probdnf  (Alomone Labs)


Bioz Verified Symbol Alomone Labs is a verified supplier
Bioz Manufacturer Symbol Alomone Labs manufactures this product  
  • Logo
  • About
  • News
  • Press Release
  • Team
  • Advisors
  • Partners
  • Contact
  • Bioz Stars
  • Bioz vStars
  • 94

    Structured Review

    Alomone Labs probdnf
    proBNDF-mediated p75NTR activation in cortical PV cells reduces their perisomatic boutons. A , Experimental approach. B , The intensity of perisomatic PV immunostaining (green) is reduced in the binocular visual cortex ipsilateral to the minipump-releasing <t>mut-proBDNF</t> (Ipsi) compared with the contralateral cortex (Contra) in the same animal. On the other hand, perisomatic PV intensity in the ipsilateral cortex of PV_Cre;p75 flx/flx mice is similar to that observed in the contralateral, untreated cortex. C , Low ( C1 ) and high ( C2 ) magnification of PNN (red, WFA staining) enwrapping PV cells (green) shows a dramatic reduction in both PNN density and intensity in the visual cortex infused with mut-proBFNF. This effect is abolished in PV_Cre;p75 flx/flx mice. Scale bars: C1 , 100 μm; B , C2 , 10 μm. D , Quantification of the mean intensity of perisomatic PV-positive puncta in ipsilateral compared with contralateral cortex. I/C ratio is obtained for each animal and then averaged between different animals. Mean I/C ratio is significantly reduced in Mut-proBDNF-infused p75 Ctrl mice compared with Mut-proBDNF-infused PV_Cre;p75 flx/flx mice (unpaired t test, df = 8, t = 6.077, p = 0.0003). E , The ratio of mean PNN intensity around PV cells in ipsilateral versus contralateral cortex is significantly lower in p75 Ctrl than PV_Cre;p75 flx/flx mice infused with mut-proBDNF (unpaired t test, df = 8, t = 15.33, p
    Probdnf, supplied by Alomone Labs, used in various techniques. Bioz Stars score: 94/100, based on 1 PubMed citations. ZERO BIAS - scores, article reviews, protocol conditions and more
    https://www.bioz.com/result/probdnf/product/Alomone Labs
    Average 94 stars, based on 1 article reviews
    Price from $9.99 to $1999.99
    probdnf - by Bioz Stars, 2021-12
    94/100 stars

    Images

    1) Product Images from "p75 Neurotrophin Receptor Activation Regulates the Timing of the Maturation of Cortical Parvalbumin Interneuron Connectivity and Promotes Juvenile-like Plasticity in Adult Visual Cortex"

    Article Title: p75 Neurotrophin Receptor Activation Regulates the Timing of the Maturation of Cortical Parvalbumin Interneuron Connectivity and Promotes Juvenile-like Plasticity in Adult Visual Cortex

    Journal: The Journal of Neuroscience

    doi: 10.1523/JNEUROSCI.2881-18.2019

    proBNDF-mediated p75NTR activation in cortical PV cells reduces their perisomatic boutons. A , Experimental approach. B , The intensity of perisomatic PV immunostaining (green) is reduced in the binocular visual cortex ipsilateral to the minipump-releasing mut-proBDNF (Ipsi) compared with the contralateral cortex (Contra) in the same animal. On the other hand, perisomatic PV intensity in the ipsilateral cortex of PV_Cre;p75 flx/flx mice is similar to that observed in the contralateral, untreated cortex. C , Low ( C1 ) and high ( C2 ) magnification of PNN (red, WFA staining) enwrapping PV cells (green) shows a dramatic reduction in both PNN density and intensity in the visual cortex infused with mut-proBFNF. This effect is abolished in PV_Cre;p75 flx/flx mice. Scale bars: C1 , 100 μm; B , C2 , 10 μm. D , Quantification of the mean intensity of perisomatic PV-positive puncta in ipsilateral compared with contralateral cortex. I/C ratio is obtained for each animal and then averaged between different animals. Mean I/C ratio is significantly reduced in Mut-proBDNF-infused p75 Ctrl mice compared with Mut-proBDNF-infused PV_Cre;p75 flx/flx mice (unpaired t test, df = 8, t = 6.077, p = 0.0003). E , The ratio of mean PNN intensity around PV cells in ipsilateral versus contralateral cortex is significantly lower in p75 Ctrl than PV_Cre;p75 flx/flx mice infused with mut-proBDNF (unpaired t test, df = 8, t = 15.33, p
    Figure Legend Snippet: proBNDF-mediated p75NTR activation in cortical PV cells reduces their perisomatic boutons. A , Experimental approach. B , The intensity of perisomatic PV immunostaining (green) is reduced in the binocular visual cortex ipsilateral to the minipump-releasing mut-proBDNF (Ipsi) compared with the contralateral cortex (Contra) in the same animal. On the other hand, perisomatic PV intensity in the ipsilateral cortex of PV_Cre;p75 flx/flx mice is similar to that observed in the contralateral, untreated cortex. C , Low ( C1 ) and high ( C2 ) magnification of PNN (red, WFA staining) enwrapping PV cells (green) shows a dramatic reduction in both PNN density and intensity in the visual cortex infused with mut-proBFNF. This effect is abolished in PV_Cre;p75 flx/flx mice. Scale bars: C1 , 100 μm; B , C2 , 10 μm. D , Quantification of the mean intensity of perisomatic PV-positive puncta in ipsilateral compared with contralateral cortex. I/C ratio is obtained for each animal and then averaged between different animals. Mean I/C ratio is significantly reduced in Mut-proBDNF-infused p75 Ctrl mice compared with Mut-proBDNF-infused PV_Cre;p75 flx/flx mice (unpaired t test, df = 8, t = 6.077, p = 0.0003). E , The ratio of mean PNN intensity around PV cells in ipsilateral versus contralateral cortex is significantly lower in p75 Ctrl than PV_Cre;p75 flx/flx mice infused with mut-proBDNF (unpaired t test, df = 8, t = 15.33, p

    Techniques Used: Activation Assay, Immunostaining, Mouse Assay, Staining

    Modulation of tPA activity affects the formation of PV cell innervations during early postnatal development. A , Control EP18 PV cell ( A1 , green represents Ctrl). B , PV cell treated with the tPA inhibitor PPACK from EP10–EP18 shows simpler axonal arborization, contacting less potential targets ( B2 , blue represents NeuN-positive somata). C , PV cell treated with tPA in the same time window shows a very complex axonal arbor ( C2 ) and an increase in both terminal branching and perisomatic boutons ( C3 , arrowheads) compared with control cells ( A2 , A3 ). D , PV cell treated simultaneously with tPA and mut-proBDNF shows axonal branching and perisomatic innervation more similar to those formed by PV cell treated with mut-proBDNF alone, suggesting that the effects of tPA application may be mediated by a decrease in endogenous proBDNF/mBDNF ratio. Stars indicate NeuN-positive somata that are not innervated. Scale bars: A1–D1 , 50 μm; A2–D2 , 10 μm; A3–D3 , 5 μm. E , Perisomatic boutons density (one-way ANOVA, F (3,20) = 121.2, p
    Figure Legend Snippet: Modulation of tPA activity affects the formation of PV cell innervations during early postnatal development. A , Control EP18 PV cell ( A1 , green represents Ctrl). B , PV cell treated with the tPA inhibitor PPACK from EP10–EP18 shows simpler axonal arborization, contacting less potential targets ( B2 , blue represents NeuN-positive somata). C , PV cell treated with tPA in the same time window shows a very complex axonal arbor ( C2 ) and an increase in both terminal branching and perisomatic boutons ( C3 , arrowheads) compared with control cells ( A2 , A3 ). D , PV cell treated simultaneously with tPA and mut-proBDNF shows axonal branching and perisomatic innervation more similar to those formed by PV cell treated with mut-proBDNF alone, suggesting that the effects of tPA application may be mediated by a decrease in endogenous proBDNF/mBDNF ratio. Stars indicate NeuN-positive somata that are not innervated. Scale bars: A1–D1 , 50 μm; A2–D2 , 10 μm; A3–D3 , 5 μm. E , Perisomatic boutons density (one-way ANOVA, F (3,20) = 121.2, p

