ace2 cdna orf clone human untagged  (Sino Biological)


Bioz Verified Symbol Sino Biological is a verified supplier
Bioz Manufacturer Symbol Sino Biological manufactures this product  
  • Logo
  • About
  • News
  • Press Release
  • Team
  • Advisors
  • Partners
  • Contact
  • Bioz Stars
  • Bioz vStars
  • 94
    Name:
    ACE2 cDNA ORF Clone Human untagged
    Description:
    Full length Clone DNA of Human angiotensin I converting enzyme peptidyl dipeptidase A 2
    Catalog Number:
    HG10108-UT
    Price:
    215.0
    Category:
    cDNA Clone
    Applications:
    Stable or Transient mammalian expression
    Size:
    1Unit
    Product Aliases:
    ACEH cDNA ORF Clone Human
    Molecule Name:
    ACE2,2010305L05Rik,
    Buy from Supplier


    Structured Review

    Sino Biological ace2 cdna orf clone human untagged
    ACE2 cDNA ORF Clone Human untagged
    Full length Clone DNA of Human angiotensin I converting enzyme peptidyl dipeptidase A 2
    https://www.bioz.com/result/ace2 cdna orf clone human untagged/product/Sino Biological
    Average 94 stars, based on 1 article reviews
    Price from $9.99 to $1999.99
    ace2 cdna orf clone human untagged - by Bioz Stars, 2021-06
    94/100 stars

    Images

    Related Articles

    Recombinant:

    Article Title: SARS-CoV-2 and SARS-CoV Spike-RBD Structure and Receptor Binding Comparison and Potential Implications on Neutralizing Antibody and Vaccine Development
    Article Snippet: .. Reagents, recombinant proteins and antibodiesRecombinant S1 proteins of SARS-CoV-2 (Cat: 40591-V08H), SARS-CoV (Cat: 40150-V08B1) and MERS-CoV (Cat:40069-V08H), recombinant RBD protein of SARS-CoV (Cat: 40150-V31B2), transfection reagent Sinofection (Cat: STF02), mammalian expression plasmids of full length S or RBD protein of SARS-CoV-2 (Cat: VG40589-UT, Wuhan/IVDC-HB-01/2019) and SARS-CoV (Cat: VG40150-G-N, CUHK-W1), ACE2 (Cat: HG10108-UT), polyclonal antibodies against SARS-CoV RP01 (Cat: 40150-RP01) and T52 (Cat: 40150-T52) were purchased from Sino Biological. ..

    Transfection:

    Article Title: SARS-CoV-2 and SARS-CoV Spike-RBD Structure and Receptor Binding Comparison and Potential Implications on Neutralizing Antibody and Vaccine Development
    Article Snippet: .. Reagents, recombinant proteins and antibodiesRecombinant S1 proteins of SARS-CoV-2 (Cat: 40591-V08H), SARS-CoV (Cat: 40150-V08B1) and MERS-CoV (Cat:40069-V08H), recombinant RBD protein of SARS-CoV (Cat: 40150-V31B2), transfection reagent Sinofection (Cat: STF02), mammalian expression plasmids of full length S or RBD protein of SARS-CoV-2 (Cat: VG40589-UT, Wuhan/IVDC-HB-01/2019) and SARS-CoV (Cat: VG40150-G-N, CUHK-W1), ACE2 (Cat: HG10108-UT), polyclonal antibodies against SARS-CoV RP01 (Cat: 40150-RP01) and T52 (Cat: 40150-T52) were purchased from Sino Biological. ..

    Expressing:

    Article Title: SARS-CoV-2 and SARS-CoV Spike-RBD Structure and Receptor Binding Comparison and Potential Implications on Neutralizing Antibody and Vaccine Development
    Article Snippet: .. Reagents, recombinant proteins and antibodiesRecombinant S1 proteins of SARS-CoV-2 (Cat: 40591-V08H), SARS-CoV (Cat: 40150-V08B1) and MERS-CoV (Cat:40069-V08H), recombinant RBD protein of SARS-CoV (Cat: 40150-V31B2), transfection reagent Sinofection (Cat: STF02), mammalian expression plasmids of full length S or RBD protein of SARS-CoV-2 (Cat: VG40589-UT, Wuhan/IVDC-HB-01/2019) and SARS-CoV (Cat: VG40150-G-N, CUHK-W1), ACE2 (Cat: HG10108-UT), polyclonal antibodies against SARS-CoV RP01 (Cat: 40150-RP01) and T52 (Cat: 40150-T52) were purchased from Sino Biological. ..

