the quantal content of EPPs (right) in control ( n = 15) and in the presence of GIRK blocker tertiapin-Q (100 nM, n = 17). (C) Changes in the EPP amplitude (left) and in the quantal content of EPPs (right) in control ( n = 16) and upon BDNF prodomain (1 nM) in the presence of tertiapin-Q ( n = 19). Insets show MEPP amplitudes.

    Techniques Used: Inhibition

    BDNF prodomain (1 nM) but not proBDNF (1 nM), induces strong inhibition of spontaneous end evoked ACh release at mature NMJs. (A) Mean MEPP amplitude, cumulative probability plots, frequency, and time-course parameters (left to right) in control ( n = 19) and upon application of proBDNF ( n = 26). (B) Representative recordings of MEPPs (top left) and mean MEPP amplitude, cumulative probability plots, frequency, (top right) and their time-course parameters (bottom) in control ( n = 23) and upon application of BDNF prodomain ( n = 33). (C) Representative recordings of EPPs during a short (1 s) high-frequency (50 Hz) train in control (above) and upon application of BDNF prodomain (below). (D) Changes in the EPP amplitude (above) and in the quantal content of EPPs (below) in control ( n = 22) and in the presence of proBDNF ( n = 21). Inset shows MEPP amplitudes.
    Figure Legend Snippet: BDNF prodomain (1 nM) but not proBDNF (1 nM), induces strong inhibition of spontaneous end evoked ACh release at mature NMJs. (A) Mean MEPP amplitude, cumulative probability plots, frequency, and time-course parameters (left to right) in control ( n = 19) and upon application of proBDNF ( n = 26). (B) Representative recordings of MEPPs (top left) and mean MEPP amplitude, cumulative probability plots, frequency, (top right) and their time-course parameters (bottom) in control ( n = 23) and upon application of BDNF prodomain ( n = 33). (C) Representative recordings of EPPs during a short (1 s) high-frequency (50 Hz) train in control (above) and upon application of BDNF prodomain (below). (D) Changes in the EPP amplitude (above) and in the quantal content of EPPs (below) in control ( n = 22) and in the presence of proBDNF ( n = 21). Inset shows MEPP amplitudes.

    Techniques Used: Inhibition

    p75 receptors and Rho-signaling pathway underlie BDNF prodomain-triggered inhibition of evoked ACh release at mature NMJs. Moreover, the inhibitory effect of the BDNF prodomain (1 nM) on the evoked neuromuscular transmission depends on the endogenous activity of synaptic purinoreceptors at mature NMJs. (A) Changes in the EPP amplitude (left) and in the quantal content of EPPs (right) in control ( n = 20) and upon BDNF prodomain (1 nM) in the presence of Rho-GDI-associated p75 signaling inhibitor TAT-Pep5 (1 μM, n = 21). (B) Changes in the EPP amplitude (left) and in the quantal content of EPPs (right) in control ( n = 17) and in the presence of ROCK inhibitor Y-27632 (3 μM, n = 21). (C) Changes in the EPP amplitude (left) and in the quantal content of EPPs (right) in control ( n = 15) and upon BDNF prodomain (1 nM) in the presence of Y-27632 ( n = 21). (D) Changes in the EPP amplitude (left) and in the quantal content of EPPs (right), registered from NMJs of Panx1 –/– mice in control ( n = 24) and in the presence of BDNF prodomain ( n = 22). Insets show MEPP amplitudes.
    Figure Legend Snippet: p75 receptors and Rho-signaling pathway underlie BDNF prodomain-triggered inhibition of evoked ACh release at mature NMJs. Moreover, the inhibitory effect of the BDNF prodomain (1 nM) on the evoked neuromuscular transmission depends on the endogenous activity of synaptic purinoreceptors at mature NMJs. (A) Changes in the EPP amplitude (left) and in the quantal content of EPPs (right) in control ( n = 20) and upon BDNF prodomain (1 nM) in the presence of Rho-GDI-associated p75 signaling inhibitor TAT-Pep5 (1 μM, n = 21). (B) Changes in the EPP amplitude (left) and in the quantal content of EPPs (right) in control ( n = 17) and in the presence of ROCK inhibitor Y-27632 (3 μM, n = 21). (C) Changes in the EPP amplitude (left) and in the quantal content of EPPs (right) in control ( n = 15) and upon BDNF prodomain (1 nM) in the presence of Y-27632 ( n = 21). (D) Changes in the EPP amplitude (left) and in the quantal content of EPPs (right), registered from NMJs of Panx1 –/– mice in control ( n = 24) and in the presence of BDNF prodomain ( n = 22). Insets show MEPP amplitudes.