    Techniques Used: Activity Assay

    proBNDF-mediated p75NTR activation in cortical PV cells restores ocular dominance plasticity in adult visual cortex in vivo . A , Typical VEP responses to the stimulation of either contralateral (blue) or ipsilateral (red) eye to the cortex in which the recording is performed in p75NTR Ctrl mice infused with either vehicle or mut-proBDNF, and PV_Cre;p75NTR flx/flx mice infused with mut-proBDNF. Calibration bars: 50 μV, 100 ms. B , C/I VEP ratio mean values. Three days of monocular deprivation do not affect the C/I VEP ratio in adult mice, although it leads to a significant decrease in the C/I VEP ratio in animals treated with mut-proBDNF. Mut-proBDNF effects are, however, abolished in PV_Cre;p75 flx/flx mice (one-way ANOVA, F (2,18) = 8.903, p = 0.0021). p75NTR Ctrl + vehicle: n = 9 mice; p75NTR Ctrl + mut-proBDNF: n = 5 mice; PV_Cre;p75 flx/flx +mut-proBDNF: n = 7 mice. C , ODI of p75NTR Ctrl mice infused with vehicle solution and PV_Cre;p75 flx/flx mice infused with mut-proBDNF are not significantly different from those of undeprived animals, whereas ODIs in p75 Ctrl mice treated with mut-proBDNF are significantly shifted toward the open eye (one-way ANOVA, F (2,443) = 5.203, p = 0.0058). D , Mean spontaneous discharge is significantly increased only in p75 Ctrl mice treated with mut-proBDNF (one-way ANOVA, F (2,443) = 4.580, p = 0.0107). p75NTR Ctrl + vehicle: n = 9 mice, 174 cells; p75NTR Ctrl + mut-proBDNF: n = 5 mice, 147 cells; PV_Cre;p75 flx/flx +mut-proBDNF: n = 6 mice, 125 cells. Gray area represents the C/I VEP ratio ( B ) or the ODI range ( C ) (mean ± SEM) in adult nondeprived animals ( n = 5 mice, 99 cells). * indicate p
    Figure Legend Snippet: proBNDF-mediated p75NTR activation in cortical PV cells restores ocular dominance plasticity in adult visual cortex in vivo . A , Typical VEP responses to the stimulation of either contralateral (blue) or ipsilateral (red) eye to the cortex in which the recording is performed in p75NTR Ctrl mice infused with either vehicle or mut-proBDNF, and PV_Cre;p75NTR flx/flx mice infused with mut-proBDNF. Calibration bars: 50 μV, 100 ms. B , C/I VEP ratio mean values. Three days of monocular deprivation do not affect the C/I VEP ratio in adult mice, although it leads to a significant decrease in the C/I VEP ratio in animals treated with mut-proBDNF. Mut-proBDNF effects are, however, abolished in PV_Cre;p75 flx/flx mice (one-way ANOVA, F (2,18) = 8.903, p = 0.0021). p75NTR Ctrl + vehicle: n = 9 mice; p75NTR Ctrl + mut-proBDNF: n = 5 mice; PV_Cre;p75 flx/flx +mut-proBDNF: n = 7 mice. C , ODI of p75NTR Ctrl mice infused with vehicle solution and PV_Cre;p75 flx/flx mice infused with mut-proBDNF are not significantly different from those of undeprived animals, whereas ODIs in p75 Ctrl mice treated with mut-proBDNF are significantly shifted toward the open eye (one-way ANOVA, F (2,443) = 5.203, p = 0.0058). D , Mean spontaneous discharge is significantly increased only in p75 Ctrl mice treated with mut-proBDNF (one-way ANOVA, F (2,443) = 4.580, p = 0.0107). p75NTR Ctrl + vehicle: n = 9 mice, 174 cells; p75NTR Ctrl + mut-proBDNF: n = 5 mice, 147 cells; PV_Cre;p75 flx/flx +mut-proBDNF: n = 6 mice, 125 cells. Gray area represents the C/I VEP ratio ( B ) or the ODI range ( C ) (mean ± SEM) in adult nondeprived animals ( n = 5 mice, 99 cells). * indicate p

    Techniques Used: Activation Assay, In Vivo, Mouse Assay

    mut-proBDNF destabilizes PV cell innervation, even after it has reached maturity. A , Control PV cell ( A1 , Ctrl, green) at EP32 with exuberant innervation field characterized by extensive branching contacting the majority of potential targets, dense boutons along axons ( A2 ), and terminal branches with prominent and clustered boutons ( A3 ; arrowheads) around NeuN-positive somata (blue). B , PV cell treated with wt-proBDNF from EP26-EP32 shows overall similar axon size ( B1 ), percentage of potentially targeted neurons ( B2 ), and perisomatic innervations ( B3 ) as control, untreated PV cells. C , PV cell treated with mut-proBDNF from EP26-EP32 shows a drastic reduction both in percentage of innervated cells ( C2 ) and perisomatic innervation ( C3 ). Stars indicate NeuN-positive somata that are not innervated. Scale bars: A1–C1 , 50 μm; A2–C2 , 10 μm; A3–C3 , 5 μm. D , Perisomatic bouton density (one-way ANOVA, F (2,18) = 93.34, p
    Figure Legend Snippet: mut-proBDNF destabilizes PV cell innervation, even after it has reached maturity. A , Control PV cell ( A1 , Ctrl, green) at EP32 with exuberant innervation field characterized by extensive branching contacting the majority of potential targets, dense boutons along axons ( A2 ), and terminal branches with prominent and clustered boutons ( A3 ; arrowheads) around NeuN-positive somata (blue). B , PV cell treated with wt-proBDNF from EP26-EP32 shows overall similar axon size ( B1 ), percentage of potentially targeted neurons ( B2 ), and perisomatic innervations ( B3 ) as control, untreated PV cells. C , PV cell treated with mut-proBDNF from EP26-EP32 shows a drastic reduction both in percentage of innervated cells ( C2 ) and perisomatic innervation ( C3 ). Stars indicate NeuN-positive somata that are not innervated. Scale bars: A1–C1 , 50 μm; A2–C2 , 10 μm; A3–C3 , 5 μm. D , Perisomatic bouton density (one-way ANOVA, F (2,18) = 93.34, p

    Techniques Used:

    2) Product Images from "HBpF-proBDNF: A New Tool for the Analysis of Pro-Brain Derived Neurotrophic Factor Receptor Signaling and Cell Biology"

    Article Title: HBpF-proBDNF: A New Tool for the Analysis of Pro-Brain Derived Neurotrophic Factor Receptor Signaling and Cell Biology

    Journal: PLoS ONE

    doi: 10.1371/journal.pone.0150601

    Endocytosis of HBpF-proBDNF in Hippocampal neurons. Primary hippocampal neurons cells were exposed to HBpF-proBDNF (250 ng/ml) conjugated to Streptavidin-Cy3 for 1h to 6h. After fixation and mounting, cells were analyzed by fluorescent microscopy. Hoechst staining was used as a nuclear marker. Quantification of fluorescence intensity was performed using ImageJ software on three independent experiments. 100 cells were measured for each experiment. (unpaired two-tailed t -test, * indicates a p-value
    Figure Legend Snippet: Endocytosis of HBpF-proBDNF in Hippocampal neurons. Primary hippocampal neurons cells were exposed to HBpF-proBDNF (250 ng/ml) conjugated to Streptavidin-Cy3 for 1h to 6h. After fixation and mounting, cells were analyzed by fluorescent microscopy. Hoechst staining was used as a nuclear marker. Quantification of fluorescence intensity was performed using ImageJ software on three independent experiments. 100 cells were measured for each experiment. (unpaired two-tailed t -test, * indicates a p-value