    Article Title: Population-Specific ACE2 Single-Nucleotide Polymorphisms Have Limited Impact on SARS-CoV-2 Infectivity In Vitro
    Article Snippet: These comprised S19P and K26R, reported to potentially affect ACE2 affinity toward SARS-2-S [ , ], as well as N720D, which is located far from the SARS-2-S binding domain and is, therefore, expected to have little impact on SARS-2-S binding [ ]; these three SNPs are common in American and Non-Finnish European populations. .. PlasmidsTo generate the plasmid (pCMV6-hACE2-FLAG) expressing C-terminally FLAG-tagged wild-type human ACE2 (WT ACE2), a DNA fragment encoding the full-length human ACE2 open reading frame (ORF) was amplified by PCR using a human ACE2-expressing plasmid (HG10108-UT; Sino Biological, Beijing, China) as a template and then inserted in-frame into the pCMV6-Entry vector (OriGene, Rockville, MD, USA) between the SgfI and EcoRV sites connecting the ACE2 ORF and FLAG-tag cDNA sequences. .. Plasmids expressing human ACE2 variants with a C-terminus FLAG-tag were generated by PCR-based mutagenesis introducing corresponding mutations into pCMV6-hACE2-Flag.

    Plasmid Preparation:

    Article Title: Population-Specific ACE2 Single-Nucleotide Polymorphisms Have Limited Impact on SARS-CoV-2 Infectivity In Vitro
    Article Snippet: These comprised S19P and K26R, reported to potentially affect ACE2 affinity toward SARS-2-S [ , ], as well as N720D, which is located far from the SARS-2-S binding domain and is, therefore, expected to have little impact on SARS-2-S binding [ ]; these three SNPs are common in American and Non-Finnish European populations. .. PlasmidsTo generate the plasmid (pCMV6-hACE2-FLAG) expressing C-terminally FLAG-tagged wild-type human ACE2 (WT ACE2), a DNA fragment encoding the full-length human ACE2 open reading frame (ORF) was amplified by PCR using a human ACE2-expressing plasmid (HG10108-UT; Sino Biological, Beijing, China) as a template and then inserted in-frame into the pCMV6-Entry vector (OriGene, Rockville, MD, USA) between the SgfI and EcoRV sites connecting the ACE2 ORF and FLAG-tag cDNA sequences. .. Plasmids expressing human ACE2 variants with a C-terminus FLAG-tag were generated by PCR-based mutagenesis introducing corresponding mutations into pCMV6-hACE2-Flag.

    Amplification:

    Article Title: Population-Specific ACE2 Single-Nucleotide Polymorphisms Have Limited Impact on SARS-CoV-2 Infectivity In Vitro
    Article Snippet: These comprised S19P and K26R, reported to potentially affect ACE2 affinity toward SARS-2-S [ , ], as well as N720D, which is located far from the SARS-2-S binding domain and is, therefore, expected to have little impact on SARS-2-S binding [ ]; these three SNPs are common in American and Non-Finnish European populations. .. PlasmidsTo generate the plasmid (pCMV6-hACE2-FLAG) expressing C-terminally FLAG-tagged wild-type human ACE2 (WT ACE2), a DNA fragment encoding the full-length human ACE2 open reading frame (ORF) was amplified by PCR using a human ACE2-expressing plasmid (HG10108-UT; Sino Biological, Beijing, China) as a template and then inserted in-frame into the pCMV6-Entry vector (OriGene, Rockville, MD, USA) between the SgfI and EcoRV sites connecting the ACE2 ORF and FLAG-tag cDNA sequences. .. Plasmids expressing human ACE2 variants with a C-terminus FLAG-tag were generated by PCR-based mutagenesis introducing corresponding mutations into pCMV6-hACE2-Flag.