    Techniques Used: Inhibition, Transmission Assay, Activity Assay, Mouse Assay

    39) Product Images from "ProBDNF and Brain-Derived Neurotrophic Factor Prodomain Differently Modulate Acetylcholine Release in Regenerating and Mature Mouse Motor Synapses"

    Article Title: ProBDNF and Brain-Derived Neurotrophic Factor Prodomain Differently Modulate Acetylcholine Release in Regenerating and Mature Mouse Motor Synapses

    Journal: Frontiers in Cellular Neuroscience

    doi: 10.3389/fncel.2022.866802

    BDNF prodomain in low concentration (1 nM) pre-synaptically increases ACh quantal size and simultaneously induces oppositely directed presynaptic effects affecting the evoked ACh release at newly formed NMJs of reinnervated mouse m. EDL. (A) Representative recordings of MEPPs (left above) and mean MEPP amplitude and cumulative probability plots (right above), frequency and time-course parameters (left to right below) in control ( n = 20) and upon application of BDNF prodomain ( n = 22). (B) Mean MEPP amplitude in control ( n = 16) and during inhibition of vesicular ACh transporter by vesamicol (1 μM, n = 17) (left) and mean MEPP amplitude and cumulative probability plots in control ( n = 15) and upon application of BDNF prodomain in the presence of vesamicol ( n = 16). (C) Changes in the EPP amplitude (left) and their quantal content (right) in control ( n = 31) and in the presence of BDNF prodomain ( n = 41). Inset shows MEPP amplitudes.
    Figure Legend Snippet: BDNF prodomain in low concentration (1 nM) pre-synaptically increases ACh quantal size and simultaneously induces oppositely directed presynaptic effects affecting the evoked ACh release at newly formed NMJs of reinnervated mouse m. EDL. (A) Representative recordings of MEPPs (left above) and mean MEPP amplitude and cumulative probability plots (right above), frequency and time-course parameters (left to right below) in control ( n = 20) and upon application of BDNF prodomain ( n = 22). (B) Mean MEPP amplitude in control ( n = 16) and during inhibition of vesicular ACh transporter by vesamicol (1 μM, n = 17) (left) and mean MEPP amplitude and cumulative probability plots in control ( n = 15) and upon application of BDNF prodomain in the presence of vesamicol ( n = 16). (C) Changes in the EPP amplitude (left) and their quantal content (right) in control ( n = 31) and in the presence of BDNF prodomain ( n = 41). Inset shows MEPP amplitudes.

    Techniques Used: Concentration Assay, Inhibition

    BK channels do not but GIRK channels mediate BDNF prodomain-induced inhibition of evoked ACh release at mature NMJs. (A) Changes in the EPP amplitude (left) and in the quantal content of EPPs (right) in control ( n = 15) and upon BDNF prodomain (1 nM) in the presence of BK-blocker iberiotoxin (ITx, 100 nM) with L-type Ca 2+ -channel blocker nitrendipine (Nitr., 1 μM) ( n = 21). (B) Changes in the EPP amplitude (left) and in the quantal content of EPPs (right) in control ( n = 15) and in the presence of GIRK blocker tertiapin-Q (100 nM, n = 17). (C) Changes in the EPP amplitude (left) and in the quantal content of EPPs (right) in control ( n = 16) and upon BDNF prodomain (1 nM) in the presence of tertiapin-Q ( n = 19). Insets show MEPP amplitudes.
    Figure Legend Snippet: BK channels do not but GIRK channels mediate BDNF prodomain-induced inhibition of evoked ACh release at mature NMJs. (A) Changes in the EPP amplitude (left) and in the quantal content of EPPs (right) in control ( n = 15) and upon BDNF prodomain (1 nM) in the presence of BK-blocker iberiotoxin (ITx, 100 nM) with L-type Ca 2+ -channel blocker nitrendipine (Nitr., 1 μM) ( n = 21). (B) Changes in the EPP amplitude (left) and in the quantal content of EPPs (right) in control ( n = 15) and in the presence of GIRK blocker tertiapin-Q (100 nM, n = 17). (C) Changes in the EPP amplitude (left) and in the quantal content of EPPs (right) in control ( n = 16) and upon BDNF prodomain (1 nM) in the presence of tertiapin-Q ( n = 19). Insets show MEPP amplitudes.