    Techniques Used: Microscopy, Staining, Marker, Fluorescence, Software, Two Tailed Test

    HBpF-proBDNF inhibits carbachol (CCh)-induced persistent firing in cortical pyramidal neurons. A. Representative trace of current-clamp recording from pyramidal neuron in layer V of the entorhinal cortex. Slices were perfused with 10μM CCh and the persistent activity was produced by a short depolarization (1s, 100pA). HBpF-proBDNF at 2ng/ml was next added in presence of 10μM CCh during 10 minutes (first cut in the trace) and cells were stimulated. HBpF-proBDNF was removed by perfusing a solution containing only 10μM CCh for 10 minutes (second cut in the trace) and before the stimulation of the cells. B. Quantification of the plateau amplitude and frequency of the persistent activity (unpaired two-tailed t -test, * indicates a p-value
    Figure Legend Snippet: HBpF-proBDNF inhibits carbachol (CCh)-induced persistent firing in cortical pyramidal neurons. A. Representative trace of current-clamp recording from pyramidal neuron in layer V of the entorhinal cortex. Slices were perfused with 10μM CCh and the persistent activity was produced by a short depolarization (1s, 100pA). HBpF-proBDNF at 2ng/ml was next added in presence of 10μM CCh during 10 minutes (first cut in the trace) and cells were stimulated. HBpF-proBDNF was removed by perfusing a solution containing only 10μM CCh for 10 minutes (second cut in the trace) and before the stimulation of the cells. B. Quantification of the plateau amplitude and frequency of the persistent activity (unpaired two-tailed t -test, * indicates a p-value

    Techniques Used: Activity Assay, Produced, Two Tailed Test

    HBpF-proBDNF can be isolated by a modified tandem affinity purification protocol. A. HEK293T cells were transfected with p75NTR, Sortilin, HBpF-proBDNF, and BirA expression plasmid as indicated. 48h after transfection, HEK293T cells were lysed (input) and pulled-down on Ni-NTA beads. The Ni-NTA eluate was then pulled-down on SA beads and then cleaved by PP overnight (PP eluate). Samples were analyzed by immunoblotting for p75NTR, sortilin, biotin and the Flag tag.
    Figure Legend Snippet: HBpF-proBDNF can be isolated by a modified tandem affinity purification protocol. A. HEK293T cells were transfected with p75NTR, Sortilin, HBpF-proBDNF, and BirA expression plasmid as indicated. 48h after transfection, HEK293T cells were lysed (input) and pulled-down on Ni-NTA beads. The Ni-NTA eluate was then pulled-down on SA beads and then cleaved by PP overnight (PP eluate). Samples were analyzed by immunoblotting for p75NTR, sortilin, biotin and the Flag tag.

    Techniques Used: Isolation, Modification, Affinity Purification, Transfection, Expressing, Plasmid Preparation, FLAG-tag

    HBpF-proBDNF induces growth cone collapse. Following 2 days in culture, hippocampal neuronal culture were stimulated with different concentrations of HBpF-proBDNF or proBDNF (25ng/ml and 100ng/ml) for 1h. Ni-NTA eluate from cells expressing only BirA was used as a negative control. Cells were then fixed and immunostained against beta-III-tubulin (Tuj-1) and phalloidin (scale bar = 10μm). Quantification of growth cone-collapse was done on three independent experiments and 50 growth-cones were counted for each experiment (unpaired two-tailed t -test, * indicates a p-value
    Figure Legend Snippet: HBpF-proBDNF induces growth cone collapse. Following 2 days in culture, hippocampal neuronal culture were stimulated with different concentrations of HBpF-proBDNF or proBDNF (25ng/ml and 100ng/ml) for 1h. Ni-NTA eluate from cells expressing only BirA was used as a negative control. Cells were then fixed and immunostained against beta-III-tubulin (Tuj-1) and phalloidin (scale bar = 10μm). Quantification of growth cone-collapse was done on three independent experiments and 50 growth-cones were counted for each experiment (unpaired two-tailed t -test, * indicates a p-value

    Techniques Used: Expressing, Negative Control, Two Tailed Test

    HBpF-proBDNF design and production. A. Schematic representation of recombinant HBpF-proBDNF protein. HBpF-proBDNF contains a signal peptide, an amino-terminal 6xHis-tag, followed by a Biotin-Acceptor-Peptide (BAP) sequence, a linker (L), a PreScission ™ Protease (PP) cleavage site and a Flag-tag (Flag). The ProBDNF sequence has been mutated with a KR to AA mutation at the furin dibasic cleavage site between the pro-domain and the mature part of BDNF. B. HEK293T cells were transfected with HBpF-proBDNF and BirA plasmids. After Ni-NTA pulldown and cleavage with the PreScission ™ Protease, the eluates were analyzed by Western blot and blotted with anti-biotin, anti-Flag and anti-BDNF. C. Purified HBpF-proBDNF was incubated with PC12 cells lysates, without a protease inhibitors, for 1h at room temperature. Incubation of HBpF-proBDNF with lysis buffer for 1h at room temperature was used as a control. Immunoblots against BDNF were performed to visualize the degradation of HBpF-proBDNF.
    Figure Legend Snippet: HBpF-proBDNF design and production. A. Schematic representation of recombinant HBpF-proBDNF protein. HBpF-proBDNF contains a signal peptide, an amino-terminal 6xHis-tag, followed by a Biotin-Acceptor-Peptide (BAP) sequence, a linker (L), a PreScission ™ Protease (PP) cleavage site and a Flag-tag (Flag). The ProBDNF sequence has been mutated with a KR to AA mutation at the furin dibasic cleavage site between the pro-domain and the mature part of BDNF. B. HEK293T cells were transfected with HBpF-proBDNF and BirA plasmids. After Ni-NTA pulldown and cleavage with the PreScission ™ Protease, the eluates were analyzed by Western blot and blotted with anti-biotin, anti-Flag and anti-BDNF. C. Purified HBpF-proBDNF was incubated with PC12 cells lysates, without a protease inhibitors, for 1h at room temperature. Incubation of HBpF-proBDNF with lysis buffer for 1h at room temperature was used as a control. Immunoblots against BDNF were performed to visualize the degradation of HBpF-proBDNF.

    Techniques Used: Recombinant, Sequencing, FLAG-tag, Mutagenesis, Transfection, Western Blot, Purification, Incubation, Lysis

    HBpF-proBDNF interacts with endogenous p75NTR and SorCS2 in PC12 cells. PC12 cells were stimulated with HBpF-proBDNF (100μg/ml) with or without 9μM GM6001 for 3h. BirA Ni-NTA eluate was used as control treatment. After stimulation, cells were lysed and HBpF-proBDNF and associated protein were recovered on SA beads. Cleavage with PP was performed for 16 hours and the resulting PP eluate was collected. Cell lysates (Input) and PP eluate samples were then analyzed by immunoblotting for p75NTR, SorCS2 and FLAG.
    Figure Legend Snippet: HBpF-proBDNF interacts with endogenous p75NTR and SorCS2 in PC12 cells. PC12 cells were stimulated with HBpF-proBDNF (100μg/ml) with or without 9μM GM6001 for 3h. BirA Ni-NTA eluate was used as control treatment. After stimulation, cells were lysed and HBpF-proBDNF and associated protein were recovered on SA beads. Cleavage with PP was performed for 16 hours and the resulting PP eluate was collected. Cell lysates (Input) and PP eluate samples were then analyzed by immunoblotting for p75NTR, SorCS2 and FLAG.