    Polymerase Chain Reaction:

    Article Title: Population-Specific ACE2 Single-Nucleotide Polymorphisms Have Limited Impact on SARS-CoV-2 Infectivity In Vitro
    Article Snippet: These comprised S19P and K26R, reported to potentially affect ACE2 affinity toward SARS-2-S [ , ], as well as N720D, which is located far from the SARS-2-S binding domain and is, therefore, expected to have little impact on SARS-2-S binding [ ]; these three SNPs are common in American and Non-Finnish European populations. .. PlasmidsTo generate the plasmid (pCMV6-hACE2-FLAG) expressing C-terminally FLAG-tagged wild-type human ACE2 (WT ACE2), a DNA fragment encoding the full-length human ACE2 open reading frame (ORF) was amplified by PCR using a human ACE2-expressing plasmid (HG10108-UT; Sino Biological, Beijing, China) as a template and then inserted in-frame into the pCMV6-Entry vector (OriGene, Rockville, MD, USA) between the SgfI and EcoRV sites connecting the ACE2 ORF and FLAG-tag cDNA sequences. .. Plasmids expressing human ACE2 variants with a C-terminus FLAG-tag were generated by PCR-based mutagenesis introducing corresponding mutations into pCMV6-hACE2-Flag.

    FLAG-tag:

    Article Title: Population-Specific ACE2 Single-Nucleotide Polymorphisms Have Limited Impact on SARS-CoV-2 Infectivity In Vitro
    Article Snippet: These comprised S19P and K26R, reported to potentially affect ACE2 affinity toward SARS-2-S [ , ], as well as N720D, which is located far from the SARS-2-S binding domain and is, therefore, expected to have little impact on SARS-2-S binding [ ]; these three SNPs are common in American and Non-Finnish European populations. .. PlasmidsTo generate the plasmid (pCMV6-hACE2-FLAG) expressing C-terminally FLAG-tagged wild-type human ACE2 (WT ACE2), a DNA fragment encoding the full-length human ACE2 open reading frame (ORF) was amplified by PCR using a human ACE2-expressing plasmid (HG10108-UT; Sino Biological, Beijing, China) as a template and then inserted in-frame into the pCMV6-Entry vector (OriGene, Rockville, MD, USA) between the SgfI and EcoRV sites connecting the ACE2 ORF and FLAG-tag cDNA sequences. .. Plasmids expressing human ACE2 variants with a C-terminus FLAG-tag were generated by PCR-based mutagenesis introducing corresponding mutations into pCMV6-hACE2-Flag.

    Similar Products

  • Logo
  • About
  • News
  • Press Release
  • Team
  • Advisors
  • Partners
  • Contact
  • Bioz Stars
  • Bioz vStars
  • 94
    Sino Biological ace2
    Structural conservation of SARS-CoV RBD. RBD is shown as colored surface. <t>ACE2</t> is shown as gray cartoon. The three surface mutation sites (i.e. N354D, D364Y, and V367F) observed in SARS-CoV-2 RBD are labeled. Mutation F342L is buried and not shown here.
    Ace2, supplied by Sino Biological, used in various techniques. Bioz Stars score: 94/100, based on 1 PubMed citations. ZERO BIAS - scores, article reviews, protocol conditions and more
    https://www.bioz.com/result/ace2/product/Sino Biological
    Average 94 stars, based on 1 article reviews
    Price from $9.99 to $1999.99
    ace2 - by Bioz Stars, 2021-06
    94/100 stars
      Buy from Supplier

    N/A
    Full length Clone DNA of Human beta site APP cleaving enzyme 2
      Buy from Supplier

    Image Search Results


    Structural conservation of SARS-CoV RBD. RBD is shown as colored surface. ACE2 is shown as gray cartoon. The three surface mutation sites (i.e. N354D, D364Y, and V367F) observed in SARS-CoV-2 RBD are labeled. Mutation F342L is buried and not shown here.