    Techniques Used: Inhibition

    BDNF prodomain (1 nM) but not proBDNF (1 nM), induces strong inhibition of spontaneous end evoked ACh release at mature NMJs. (A) Mean MEPP amplitude, cumulative probability plots, frequency, and time-course parameters (left to right) in control ( n = 19) and upon application of proBDNF ( n = 26). (B) Representative recordings of MEPPs (top left) and mean MEPP amplitude, cumulative probability plots, frequency, (top right) and their time-course parameters (bottom) in control ( n = 23) and upon application of BDNF prodomain ( n = 33). (C) Representative recordings of EPPs during a short (1 s) high-frequency (50 Hz) train in control (above) and upon application of BDNF prodomain (below). (D) Changes in the EPP amplitude (above) and in the quantal content of EPPs (below) in control ( n = 22) and in the presence of proBDNF ( n = 21). Inset shows MEPP amplitudes.
    Figure Legend Snippet: BDNF prodomain (1 nM) but not proBDNF (1 nM), induces strong inhibition of spontaneous end evoked ACh release at mature NMJs. (A) Mean MEPP amplitude, cumulative probability plots, frequency, and time-course parameters (left to right) in control ( n = 19) and upon application of proBDNF ( n = 26). (B) Representative recordings of MEPPs (top left) and mean MEPP amplitude, cumulative probability plots, frequency, (top right) and their time-course parameters (bottom) in control ( n = 23) and upon application of BDNF prodomain ( n = 33). (C) Representative recordings of EPPs during a short (1 s) high-frequency (50 Hz) train in control (above) and upon application of BDNF prodomain (below). (D) Changes in the EPP amplitude (above) and in the quantal content of EPPs (below) in control ( n = 22) and in the presence of proBDNF ( n = 21). Inset shows MEPP amplitudes.

    Techniques Used: Inhibition

    p75 receptors and Rho-signaling pathway underlie BDNF prodomain-triggered inhibition of evoked ACh release at mature NMJs. Moreover, the inhibitory effect of the BDNF prodomain (1 nM) on the evoked neuromuscular transmission depends on the endogenous activity of synaptic purinoreceptors at mature NMJs. (A) Changes in the EPP amplitude (left) and in the quantal content of EPPs (right) in control ( n = 20) and upon BDNF prodomain (1 nM) in the presence of Rho-GDI-associated p75 signaling inhibitor TAT-Pep5 (1 μM, n = 21). (B) Changes in the EPP amplitude (left) and in the quantal content of EPPs (right) in control ( n = 17) and in the presence of ROCK inhibitor Y-27632 (3 μM, n = 21). (C) Changes in the EPP amplitude (left) and in the quantal content of EPPs (right) in control ( n = 15) and upon BDNF prodomain (1 nM) in the presence of Y-27632 ( n = 21). (D) Changes in the EPP amplitude (left) and in the quantal content of EPPs (right), registered from NMJs of Panx1 –/– mice in control ( n = 24) and in the presence of BDNF prodomain ( n = 22). Insets show MEPP amplitudes.
    Figure Legend Snippet: p75 receptors and Rho-signaling pathway underlie BDNF prodomain-triggered inhibition of evoked ACh release at mature NMJs. Moreover, the inhibitory effect of the BDNF prodomain (1 nM) on the evoked neuromuscular transmission depends on the endogenous activity of synaptic purinoreceptors at mature NMJs. (A) Changes in the EPP amplitude (left) and in the quantal content of EPPs (right) in control ( n = 20) and upon BDNF prodomain (1 nM) in the presence of Rho-GDI-associated p75 signaling inhibitor TAT-Pep5 (1 μM, n = 21). (B) Changes in the EPP amplitude (left) and in the quantal content of EPPs (right) in control ( n = 17) and in the presence of ROCK inhibitor Y-27632 (3 μM, n = 21). (C) Changes in the EPP amplitude (left) and in the quantal content of EPPs (right) in control ( n = 15) and upon BDNF prodomain (1 nM) in the presence of Y-27632 ( n = 21). (D) Changes in the EPP amplitude (left) and in the quantal content of EPPs (right), registered from NMJs of Panx1 –/– mice in control ( n = 24) and in the presence of BDNF prodomain ( n = 22). Insets show MEPP amplitudes.