    Techniques Used:

    HBpF-proBDNF does not activate TrkB receptors. A. Following 2 days in culture, cerebellar granule neurons were stimulated with different concentrations of HBpF-proBDNF (2ng/ml; 25ng/ml and 100ng/ml) or proBDNF (2ng/ml and 25ng/ml) for 30min. After the incubation time, cells were lysed immediately in sample buffer and analyzed by Western blot against phospho-Trk and TrkB. For positive and negative controls, CGN were treated with BDNF (25ng/ml) or with BirA Ni-NTA eluate (BirA), as indicated.
    Figure Legend Snippet: HBpF-proBDNF does not activate TrkB receptors. A. Following 2 days in culture, cerebellar granule neurons were stimulated with different concentrations of HBpF-proBDNF (2ng/ml; 25ng/ml and 100ng/ml) or proBDNF (2ng/ml and 25ng/ml) for 30min. After the incubation time, cells were lysed immediately in sample buffer and analyzed by Western blot against phospho-Trk and TrkB. For positive and negative controls, CGN were treated with BDNF (25ng/ml) or with BirA Ni-NTA eluate (BirA), as indicated.

    Techniques Used: Incubation, Western Blot

    3) Product Images from "p75 Neurotrophin Receptor Activation Regulates the Timing of the Maturation of Cortical Parvalbumin Interneuron Connectivity and Promotes Juvenile-like Plasticity in Adult Visual Cortex"

    Article Title: p75 Neurotrophin Receptor Activation Regulates the Timing of the Maturation of Cortical Parvalbumin Interneuron Connectivity and Promotes Juvenile-like Plasticity in Adult Visual Cortex

    Journal: The Journal of Neuroscience

    doi: 10.1523/JNEUROSCI.2881-18.2019

    proBNDF-mediated p75NTR activation in cortical PV cells reduces their perisomatic boutons. A , Experimental approach. B , The intensity of perisomatic PV immunostaining (green) is reduced in the binocular visual cortex ipsilateral to the minipump-releasing mut-proBDNF (Ipsi) compared with the contralateral cortex (Contra) in the same animal. On the other hand, perisomatic PV intensity in the ipsilateral cortex of PV_Cre;p75 flx/flx mice is similar to that observed in the contralateral, untreated cortex. C , Low ( C1 ) and high ( C2 ) magnification of PNN (red, WFA staining) enwrapping PV cells (green) shows a dramatic reduction in both PNN density and intensity in the visual cortex infused with mut-proBFNF. This effect is abolished in PV_Cre;p75 flx/flx mice. Scale bars: C1 , 100 μm; B , C2 , 10 μm. D , Quantification of the mean intensity of perisomatic PV-positive puncta in ipsilateral compared with contralateral cortex. I/C ratio is obtained for each animal and then averaged between different animals. Mean I/C ratio is significantly reduced in Mut-proBDNF-infused p75 Ctrl mice compared with Mut-proBDNF-infused PV_Cre;p75 flx/flx mice (unpaired t test, df = 8, t = 6.077, p = 0.0003). E , The ratio of mean PNN intensity around PV cells in ipsilateral versus contralateral cortex is significantly lower in p75 Ctrl than PV_Cre;p75 flx/flx mice infused with mut-proBDNF (unpaired t test, df = 8, t = 15.33, p
    Figure Legend Snippet: proBNDF-mediated p75NTR activation in cortical PV cells reduces their perisomatic boutons. A , Experimental approach. B , The intensity of perisomatic PV immunostaining (green) is reduced in the binocular visual cortex ipsilateral to the minipump-releasing mut-proBDNF (Ipsi) compared with the contralateral cortex (Contra) in the same animal. On the other hand, perisomatic PV intensity in the ipsilateral cortex of PV_Cre;p75 flx/flx mice is similar to that observed in the contralateral, untreated cortex. C , Low ( C1 ) and high ( C2 ) magnification of PNN (red, WFA staining) enwrapping PV cells (green) shows a dramatic reduction in both PNN density and intensity in the visual cortex infused with mut-proBFNF. This effect is abolished in PV_Cre;p75 flx/flx mice. Scale bars: C1 , 100 μm; B , C2 , 10 μm. D , Quantification of the mean intensity of perisomatic PV-positive puncta in ipsilateral compared with contralateral cortex. I/C ratio is obtained for each animal and then averaged between different animals. Mean I/C ratio is significantly reduced in Mut-proBDNF-infused p75 Ctrl mice compared with Mut-proBDNF-infused PV_Cre;p75 flx/flx mice (unpaired t test, df = 8, t = 6.077, p = 0.0003). E , The ratio of mean PNN intensity around PV cells in ipsilateral versus contralateral cortex is significantly lower in p75 Ctrl than PV_Cre;p75 flx/flx mice infused with mut-proBDNF (unpaired t test, df = 8, t = 15.33, p

    Techniques Used: Activation Assay, Immunostaining, Mouse Assay, Staining

    Modulation of tPA activity affects the formation of PV cell innervations during early postnatal development. A , Control EP18 PV cell ( A1 , green represents Ctrl). B , PV cell treated with the tPA inhibitor PPACK from EP10–EP18 shows simpler axonal arborization, contacting less potential targets ( B2 , blue represents NeuN-positive somata). C , PV cell treated with tPA in the same time window shows a very complex axonal arbor ( C2 ) and an increase in both terminal branching and perisomatic boutons ( C3 , arrowheads) compared with control cells ( A2 , A3 ). D , PV cell treated simultaneously with tPA and mut-proBDNF shows axonal branching and perisomatic innervation more similar to those formed by PV cell treated with mut-proBDNF alone, suggesting that the effects of tPA application may be mediated by a decrease in endogenous proBDNF/mBDNF ratio. Stars indicate NeuN-positive somata that are not innervated. Scale bars: A1–D1 , 50 μm; A2–D2 , 10 μm; A3–D3 , 5 μm. E , Perisomatic boutons density (one-way ANOVA, F (3,20) = 121.2, p
    Figure Legend Snippet: Modulation of tPA activity affects the formation of PV cell innervations during early postnatal development. A , Control EP18 PV cell ( A1 , green represents Ctrl). B , PV cell treated with the tPA inhibitor PPACK from EP10–EP18 shows simpler axonal arborization, contacting less potential targets ( B2 , blue represents NeuN-positive somata). C , PV cell treated with tPA in the same time window shows a very complex axonal arbor ( C2 ) and an increase in both terminal branching and perisomatic boutons ( C3 , arrowheads) compared with control cells ( A2 , A3 ). D , PV cell treated simultaneously with tPA and mut-proBDNF shows axonal branching and perisomatic innervation more similar to those formed by PV cell treated with mut-proBDNF alone, suggesting that the effects of tPA application may be mediated by a decrease in endogenous proBDNF/mBDNF ratio. Stars indicate NeuN-positive somata that are not innervated. Scale bars: A1–D1 , 50 μm; A2–D2 , 10 μm; A3–D3 , 5 μm. E , Perisomatic boutons density (one-way ANOVA, F (3,20) = 121.2, p