    Journal: bioRxiv

    Article Title: SARS-CoV-2 and SARS-CoV Spike-RBD Structure and Receptor Binding Comparison and Potential Implications on Neutralizing Antibody and Vaccine Development

    doi: 10.1101/2020.02.16.951723

    Figure Lengend Snippet: Structural conservation of SARS-CoV RBD. RBD is shown as colored surface. ACE2 is shown as gray cartoon. The three surface mutation sites (i.e. N354D, D364Y, and V367F) observed in SARS-CoV-2 RBD are labeled. Mutation F342L is buried and not shown here.

    Article Snippet: Reagents, recombinant proteins and antibodies Recombinant S1 proteins of SARS-CoV-2 (Cat: 40591-V08H), SARS-CoV (Cat: 40150-V08B1) and MERS-CoV (Cat:40069-V08H), recombinant RBD protein of SARS-CoV (Cat: 40150-V31B2), transfection reagent Sinofection (Cat: STF02), mammalian expression plasmids of full length S or RBD protein of SARS-CoV-2 (Cat: VG40589-UT, Wuhan/IVDC-HB-01/2019) and SARS-CoV (Cat: VG40150-G-N, CUHK-W1), ACE2 (Cat: HG10108-UT), polyclonal antibodies against SARS-CoV RP01 (Cat: 40150-RP01) and T52 (Cat: 40150-T52) were purchased from Sino Biological.

    Techniques: Mutagenesis, Labeling

    Structure similarity between SARS-CoV-2 RBD and SARS-CoV RBD. RBD is shown in a space-filled model with colored surface. ACE2 is shown as gray tube model. The three glycosylation sites in SARS-CoV are labeled. Note that N 357 ST in SARS-CoV is changed to N 370 SA in SARS-CoV-2, which is different from the NXS/T pattern required for glycosylation, and hence this site is more likely to be unglycosylated. The two possible cross-reactive regions are marked with yellow circles.

    Journal: bioRxiv

    Article Title: SARS-CoV-2 and SARS-CoV Spike-RBD Structure and Receptor Binding Comparison and Potential Implications on Neutralizing Antibody and Vaccine Development

    doi: 10.1101/2020.02.16.951723

    Figure Lengend Snippet: Structure similarity between SARS-CoV-2 RBD and SARS-CoV RBD. RBD is shown in a space-filled model with colored surface. ACE2 is shown as gray tube model. The three glycosylation sites in SARS-CoV are labeled. Note that N 357 ST in SARS-CoV is changed to N 370 SA in SARS-CoV-2, which is different from the NXS/T pattern required for glycosylation, and hence this site is more likely to be unglycosylated. The two possible cross-reactive regions are marked with yellow circles.

    Article Snippet: Reagents, recombinant proteins and antibodies Recombinant S1 proteins of SARS-CoV-2 (Cat: 40591-V08H), SARS-CoV (Cat: 40150-V08B1) and MERS-CoV (Cat:40069-V08H), recombinant RBD protein of SARS-CoV (Cat: 40150-V31B2), transfection reagent Sinofection (Cat: STF02), mammalian expression plasmids of full length S or RBD protein of SARS-CoV-2 (Cat: VG40589-UT, Wuhan/IVDC-HB-01/2019) and SARS-CoV (Cat: VG40150-G-N, CUHK-W1), ACE2 (Cat: HG10108-UT), polyclonal antibodies against SARS-CoV RP01 (Cat: 40150-RP01) and T52 (Cat: 40150-T52) were purchased from Sino Biological.

    Techniques: Labeling

    Cross-reactivity and neutralization efficiency of SARS nAbs against SARS-CoV-2. A. Binding of SARS nAbs to SARS-CoV S1 protein were tested by ELISA. Recombinant S1 protein of SARS-CoV were coated on plates, serial diluted nAbs were added for binding to recombinant S1 protein. B. Binding of SARS nAbs to SARS-CoV-2 S1 protein were tested by ELSIA. Recombinant S1 protein of SARS-CoV-2 were coated on plates, serial diluted nAbs were added for binding to recombinant S1 protein. C. Neutralization of SARS-CoV nAbs against SARS-CoV-2 PSV. D. Antibody competition with SARS-CoV RBD binding to ACE2. Recombinant SARS-CoV RBD protein was coated on plates, nAbs and recombinant ACE2 were then added for RBD binding competition measurements.