    Techniques Used: Inhibition, Transmission Assay, Activity Assay, Mouse Assay

    40) Product Images from "ProBDNF and Brain-Derived Neurotrophic Factor Prodomain Differently Modulate Acetylcholine Release in Regenerating and Mature Mouse Motor Synapses"

    Article Title: ProBDNF and Brain-Derived Neurotrophic Factor Prodomain Differently Modulate Acetylcholine Release in Regenerating and Mature Mouse Motor Synapses

    Journal: Frontiers in Cellular Neuroscience

    doi: 10.3389/fncel.2022.866802

    BDNF prodomain in low concentration (1 nM) pre-synaptically increases ACh quantal size and simultaneously induces oppositely directed presynaptic effects affecting the evoked ACh release at newly formed NMJs of reinnervated mouse m. EDL. (A) Representative recordings of MEPPs (left above) and mean MEPP amplitude and cumulative probability plots (right above), frequency and time-course parameters (left to right below) in control ( n = 20) and upon application of BDNF prodomain ( n = 22). (B) Mean MEPP amplitude in control ( n = 16) and during inhibition of vesicular ACh transporter by vesamicol (1 μM, n = 17) (left) and mean MEPP amplitude and cumulative probability plots in control ( n = 15) and upon application of BDNF prodomain in the presence of vesamicol ( n = 16). (C) Changes in the EPP amplitude (left) and their quantal content (right) in control ( n = 31) and in the presence of BDNF prodomain ( n = 41). Inset shows MEPP amplitudes.
    Figure Legend Snippet: BDNF prodomain in low concentration (1 nM) pre-synaptically increases ACh quantal size and simultaneously induces oppositely directed presynaptic effects affecting the evoked ACh release at newly formed NMJs of reinnervated mouse m. EDL. (A) Representative recordings of MEPPs (left above) and mean MEPP amplitude and cumulative probability plots (right above), frequency and time-course parameters (left to right below) in control ( n = 20) and upon application of BDNF prodomain ( n = 22). (B) Mean MEPP amplitude in control ( n = 16) and during inhibition of vesicular ACh transporter by vesamicol (1 μM, n = 17) (left) and mean MEPP amplitude and cumulative probability plots in control ( n = 15) and upon application of BDNF prodomain in the presence of vesamicol ( n = 16). (C) Changes in the EPP amplitude (left) and their quantal content (right) in control ( n = 31) and in the presence of BDNF prodomain ( n = 41). Inset shows MEPP amplitudes.

    Techniques Used: Concentration Assay, Inhibition

    BK channels do not but GIRK channels mediate BDNF prodomain-induced inhibition of evoked ACh release at mature NMJs. (A) Changes in the EPP amplitude (left) and in the quantal content of EPPs (right) in control ( n = 15) and upon BDNF prodomain (1 nM) in the presence of BK-blocker iberiotoxin (ITx, 100 nM) with L-type Ca 2+ -channel blocker nitrendipine (Nitr., 1 μM) ( n = 21). (B) Changes in the EPP amplitude (left) and in the quantal content of EPPs (right) in control ( n = 15) and in the presence of GIRK blocker tertiapin-Q (100 nM, n = 17). (C) Changes in the EPP amplitude (left) and in the quantal content of EPPs (right) in control ( n = 16) and upon BDNF prodomain (1 nM) in the presence of tertiapin-Q ( n = 19). Insets show MEPP amplitudes.
    Figure Legend Snippet: BK channels do not but GIRK channels mediate BDNF prodomain-induced inhibition of evoked ACh release at mature NMJs. (A) Changes in the EPP amplitude (left) and in the quantal content of EPPs (right) in control ( n = 15) and upon BDNF prodomain (1 nM) in the presence of BK-blocker iberiotoxin (ITx, 100 nM) with L-type Ca 2+ -channel blocker nitrendipine (Nitr., 1 μM) ( n = 21). (B) Changes in the EPP amplitude (left) and in the quantal content of EPPs (right) in control ( n = 15) and in the presence of GIRK blocker tertiapin-Q (100 nM, n = 17). (C) Changes in the EPP amplitude (left) and in the quantal content of EPPs (right) in control ( n = 16) and upon BDNF prodomain (1 nM) in the presence of tertiapin-Q ( n = 19). Insets show MEPP amplitudes.