    Techniques Used: Activity Assay

    proBNDF-mediated p75NTR activation in cortical PV cells restores ocular dominance plasticity in adult visual cortex in vivo . A , Typical VEP responses to the stimulation of either contralateral (blue) or ipsilateral (red) eye to the cortex in which the recording is performed in p75NTR Ctrl mice infused with either vehicle or mut-proBDNF, and PV_Cre;p75NTR flx/flx mice infused with mut-proBDNF. Calibration bars: 50 μV, 100 ms. B , C/I VEP ratio mean values. Three days of monocular deprivation do not affect the C/I VEP ratio in adult mice, although it leads to a significant decrease in the C/I VEP ratio in animals treated with mut-proBDNF. Mut-proBDNF effects are, however, abolished in PV_Cre;p75 flx/flx mice (one-way ANOVA, F (2,18) = 8.903, p = 0.0021). p75NTR Ctrl + vehicle: n = 9 mice; p75NTR Ctrl + mut-proBDNF: n = 5 mice; PV_Cre;p75 flx/flx +mut-proBDNF: n = 7 mice. C , ODI of p75NTR Ctrl mice infused with vehicle solution and PV_Cre;p75 flx/flx mice infused with mut-proBDNF are not significantly different from those of undeprived animals, whereas ODIs in p75 Ctrl mice treated with mut-proBDNF are significantly shifted toward the open eye (one-way ANOVA, F (2,443) = 5.203, p = 0.0058). D , Mean spontaneous discharge is significantly increased only in p75 Ctrl mice treated with mut-proBDNF (one-way ANOVA, F (2,443) = 4.580, p = 0.0107). p75NTR Ctrl + vehicle: n = 9 mice, 174 cells; p75NTR Ctrl + mut-proBDNF: n = 5 mice, 147 cells; PV_Cre;p75 flx/flx +mut-proBDNF: n = 6 mice, 125 cells. Gray area represents the C/I VEP ratio ( B ) or the ODI range ( C ) (mean ± SEM) in adult nondeprived animals ( n = 5 mice, 99 cells). * indicate p
    Figure Legend Snippet: proBNDF-mediated p75NTR activation in cortical PV cells restores ocular dominance plasticity in adult visual cortex in vivo . A , Typical VEP responses to the stimulation of either contralateral (blue) or ipsilateral (red) eye to the cortex in which the recording is performed in p75NTR Ctrl mice infused with either vehicle or mut-proBDNF, and PV_Cre;p75NTR flx/flx mice infused with mut-proBDNF. Calibration bars: 50 μV, 100 ms. B , C/I VEP ratio mean values. Three days of monocular deprivation do not affect the C/I VEP ratio in adult mice, although it leads to a significant decrease in the C/I VEP ratio in animals treated with mut-proBDNF. Mut-proBDNF effects are, however, abolished in PV_Cre;p75 flx/flx mice (one-way ANOVA, F (2,18) = 8.903, p = 0.0021). p75NTR Ctrl + vehicle: n = 9 mice; p75NTR Ctrl + mut-proBDNF: n = 5 mice; PV_Cre;p75 flx/flx +mut-proBDNF: n = 7 mice. C , ODI of p75NTR Ctrl mice infused with vehicle solution and PV_Cre;p75 flx/flx mice infused with mut-proBDNF are not significantly different from those of undeprived animals, whereas ODIs in p75 Ctrl mice treated with mut-proBDNF are significantly shifted toward the open eye (one-way ANOVA, F (2,443) = 5.203, p = 0.0058). D , Mean spontaneous discharge is significantly increased only in p75 Ctrl mice treated with mut-proBDNF (one-way ANOVA, F (2,443) = 4.580, p = 0.0107). p75NTR Ctrl + vehicle: n = 9 mice, 174 cells; p75NTR Ctrl + mut-proBDNF: n = 5 mice, 147 cells; PV_Cre;p75 flx/flx +mut-proBDNF: n = 6 mice, 125 cells. Gray area represents the C/I VEP ratio ( B ) or the ODI range ( C ) (mean ± SEM) in adult nondeprived animals ( n = 5 mice, 99 cells). * indicate p

    Techniques Used: Activation Assay, In Vivo, Mouse Assay, Mass Spectrometry

    mut-proBDNF destabilizes PV cell innervation, even after it has reached maturity. A , Control PV cell ( A1 , Ctrl, green) at EP32 with exuberant innervation field characterized by extensive branching contacting the majority of potential targets, dense boutons along axons ( A2 ), and terminal branches with prominent and clustered boutons ( A3 ; arrowheads) around NeuN-positive somata (blue). B , PV cell treated with wt-proBDNF from EP26-EP32 shows overall similar axon size ( B1 ), percentage of potentially targeted neurons ( B2 ), and perisomatic innervations ( B3 ) as control, untreated PV cells. C , PV cell treated with mut-proBDNF from EP26-EP32 shows a drastic reduction both in percentage of innervated cells ( C2 ) and perisomatic innervation ( C3 ). Stars indicate NeuN-positive somata that are not innervated. Scale bars: A1–C1 , 50 μm; A2–C2 , 10 μm; A3–C3 , 5 μm. D , Perisomatic bouton density (one-way ANOVA, F (2,18) = 93.34, p
    Figure Legend Snippet: mut-proBDNF destabilizes PV cell innervation, even after it has reached maturity. A , Control PV cell ( A1 , Ctrl, green) at EP32 with exuberant innervation field characterized by extensive branching contacting the majority of potential targets, dense boutons along axons ( A2 ), and terminal branches with prominent and clustered boutons ( A3 ; arrowheads) around NeuN-positive somata (blue). B , PV cell treated with wt-proBDNF from EP26-EP32 shows overall similar axon size ( B1 ), percentage of potentially targeted neurons ( B2 ), and perisomatic innervations ( B3 ) as control, untreated PV cells. C , PV cell treated with mut-proBDNF from EP26-EP32 shows a drastic reduction both in percentage of innervated cells ( C2 ) and perisomatic innervation ( C3 ). Stars indicate NeuN-positive somata that are not innervated. Scale bars: A1–C1 , 50 μm; A2–C2 , 10 μm; A3–C3 , 5 μm. D , Perisomatic bouton density (one-way ANOVA, F (2,18) = 93.34, p

    Techniques Used:

    Similar Products

  • Logo
  • About
  • News
  • Press Release
  • Team
  • Advisors
  • Partners
  • Contact
  • Bioz Stars
  • Bioz vStars
  • 86
    Alomone Labs mouse anti ngf neutralizing antibodies
    Inhibiting caspase activity prevents PS exposure only in apoptotic-dependent axon degeneration. a DRG axons were cultured for 48 h in the presence of <t>NGF</t> before a 24 h treatment with the pan-caspase inhibitor Z-VAD (50 μM) or vehicle (DMSO) with addition of flag <t>MFG-E8</t> D89E . After treatment, cells were briefly fixed, stained with anti-Flag, and PS exposure was measured by anti-Flag staining intensity. Z-VAD had no effect on basal levels of PS exposure. b , c DRG axons were cultured for 48 h and then NGF-deprived for 8, 16, or 24 h with DMSO or 50 μM Z-VAD. PS exposure was significantly reduced after 16 h and 24 h of Z-VAD treatment. d , e DRG axons were cultured for 96 h and then treated with 40 nM vincristine with DMSO or Z-VAD for 8, 16, or 24 h. Z-VAD treatment did not prevent PS exposure on vincristine-treated axons at any time point. f , g DRG axons were cultured for 48 h before axons were axotomized using a sharp needle and cultured with DMSO or Z-VAD for 4, 8, or 16 h. Z-VAD treatment did not prevent PS exposure on axotomized axons at any time point. Error bars indicate mean ± SEM, p -value (two-way ANOVA): *** P
    Mouse Anti Ngf Neutralizing Antibodies, supplied by Alomone Labs, used in various techniques. Bioz Stars score: 86/100, based on 1 PubMed citations. ZERO BIAS - scores, article reviews, protocol conditions and more
    https://www.bioz.com/result/mouse anti ngf neutralizing antibodies/product/Alomone Labs
    Average 86 stars, based on 1 article reviews
    Price from $9.99 to $1999.99
    mouse anti ngf neutralizing antibodies - by Bioz Stars, 2021-12
    86/100 stars
      Buy from Supplier