    Journal: bioRxiv

    Article Title: SARS-CoV-2 and SARS-CoV Spike-RBD Structure and Receptor Binding Comparison and Potential Implications on Neutralizing Antibody and Vaccine Development

    doi: 10.1101/2020.02.16.951723

    Figure Lengend Snippet: Cross-reactivity and neutralization efficiency of SARS nAbs against SARS-CoV-2. A. Binding of SARS nAbs to SARS-CoV S1 protein were tested by ELISA. Recombinant S1 protein of SARS-CoV were coated on plates, serial diluted nAbs were added for binding to recombinant S1 protein. B. Binding of SARS nAbs to SARS-CoV-2 S1 protein were tested by ELSIA. Recombinant S1 protein of SARS-CoV-2 were coated on plates, serial diluted nAbs were added for binding to recombinant S1 protein. C. Neutralization of SARS-CoV nAbs against SARS-CoV-2 PSV. D. Antibody competition with SARS-CoV RBD binding to ACE2. Recombinant SARS-CoV RBD protein was coated on plates, nAbs and recombinant ACE2 were then added for RBD binding competition measurements.

    Article Snippet: Reagents, recombinant proteins and antibodies Recombinant S1 proteins of SARS-CoV-2 (Cat: 40591-V08H), SARS-CoV (Cat: 40150-V08B1) and MERS-CoV (Cat:40069-V08H), recombinant RBD protein of SARS-CoV (Cat: 40150-V31B2), transfection reagent Sinofection (Cat: STF02), mammalian expression plasmids of full length S or RBD protein of SARS-CoV-2 (Cat: VG40589-UT, Wuhan/IVDC-HB-01/2019) and SARS-CoV (Cat: VG40150-G-N, CUHK-W1), ACE2 (Cat: HG10108-UT), polyclonal antibodies against SARS-CoV RP01 (Cat: 40150-RP01) and T52 (Cat: 40150-T52) were purchased from Sino Biological.

    Techniques: Neutralization, Binding Assay, Enzyme-linked Immunosorbent Assay, Recombinant

    Sequence analysis and structure modeling of SARS-CoV-2 RBD and SARS-CoV RBD and their interactions with ACE2. A. RBD sequence alignment of SARS-CoV and SARS-CoV-2, highlighting the predominant residues that contribute to the interactions with ACE2. The distinct interactions of RBD and ACE2 for the two viruses are indicated by the down-pointing orange triangles and up-pointing red triangles, respectively. RBM residues are underlined. The one-residue insertion is indicated by the red arrow. Asterisks indicate positions of fully conserved residues. Colons indicate positions of strictly conserved residues. Periods indicate positions of weakly conserved residues. B. Conformational comparison between the RBD-ACE2 complex structures for SARS-CoV-2 and SARS-CoV. The RBD and ACE2 structures in the SARS-CoV-2 RBD-ACE2 complex model are shown as orange and pink tubes, respectively. The RBD and ACE2 structures in the optimized SARS-CoV RBD-ACE2 complex structure are shown as blue and green tubes, respectively. The location of noticeable subtle conformational difference is indicated by an arrow. C. Distinct interaction patterns in the SARS-CoV-2 and SARS-CoV RBD-ACE2 interfaces. Structures of RBD and ACE2 are shown as cartoon in pink and green colors, respectively. The side chains of the residues in both protein components, representing their unique interactions, are shown as sticks. Polar interactions (salt-bridge and hydrogen bond) are shown as blue dash line. Non-polar interactions (π-stack, π-anion, and hydrophobic interactions) are shown as orange dash line.

    Journal: bioRxiv

    Article Title: SARS-CoV-2 and SARS-CoV Spike-RBD Structure and Receptor Binding Comparison and Potential Implications on Neutralizing Antibody and Vaccine Development