    Techniques Used: Inhibition

    BDNF prodomain (1 nM) but not proBDNF (1 nM), induces strong inhibition of spontaneous end evoked ACh release at mature NMJs. (A) Mean MEPP amplitude, cumulative probability plots, frequency, and time-course parameters (left to right) in control ( n = 19) and upon application of proBDNF ( n = 26). (B) Representative recordings of MEPPs (top left) and mean MEPP amplitude, cumulative probability plots, frequency, (top right) and their time-course parameters (bottom) in control ( n = 23) and upon application of BDNF prodomain ( n = 33). (C) Representative recordings of EPPs during a short (1 s) high-frequency (50 Hz) train in control (above) and upon application of BDNF prodomain (below). (D) Changes in the EPP amplitude (above) and in the quantal content of EPPs (below) in control ( n = 22) and in the presence of proBDNF ( n = 21). Inset shows MEPP amplitudes.
    Figure Legend Snippet: BDNF prodomain (1 nM) but not proBDNF (1 nM), induces strong inhibition of spontaneous end evoked ACh release at mature NMJs. (A) Mean MEPP amplitude, cumulative probability plots, frequency, and time-course parameters (left to right) in control ( n = 19) and upon application of proBDNF ( n = 26). (B) Representative recordings of MEPPs (top left) and mean MEPP amplitude, cumulative probability plots, frequency, (top right) and their time-course parameters (bottom) in control ( n = 23) and upon application of BDNF prodomain ( n = 33). (C) Representative recordings of EPPs during a short (1 s) high-frequency (50 Hz) train in control (above) and upon application of BDNF prodomain (below). (D) Changes in the EPP amplitude (above) and in the quantal content of EPPs (below) in control ( n = 22) and in the presence of proBDNF ( n = 21). Inset shows MEPP amplitudes.

    Techniques Used: Inhibition

    p75 receptors and Rho-signaling pathway underlie BDNF prodomain-triggered inhibition of evoked ACh release at mature NMJs. Moreover, the inhibitory effect of the BDNF prodomain (1 nM) on the evoked neuromuscular transmission depends on the endogenous activity of synaptic purinoreceptors at mature NMJs. (A) Changes in the EPP amplitude (left) and in the quantal content of EPPs (right) in control ( n = 20) and upon BDNF prodomain (1 nM) in the presence of Rho-GDI-associated p75 signaling inhibitor TAT-Pep5 (1 μM, n = 21). (B) Changes in the EPP amplitude (left) and in the quantal content of EPPs (right) in control ( n = 17) and in the presence of ROCK inhibitor Y-27632 (3 μM, n = 21). (C) Changes in the EPP amplitude (left) and in the quantal content of EPPs (right) in control ( n = 15) and upon BDNF prodomain (1 nM) in the presence of Y-27632 ( n = 21). (D) Changes in the EPP amplitude (left) and in the quantal content of EPPs (right), registered from NMJs of Panx1 –/– mice in control ( n = 24) and in the presence of BDNF prodomain ( n = 22). Insets show MEPP amplitudes.
    Figure Legend Snippet: p75 receptors and Rho-signaling pathway underlie BDNF prodomain-triggered inhibition of evoked ACh release at mature NMJs. Moreover, the inhibitory effect of the BDNF prodomain (1 nM) on the evoked neuromuscular transmission depends on the endogenous activity of synaptic purinoreceptors at mature NMJs. (A) Changes in the EPP amplitude (left) and in the quantal content of EPPs (right) in control ( n = 20) and upon BDNF prodomain (1 nM) in the presence of Rho-GDI-associated p75 signaling inhibitor TAT-Pep5 (1 μM, n = 21). (B) Changes in the EPP amplitude (left) and in the quantal content of EPPs (right) in control ( n = 17) and in the presence of ROCK inhibitor Y-27632 (3 μM, n = 21). (C) Changes in the EPP amplitude (left) and in the quantal content of EPPs (right) in control ( n = 15) and upon BDNF prodomain (1 nM) in the presence of Y-27632 ( n = 21). (D) Changes in the EPP amplitude (left) and in the quantal content of EPPs (right), registered from NMJs of Panx1 –/– mice in control ( n = 24) and in the presence of BDNF prodomain ( n = 22). Insets show MEPP amplitudes.