    94
    Alomone Labs probdnf
    proBNDF-mediated p75NTR activation in cortical PV cells reduces their perisomatic boutons. A , Experimental approach. B , The intensity of perisomatic PV immunostaining (green) is reduced in the binocular visual cortex ipsilateral to the minipump-releasing <t>mut-proBDNF</t> (Ipsi) compared with the contralateral cortex (Contra) in the same animal. On the other hand, perisomatic PV intensity in the ipsilateral cortex of PV_Cre;p75 flx/flx mice is similar to that observed in the contralateral, untreated cortex. C , Low ( C1 ) and high ( C2 ) magnification of PNN (red, WFA staining) enwrapping PV cells (green) shows a dramatic reduction in both PNN density and intensity in the visual cortex infused with mut-proBFNF. This effect is abolished in PV_Cre;p75 flx/flx mice. Scale bars: C1 , 100 μm; B , C2 , 10 μm. D , Quantification of the mean intensity of perisomatic PV-positive puncta in ipsilateral compared with contralateral cortex. I/C ratio is obtained for each animal and then averaged between different animals. Mean I/C ratio is significantly reduced in Mut-proBDNF-infused p75 Ctrl mice compared with Mut-proBDNF-infused PV_Cre;p75 flx/flx mice (unpaired t test, df = 8, t = 6.077, p = 0.0003). E , The ratio of mean PNN intensity around PV cells in ipsilateral versus contralateral cortex is significantly lower in p75 Ctrl than PV_Cre;p75 flx/flx mice infused with mut-proBDNF (unpaired t test, df = 8, t = 15.33, p
    Probdnf, supplied by Alomone Labs, used in various techniques. Bioz Stars score: 94/100, based on 1 PubMed citations. ZERO BIAS - scores, article reviews, protocol conditions and more
    https://www.bioz.com/result/probdnf/product/Alomone Labs
    Average 94 stars, based on 1 article reviews
    Price from $9.99 to $1999.99
    probdnf - by Bioz Stars, 2021-12
    94/100 stars
      Buy from Supplier

    Image Search Results


    Inhibiting caspase activity prevents PS exposure only in apoptotic-dependent axon degeneration. a DRG axons were cultured for 48 h in the presence of NGF before a 24 h treatment with the pan-caspase inhibitor Z-VAD (50 μM) or vehicle (DMSO) with addition of flag MFG-E8 D89E . After treatment, cells were briefly fixed, stained with anti-Flag, and PS exposure was measured by anti-Flag staining intensity. Z-VAD had no effect on basal levels of PS exposure. b , c DRG axons were cultured for 48 h and then NGF-deprived for 8, 16, or 24 h with DMSO or 50 μM Z-VAD. PS exposure was significantly reduced after 16 h and 24 h of Z-VAD treatment. d , e DRG axons were cultured for 96 h and then treated with 40 nM vincristine with DMSO or Z-VAD for 8, 16, or 24 h. Z-VAD treatment did not prevent PS exposure on vincristine-treated axons at any time point. f , g DRG axons were cultured for 48 h before axons were axotomized using a sharp needle and cultured with DMSO or Z-VAD for 4, 8, or 16 h. Z-VAD treatment did not prevent PS exposure on axotomized axons at any time point. Error bars indicate mean ± SEM, p -value (two-way ANOVA): *** P

    Journal: Cell Death & Disease

    Article Title: Phosphatidylserine is a marker for axonal debris engulfment but its exposure can be decoupled from degeneration

    doi: 10.1038/s41419-018-1155-z

    Figure Lengend Snippet: Inhibiting caspase activity prevents PS exposure only in apoptotic-dependent axon degeneration. a DRG axons were cultured for 48 h in the presence of NGF before a 24 h treatment with the pan-caspase inhibitor Z-VAD (50 μM) or vehicle (DMSO) with addition of flag MFG-E8 D89E . After treatment, cells were briefly fixed, stained with anti-Flag, and PS exposure was measured by anti-Flag staining intensity. Z-VAD had no effect on basal levels of PS exposure. b , c DRG axons were cultured for 48 h and then NGF-deprived for 8, 16, or 24 h with DMSO or 50 μM Z-VAD. PS exposure was significantly reduced after 16 h and 24 h of Z-VAD treatment. d , e DRG axons were cultured for 96 h and then treated with 40 nM vincristine with DMSO or Z-VAD for 8, 16, or 24 h. Z-VAD treatment did not prevent PS exposure on vincristine-treated axons at any time point. f , g DRG axons were cultured for 48 h before axons were axotomized using a sharp needle and cultured with DMSO or Z-VAD for 4, 8, or 16 h. Z-VAD treatment did not prevent PS exposure on axotomized axons at any time point. Error bars indicate mean ± SEM, p -value (two-way ANOVA): *** P

    Article Snippet: For NGF deprivation, the medium was exchanged for medium lacking NGF with addition of 1 mg/ml of mouse anti-NGF neutralizing antibodies (Alomone Labs; AN-240) and Flag MFG-EE8D89E .

    Techniques: Activity Assay, Cell Culture, Staining

    NAD + supplementation suppresses PS exposure on degenerating axons. a DRG axons were cultured for 48 h in the presence of NGF before supplementation with 20 mM NAD + or vehicle control and an additional 24 h of culture, with addition of flag MFG-E8 D89E . After treatment, cells were briefly fixed, stained with anti-Flag, and PS exposure was measured by anti-Flag staining intensity. NAD + had no effect on basal PS exposure levels. b , c DRG axons were cultured for 48 h and then NGF-deprived for 8, 16, or 24 h with vehicle control or 20 mM NAD + supplement. PS exposure was reduced significantly after 16 h in the NAD + treated axons, but not at 24 h. d , e DRG axons were cultured for 96 h before treatment with 40 nM vincristine with vehicle or 120 mM NAD + supplement for 8, 16, or 24 h. PS exposure was reduced significantly after 16 h and 24 h. f , g DRG axons were cultured for 48 h before axons were axotomized using sharp needle, and cultured with vehicle or 20 mM NAD + supplement for 4, 8, or 16 h. NAD + supplement prevented PS exposure on axotomized axons in all tested times. h ATP levels with or without NAD + supplement. DRG explants were cultured on cell inserts for 48 h before treated with NGF deprivation, vincristine or axotomy. After indicated time points, axonal compartment were collected and ATP levels were quantified. All three treatments significantly reduced axonal ATP levels, compare with control. NAD + supplement prevented ATP reduction and rescued axonal ATP levels back to control levels. i DRG axons were cultured for 48 h and then treated with 10 μM FK866 or DMSO for 5, 10 and 24 h. PS exposure was not affected by FK866 treatment at all time point tested. j Quntification of PS exspoure levels after FK866 or DMSO treatment. Error bars indicate mean ± SEM, p -value (two-way ANOVA): * P

    Journal: Cell Death & Disease

    Article Title: Phosphatidylserine is a marker for axonal debris engulfment but its exposure can be decoupled from degeneration

    doi: 10.1038/s41419-018-1155-z

    Figure Lengend Snippet: NAD + supplementation suppresses PS exposure on degenerating axons. a DRG axons were cultured for 48 h in the presence of NGF before supplementation with 20 mM NAD + or vehicle control and an additional 24 h of culture, with addition of flag MFG-E8 D89E . After treatment, cells were briefly fixed, stained with anti-Flag, and PS exposure was measured by anti-Flag staining intensity. NAD + had no effect on basal PS exposure levels. b , c DRG axons were cultured for 48 h and then NGF-deprived for 8, 16, or 24 h with vehicle control or 20 mM NAD + supplement. PS exposure was reduced significantly after 16 h in the NAD + treated axons, but not at 24 h. d , e DRG axons were cultured for 96 h before treatment with 40 nM vincristine with vehicle or 120 mM NAD + supplement for 8, 16, or 24 h. PS exposure was reduced significantly after 16 h and 24 h. f , g DRG axons were cultured for 48 h before axons were axotomized using sharp needle, and cultured with vehicle or 20 mM NAD + supplement for 4, 8, or 16 h. NAD + supplement prevented PS exposure on axotomized axons in all tested times. h ATP levels with or without NAD + supplement. DRG explants were cultured on cell inserts for 48 h before treated with NGF deprivation, vincristine or axotomy. After indicated time points, axonal compartment were collected and ATP levels were quantified. All three treatments significantly reduced axonal ATP levels, compare with control. NAD + supplement prevented ATP reduction and rescued axonal ATP levels back to control levels. i DRG axons were cultured for 48 h and then treated with 10 μM FK866 or DMSO for 5, 10 and 24 h. PS exposure was not affected by FK866 treatment at all time point tested. j Quntification of PS exspoure levels after FK866 or DMSO treatment. Error bars indicate mean ± SEM, p -value (two-way ANOVA): * P

    Article Snippet: For NGF deprivation, the medium was exchanged for medium lacking NGF with addition of 1 mg/ml of mouse anti-NGF neutralizing antibodies (Alomone Labs; AN-240) and Flag MFG-EE8D89E .