    doi: 10.1101/2020.02.16.951723

    Figure Lengend Snippet: Sequence analysis and structure modeling of SARS-CoV-2 RBD and SARS-CoV RBD and their interactions with ACE2. A. RBD sequence alignment of SARS-CoV and SARS-CoV-2, highlighting the predominant residues that contribute to the interactions with ACE2. The distinct interactions of RBD and ACE2 for the two viruses are indicated by the down-pointing orange triangles and up-pointing red triangles, respectively. RBM residues are underlined. The one-residue insertion is indicated by the red arrow. Asterisks indicate positions of fully conserved residues. Colons indicate positions of strictly conserved residues. Periods indicate positions of weakly conserved residues. B. Conformational comparison between the RBD-ACE2 complex structures for SARS-CoV-2 and SARS-CoV. The RBD and ACE2 structures in the SARS-CoV-2 RBD-ACE2 complex model are shown as orange and pink tubes, respectively. The RBD and ACE2 structures in the optimized SARS-CoV RBD-ACE2 complex structure are shown as blue and green tubes, respectively. The location of noticeable subtle conformational difference is indicated by an arrow. C. Distinct interaction patterns in the SARS-CoV-2 and SARS-CoV RBD-ACE2 interfaces. Structures of RBD and ACE2 are shown as cartoon in pink and green colors, respectively. The side chains of the residues in both protein components, representing their unique interactions, are shown as sticks. Polar interactions (salt-bridge and hydrogen bond) are shown as blue dash line. Non-polar interactions (π-stack, π-anion, and hydrophobic interactions) are shown as orange dash line.

    Article Snippet: Reagents, recombinant proteins and antibodies Recombinant S1 proteins of SARS-CoV-2 (Cat: 40591-V08H), SARS-CoV (Cat: 40150-V08B1) and MERS-CoV (Cat:40069-V08H), recombinant RBD protein of SARS-CoV (Cat: 40150-V31B2), transfection reagent Sinofection (Cat: STF02), mammalian expression plasmids of full length S or RBD protein of SARS-CoV-2 (Cat: VG40589-UT, Wuhan/IVDC-HB-01/2019) and SARS-CoV (Cat: VG40150-G-N, CUHK-W1), ACE2 (Cat: HG10108-UT), polyclonal antibodies against SARS-CoV RP01 (Cat: 40150-RP01) and T52 (Cat: 40150-T52) were purchased from Sino Biological.

    Techniques: Sequencing

    Measurements of SARS-CoV-2 and SARS-CoV S1 binding to ACE2. A. Serial diluted recombinant S1 proteins of SARS-CoV-2, SARS-CoV and MERS-CoV were coated on 96 well plates, incubated with the recombinant Fc-tagged ACE2 (ACE2-Fc) for binding evaluation. B. Recombinant S1 proteins of SARS-CoV-2 and SARS-CoV were incubated with 293T-ACE2 cells and subjected to FACS evaluation for binding.

    Journal: bioRxiv

    Article Title: SARS-CoV-2 and SARS-CoV Spike-RBD Structure and Receptor Binding Comparison and Potential Implications on Neutralizing Antibody and Vaccine Development

    doi: 10.1101/2020.02.16.951723

    Figure Lengend Snippet: Measurements of SARS-CoV-2 and SARS-CoV S1 binding to ACE2. A. Serial diluted recombinant S1 proteins of SARS-CoV-2, SARS-CoV and MERS-CoV were coated on 96 well plates, incubated with the recombinant Fc-tagged ACE2 (ACE2-Fc) for binding evaluation. B. Recombinant S1 proteins of SARS-CoV-2 and SARS-CoV were incubated with 293T-ACE2 cells and subjected to FACS evaluation for binding.

    Article Snippet: Reagents, recombinant proteins and antibodies Recombinant S1 proteins of SARS-CoV-2 (Cat: 40591-V08H), SARS-CoV (Cat: 40150-V08B1) and MERS-CoV (Cat:40069-V08H), recombinant RBD protein of SARS-CoV (Cat: 40150-V31B2), transfection reagent Sinofection (Cat: STF02), mammalian expression plasmids of full length S or RBD protein of SARS-CoV-2 (Cat: VG40589-UT, Wuhan/IVDC-HB-01/2019) and SARS-CoV (Cat: VG40150-G-N, CUHK-W1), ACE2 (Cat: HG10108-UT), polyclonal antibodies against SARS-CoV RP01 (Cat: 40150-RP01) and T52 (Cat: 40150-T52) were purchased from Sino Biological.

    Techniques: Binding Assay, Recombinant, Incubation, FACS