    Techniques Used: Inhibition, Transmission Assay, Activity Assay, Mouse Assay

    Similar Products

  • Logo
  • About
  • News
  • Press Release
  • Team
  • Advisors
  • Partners
  • Contact
  • Bioz Stars
  • Bioz vStars
  • 97
    Alomone Labs bdnf prodomain
    <t>BDNF</t> <t>prodomain</t> in low concentration (1 nM) pre-synaptically increases ACh quantal size and simultaneously induces oppositely directed presynaptic effects affecting the evoked ACh release at newly formed NMJs of reinnervated mouse m. EDL. (A) Representative recordings of MEPPs (left above) and mean MEPP amplitude and cumulative probability plots (right above), frequency and time-course parameters (left to right below) in control ( n = 20) and upon application of BDNF prodomain ( n = 22). (B) Mean MEPP amplitude in control ( n = 16) and during inhibition of vesicular ACh transporter by vesamicol (1 μM, n = 17) (left) and mean MEPP amplitude and cumulative probability plots in control ( n = 15) and upon application of BDNF prodomain in the presence of vesamicol ( n = 16). (C) Changes in the EPP amplitude (left) and their quantal content (right) in control ( n = 31) and in the presence of BDNF prodomain ( n = 41). Inset shows MEPP amplitudes.
    Bdnf Prodomain, supplied by Alomone Labs, used in various techniques. Bioz Stars score: 97/100, based on 1 PubMed citations. ZERO BIAS - scores, article reviews, protocol conditions and more
    https://www.bioz.com/result/bdnf prodomain/product/Alomone Labs
    Average 97 stars, based on 1 article reviews
    Price from $9.99 to $1999.99
    bdnf prodomain - by Bioz Stars, 2022-08
    97/100 stars
      Buy from Supplier

    Image Search Results


    BDNF prodomain in low concentration (1 nM) pre-synaptically increases ACh quantal size and simultaneously induces oppositely directed presynaptic effects affecting the evoked ACh release at newly formed NMJs of reinnervated mouse m. EDL. (A) Representative recordings of MEPPs (left above) and mean MEPP amplitude and cumulative probability plots (right above), frequency and time-course parameters (left to right below) in control ( n = 20) and upon application of BDNF prodomain ( n = 22). (B) Mean MEPP amplitude in control ( n = 16) and during inhibition of vesicular ACh transporter by vesamicol (1 μM, n = 17) (left) and mean MEPP amplitude and cumulative probability plots in control ( n = 15) and upon application of BDNF prodomain in the presence of vesamicol ( n = 16). (C) Changes in the EPP amplitude (left) and their quantal content (right) in control ( n = 31) and in the presence of BDNF prodomain ( n = 41). Inset shows MEPP amplitudes.