    Techniques: Cell Culture, Staining

    PS is exposed on sub-axonal segments. a Schematic representation of microfluidic chambers: axons and cell bodies are in separate compartments, allowing selective treatment of the axonal compartment. Dissociated tdTomato-positive DRG neurons were cultured in microfluidic chambers. After 5 days in vitro (DIV), the axonal compartment was treated, as indicated, for 24 h, with addition of flag MFG-E8 D89E . After treatment, cells were briefly fixed, stained with anti-Flag, and PS exposure was measured by anti-Flag staining intensity. b In control untreated cultures, the axons and cell bodies remained intact, and PS was not detected on the outer membrane. c , d Local axonal degeneration induced by NGF deprivation ( c ) or 40 nM vincristine treatment ( d ) for 24 h resulted in PS exposure on the treated distal axonal segment but not on the soma/proximal axons. e Quantification of PS exposure levels on the soma and axonal compartment in control and local axon degeneration. Error bars show mean ± SEM, p -value (student t test): * P

    Journal: Cell Death & Disease

    Article Title: Phosphatidylserine is a marker for axonal debris engulfment but its exposure can be decoupled from degeneration

    doi: 10.1038/s41419-018-1155-z

    Figure Lengend Snippet: PS is exposed on sub-axonal segments. a Schematic representation of microfluidic chambers: axons and cell bodies are in separate compartments, allowing selective treatment of the axonal compartment. Dissociated tdTomato-positive DRG neurons were cultured in microfluidic chambers. After 5 days in vitro (DIV), the axonal compartment was treated, as indicated, for 24 h, with addition of flag MFG-E8 D89E . After treatment, cells were briefly fixed, stained with anti-Flag, and PS exposure was measured by anti-Flag staining intensity. b In control untreated cultures, the axons and cell bodies remained intact, and PS was not detected on the outer membrane. c , d Local axonal degeneration induced by NGF deprivation ( c ) or 40 nM vincristine treatment ( d ) for 24 h resulted in PS exposure on the treated distal axonal segment but not on the soma/proximal axons. e Quantification of PS exposure levels on the soma and axonal compartment in control and local axon degeneration. Error bars show mean ± SEM, p -value (student t test): * P

    Article Snippet: For NGF deprivation, the medium was exchanged for medium lacking NGF with addition of 1 mg/ml of mouse anti-NGF neutralizing antibodies (Alomone Labs; AN-240) and Flag MFG-EE8D89E .

    Techniques: Cell Culture, In Vitro, Staining

    Masking PS signal reduces axonal debris engulfment. a , b tdTomato-positive DRG neurons were cultured in MFC for 5 days or as explants for 48 h, before being NGF-deprived for 24 h or axotomized for 16 h (Figure show NGF-deprived axons), with ( b ) or without ( a ) 10 μg/ml purified flag MFG-E8 D89E . White arrowheads marks Necl4/Td tomato double positive cells. c Quantification of percentage of engulfing glia cells. To evaluate engulfment of axonal debris, we counted labeled cells to determine the percentage of Necl4-positive/TdTomato debris-positive glia cells as a fraction of all Necl4-positive cells. Error bars mean ± SEM, p -value (student t test): ***p

    Journal: Cell Death & Disease

    Article Title: Phosphatidylserine is a marker for axonal debris engulfment but its exposure can be decoupled from degeneration

    doi: 10.1038/s41419-018-1155-z

    Figure Lengend Snippet: Masking PS signal reduces axonal debris engulfment. a , b tdTomato-positive DRG neurons were cultured in MFC for 5 days or as explants for 48 h, before being NGF-deprived for 24 h or axotomized for 16 h (Figure show NGF-deprived axons), with ( b ) or without ( a ) 10 μg/ml purified flag MFG-E8 D89E . White arrowheads marks Necl4/Td tomato double positive cells. c Quantification of percentage of engulfing glia cells. To evaluate engulfment of axonal debris, we counted labeled cells to determine the percentage of Necl4-positive/TdTomato debris-positive glia cells as a fraction of all Necl4-positive cells. Error bars mean ± SEM, p -value (student t test): ***p

    Article Snippet: For NGF deprivation, the medium was exchanged for medium lacking NGF with addition of 1 mg/ml of mouse anti-NGF neutralizing antibodies (Alomone Labs; AN-240) and Flag MFG-EE8D89E .

    Techniques: Cell Culture, Purification, Labeling

    Blocking extracellular Ca ++ influx does not prevent PS exposure. a DRG axons were cultured for 48 h in the presence of NGF before treatment with 2 mM EGTA for 24 h, with addition of flag MFG-E8 D89E . After treatment, cells were briefly fixed, stained with anti-Flag, and PS exposure was measured by anti-Flag staining intensity. EGTA had no effect on the basal levels of PS exposure. b-g DRG axons were cultured for 48 h and then treated as indicated in the presence of vehicle (upper rows) or 2 mM EGTA (lower rows). b , c EGTA had no effect on the exposure of PS in DRG axons deprived of NGF for 8, 16, or 24 h. d , e EGTA had no effect on the exposure of PS in DRG axons treated with vincristine for 8, 16, or 24 h. f , g EGTA had no effect on the exposure of PS in axotomized DRG axons at 4, 8, or 16 h post-axotomy; however, it completely protected axons from degeneration. c , e , g Error bars indicate mean ± SEM, significance determined by two-way ANOVA, Scale bar: 100 μm, N = minimum of five separate explants were analyzed per experimental condition

    Journal: Cell Death & Disease

    Article Title: Phosphatidylserine is a marker for axonal debris engulfment but its exposure can be decoupled from degeneration

    doi: 10.1038/s41419-018-1155-z

    Figure Lengend Snippet: Blocking extracellular Ca ++ influx does not prevent PS exposure. a DRG axons were cultured for 48 h in the presence of NGF before treatment with 2 mM EGTA for 24 h, with addition of flag MFG-E8 D89E . After treatment, cells were briefly fixed, stained with anti-Flag, and PS exposure was measured by anti-Flag staining intensity. EGTA had no effect on the basal levels of PS exposure. b-g DRG axons were cultured for 48 h and then treated as indicated in the presence of vehicle (upper rows) or 2 mM EGTA (lower rows). b , c EGTA had no effect on the exposure of PS in DRG axons deprived of NGF for 8, 16, or 24 h. d , e EGTA had no effect on the exposure of PS in DRG axons treated with vincristine for 8, 16, or 24 h. f , g EGTA had no effect on the exposure of PS in axotomized DRG axons at 4, 8, or 16 h post-axotomy; however, it completely protected axons from degeneration. c , e , g Error bars indicate mean ± SEM, significance determined by two-way ANOVA, Scale bar: 100 μm, N = minimum of five separate explants were analyzed per experimental condition

    Article Snippet: For NGF deprivation, the medium was exchanged for medium lacking NGF with addition of 1 mg/ml of mouse anti-NGF neutralizing antibodies (Alomone Labs; AN-240) and Flag MFG-EE8D89E .