    Journal: Frontiers in Cellular Neuroscience

    Article Title: ProBDNF and Brain-Derived Neurotrophic Factor Prodomain Differently Modulate Acetylcholine Release in Regenerating and Mature Mouse Motor Synapses

    doi: 10.3389/fncel.2022.866802

    Figure Lengend Snippet: BDNF prodomain in low concentration (1 nM) pre-synaptically increases ACh quantal size and simultaneously induces oppositely directed presynaptic effects affecting the evoked ACh release at newly formed NMJs of reinnervated mouse m. EDL. (A) Representative recordings of MEPPs (left above) and mean MEPP amplitude and cumulative probability plots (right above), frequency and time-course parameters (left to right below) in control ( n = 20) and upon application of BDNF prodomain ( n = 22). (B) Mean MEPP amplitude in control ( n = 16) and during inhibition of vesicular ACh transporter by vesamicol (1 μM, n = 17) (left) and mean MEPP amplitude and cumulative probability plots in control ( n = 15) and upon application of BDNF prodomain in the presence of vesamicol ( n = 16). (C) Changes in the EPP amplitude (left) and their quantal content (right) in control ( n = 31) and in the presence of BDNF prodomain ( n = 41). Inset shows MEPP amplitudes.

    Article Snippet: Next, it was necessary to reveal which targets and signaling pathways mediate the negative effect of the BDNF prodomain on synaptic transmission in mature NMJs.

    Techniques: Concentration Assay, Inhibition

    BK channels do not but GIRK channels mediate BDNF prodomain-induced inhibition of evoked ACh release at mature NMJs. (A) Changes in the EPP amplitude (left) and in the quantal content of EPPs (right) in control ( n = 15) and upon BDNF prodomain (1 nM) in the presence of BK-blocker iberiotoxin (ITx, 100 nM) with L-type Ca 2+ -channel blocker nitrendipine (Nitr., 1 μM) ( n = 21). (B) Changes in the EPP amplitude (left) and in the quantal content of EPPs (right) in control ( n = 15) and in the presence of GIRK blocker tertiapin-Q (100 nM, n = 17). (C) Changes in the EPP amplitude (left) and in the quantal content of EPPs (right) in control ( n = 16) and upon BDNF prodomain (1 nM) in the presence of tertiapin-Q ( n = 19). Insets show MEPP amplitudes.

    Journal: Frontiers in Cellular Neuroscience

    Article Title: ProBDNF and Brain-Derived Neurotrophic Factor Prodomain Differently Modulate Acetylcholine Release in Regenerating and Mature Mouse Motor Synapses

    doi: 10.3389/fncel.2022.866802

    Figure Lengend Snippet: BK channels do not but GIRK channels mediate BDNF prodomain-induced inhibition of evoked ACh release at mature NMJs. (A) Changes in the EPP amplitude (left) and in the quantal content of EPPs (right) in control ( n = 15) and upon BDNF prodomain (1 nM) in the presence of BK-blocker iberiotoxin (ITx, 100 nM) with L-type Ca 2+ -channel blocker nitrendipine (Nitr., 1 μM) ( n = 21). (B) Changes in the EPP amplitude (left) and in the quantal content of EPPs (right) in control ( n = 15) and in the presence of GIRK blocker tertiapin-Q (100 nM, n = 17). (C) Changes in the EPP amplitude (left) and in the quantal content of EPPs (right) in control ( n = 16) and upon BDNF prodomain (1 nM) in the presence of tertiapin-Q ( n = 19). Insets show MEPP amplitudes.

    Article Snippet: Next, it was necessary to reveal which targets and signaling pathways mediate the negative effect of the BDNF prodomain on synaptic transmission in mature NMJs.

    Techniques: Inhibition

    BDNF prodomain (1 nM) but not proBDNF (1 nM), induces strong inhibition of spontaneous end evoked ACh release at mature NMJs. (A) Mean MEPP amplitude, cumulative probability plots, frequency, and time-course parameters (left to right) in control ( n = 19) and upon application of proBDNF ( n = 26). (B) Representative recordings of MEPPs (top left) and mean MEPP amplitude, cumulative probability plots, frequency, (top right) and their time-course parameters (bottom) in control ( n = 23) and upon application of BDNF prodomain ( n = 33). (C) Representative recordings of EPPs during a short (1 s) high-frequency (50 Hz) train in control (above) and upon application of BDNF prodomain (below). (D) Changes in the EPP amplitude (above) and in the quantal content of EPPs (below) in control ( n = 22) and in the presence of proBDNF ( n = 21). Inset shows MEPP amplitudes.

    Journal: Frontiers in Cellular Neuroscience

    Article Title: ProBDNF and Brain-Derived Neurotrophic Factor Prodomain Differently Modulate Acetylcholine Release in Regenerating and Mature Mouse Motor Synapses

    doi: 10.3389/fncel.2022.866802

    Figure Lengend Snippet: BDNF prodomain (1 nM) but not proBDNF (1 nM), induces strong inhibition of spontaneous end evoked ACh release at mature NMJs. (A) Mean MEPP amplitude, cumulative probability plots, frequency, and time-course parameters (left to right) in control ( n = 19) and upon application of proBDNF ( n = 26). (B) Representative recordings of MEPPs (top left) and mean MEPP amplitude, cumulative probability plots, frequency, (top right) and their time-course parameters (bottom) in control ( n = 23) and upon application of BDNF prodomain ( n = 33). (C) Representative recordings of EPPs during a short (1 s) high-frequency (50 Hz) train in control (above) and upon application of BDNF prodomain (below). (D) Changes in the EPP amplitude (above) and in the quantal content of EPPs (below) in control ( n = 22) and in the presence of proBDNF ( n = 21). Inset shows MEPP amplitudes.

    Article Snippet: Next, it was necessary to reveal which targets and signaling pathways mediate the negative effect of the BDNF prodomain on synaptic transmission in mature NMJs.

    Techniques: Inhibition

    p75 receptors and Rho-signaling pathway underlie BDNF prodomain-triggered inhibition of evoked ACh release at mature NMJs. Moreover, the inhibitory effect of the BDNF prodomain (1 nM) on the evoked neuromuscular transmission depends on the endogenous activity of synaptic purinoreceptors at mature NMJs. (A) Changes in the EPP amplitude (left) and in the quantal content of EPPs (right) in control ( n = 20) and upon BDNF prodomain (1 nM) in the presence of Rho-GDI-associated p75 signaling inhibitor TAT-Pep5 (1 μM, n = 21). (B) Changes in the EPP amplitude (left) and in the quantal content of EPPs (right) in control ( n = 17) and in the presence of ROCK inhibitor Y-27632 (3 μM, n = 21). (C) Changes in the EPP amplitude (left) and in the quantal content of EPPs (right) in control ( n = 15) and upon BDNF prodomain (1 nM) in the presence of Y-27632 ( n = 21). (D) Changes in the EPP amplitude (left) and in the quantal content of EPPs (right), registered from NMJs of Panx1 –/– mice in control ( n = 24) and in the presence of BDNF prodomain ( n = 22). Insets show MEPP amplitudes.

    Journal: Frontiers in Cellular Neuroscience

    Article Title: ProBDNF and Brain-Derived Neurotrophic Factor Prodomain Differently Modulate Acetylcholine Release in Regenerating and Mature Mouse Motor Synapses

    doi: 10.3389/fncel.2022.866802

    Figure Lengend Snippet: p75 receptors and Rho-signaling pathway underlie BDNF prodomain-triggered inhibition of evoked ACh release at mature NMJs. Moreover, the inhibitory effect of the BDNF prodomain (1 nM) on the evoked neuromuscular transmission depends on the endogenous activity of synaptic purinoreceptors at mature NMJs. (A) Changes in the EPP amplitude (left) and in the quantal content of EPPs (right) in control ( n = 20) and upon BDNF prodomain (1 nM) in the presence of Rho-GDI-associated p75 signaling inhibitor TAT-Pep5 (1 μM, n = 21). (B) Changes in the EPP amplitude (left) and in the quantal content of EPPs (right) in control ( n = 17) and in the presence of ROCK inhibitor Y-27632 (3 μM, n = 21). (C) Changes in the EPP amplitude (left) and in the quantal content of EPPs (right) in control ( n = 15) and upon BDNF prodomain (1 nM) in the presence of Y-27632 ( n = 21). (D) Changes in the EPP amplitude (left) and in the quantal content of EPPs (right), registered from NMJs of Panx1 –/– mice in control ( n = 24) and in the presence of BDNF prodomain ( n = 22). Insets show MEPP amplitudes.

    Article Snippet: Next, it was necessary to reveal which targets and signaling pathways mediate the negative effect of the BDNF prodomain on synaptic transmission in mature NMJs.

    Techniques: Inhibition, Transmission Assay, Activity Assay, Mouse Assay