    Techniques: Blocking Assay, Cell Culture, Staining

    Early activators of axonal degeneration control PS exposure. a Schematic representation of the pathways that control axonal degeneration. Key activators of each pathway, as well as other downstream contributors to the pathways are depicted. Pharmacological treatments used in the experiments are marked in purple. b-d DRG explants of WT ( b ), Bax -/- ( c ) and Sarm1 -/- ( d ) embryos were cultured for 48 to 96 h in the presence of NGF before axon degeneration was initiated by NGF deprivation, 40 nM vincristine, or axotomy, with addition of flag MFG-E8 D89E , for additional 16 h (Axotomy) or 24 h (NGF deprivation and Vincristine). After treatment, cells were briefly fixed, stained with anti-Flag, and PS exposure was measured by anti-Flag staining intensity. WT axons expose PS after all treatments, while Bax null axons expose PS after vincristine and axotomy, but not after NGF deprivation. Sarm1 null axons expose PS after NGF deprivation but not after vincristine or axotomy. e Quantification of PS exposure levels on WT, Bax -/- and Sarm1 -/- axons in all treatments. Error bars mean ± SEM, p -value, compare with WT exposure levels (student t test): *** P

    Journal: Cell Death & Disease

    Article Title: Phosphatidylserine is a marker for axonal debris engulfment but its exposure can be decoupled from degeneration

    doi: 10.1038/s41419-018-1155-z

    Figure Lengend Snippet: Early activators of axonal degeneration control PS exposure. a Schematic representation of the pathways that control axonal degeneration. Key activators of each pathway, as well as other downstream contributors to the pathways are depicted. Pharmacological treatments used in the experiments are marked in purple. b-d DRG explants of WT ( b ), Bax -/- ( c ) and Sarm1 -/- ( d ) embryos were cultured for 48 to 96 h in the presence of NGF before axon degeneration was initiated by NGF deprivation, 40 nM vincristine, or axotomy, with addition of flag MFG-E8 D89E , for additional 16 h (Axotomy) or 24 h (NGF deprivation and Vincristine). After treatment, cells were briefly fixed, stained with anti-Flag, and PS exposure was measured by anti-Flag staining intensity. WT axons expose PS after all treatments, while Bax null axons expose PS after vincristine and axotomy, but not after NGF deprivation. Sarm1 null axons expose PS after NGF deprivation but not after vincristine or axotomy. e Quantification of PS exposure levels on WT, Bax -/- and Sarm1 -/- axons in all treatments. Error bars mean ± SEM, p -value, compare with WT exposure levels (student t test): *** P

    Article Snippet: For NGF deprivation, the medium was exchanged for medium lacking NGF with addition of 1 mg/ml of mouse anti-NGF neutralizing antibodies (Alomone Labs; AN-240) and Flag MFG-EE8D89E .

    Techniques: Cell Culture, Staining

    proBNDF-mediated p75NTR activation in cortical PV cells reduces their perisomatic boutons. A , Experimental approach. B , The intensity of perisomatic PV immunostaining (green) is reduced in the binocular visual cortex ipsilateral to the minipump-releasing mut-proBDNF (Ipsi) compared with the contralateral cortex (Contra) in the same animal. On the other hand, perisomatic PV intensity in the ipsilateral cortex of PV_Cre;p75 flx/flx mice is similar to that observed in the contralateral, untreated cortex. C , Low ( C1 ) and high ( C2 ) magnification of PNN (red, WFA staining) enwrapping PV cells (green) shows a dramatic reduction in both PNN density and intensity in the visual cortex infused with mut-proBFNF. This effect is abolished in PV_Cre;p75 flx/flx mice. Scale bars: C1 , 100 μm; B , C2 , 10 μm. D , Quantification of the mean intensity of perisomatic PV-positive puncta in ipsilateral compared with contralateral cortex. I/C ratio is obtained for each animal and then averaged between different animals. Mean I/C ratio is significantly reduced in Mut-proBDNF-infused p75 Ctrl mice compared with Mut-proBDNF-infused PV_Cre;p75 flx/flx mice (unpaired t test, df = 8, t = 6.077, p = 0.0003). E , The ratio of mean PNN intensity around PV cells in ipsilateral versus contralateral cortex is significantly lower in p75 Ctrl than PV_Cre;p75 flx/flx mice infused with mut-proBDNF (unpaired t test, df = 8, t = 15.33, p

    Journal: The Journal of Neuroscience

    Article Title: p75 Neurotrophin Receptor Activation Regulates the Timing of the Maturation of Cortical Parvalbumin Interneuron Connectivity and Promotes Juvenile-like Plasticity in Adult Visual Cortex

    doi: 10.1523/JNEUROSCI.2881-18.2019

    Figure Lengend Snippet: proBNDF-mediated p75NTR activation in cortical PV cells reduces their perisomatic boutons. A , Experimental approach. B , The intensity of perisomatic PV immunostaining (green) is reduced in the binocular visual cortex ipsilateral to the minipump-releasing mut-proBDNF (Ipsi) compared with the contralateral cortex (Contra) in the same animal. On the other hand, perisomatic PV intensity in the ipsilateral cortex of PV_Cre;p75 flx/flx mice is similar to that observed in the contralateral, untreated cortex. C , Low ( C1 ) and high ( C2 ) magnification of PNN (red, WFA staining) enwrapping PV cells (green) shows a dramatic reduction in both PNN density and intensity in the visual cortex infused with mut-proBFNF. This effect is abolished in PV_Cre;p75 flx/flx mice. Scale bars: C1 , 100 μm; B , C2 , 10 μm. D , Quantification of the mean intensity of perisomatic PV-positive puncta in ipsilateral compared with contralateral cortex. I/C ratio is obtained for each animal and then averaged between different animals. Mean I/C ratio is significantly reduced in Mut-proBDNF-infused p75 Ctrl mice compared with Mut-proBDNF-infused PV_Cre;p75 flx/flx mice (unpaired t test, df = 8, t = 6.077, p = 0.0003). E , The ratio of mean PNN intensity around PV cells in ipsilateral versus contralateral cortex is significantly lower in p75 Ctrl than PV_Cre;p75 flx/flx mice infused with mut-proBDNF (unpaired t test, df = 8, t = 15.33, p

    Article Snippet: Recombinant mouse proneurotrophin, proBDNF (wt-proBDNF, 10 ng/ml, Alomone Labs, catalog #B-240) and cleavage-resistant, recombinant mouse proBDNF (mut-proBDNF, 10 ng/ml, Alomone Labs, catalog #B-243) were, respectively, added with the culture medium during the specific time window indicated in Results.

    Techniques: Activation Assay, Immunostaining, Mouse Assay, Staining

    Modulation of tPA activity affects the formation of PV cell innervations during early postnatal development. A , Control EP18 PV cell ( A1 , green represents Ctrl). B , PV cell treated with the tPA inhibitor PPACK from EP10–EP18 shows simpler axonal arborization, contacting less potential targets ( B2 , blue represents NeuN-positive somata). C , PV cell treated with tPA in the same time window shows a very complex axonal arbor ( C2 ) and an increase in both terminal branching and perisomatic boutons ( C3 , arrowheads) compared with control cells ( A2 , A3 ). D , PV cell treated simultaneously with tPA and mut-proBDNF shows axonal branching and perisomatic innervation more similar to those formed by PV cell treated with mut-proBDNF alone, suggesting that the effects of tPA application may be mediated by a decrease in endogenous proBDNF/mBDNF ratio. Stars indicate NeuN-positive somata that are not innervated. Scale bars: A1–D1 , 50 μm; A2–D2 , 10 μm; A3–D3 , 5 μm. E , Perisomatic boutons density (one-way ANOVA, F (3,20) = 121.2, p

    Journal: The Journal of Neuroscience

    Article Title: p75 Neurotrophin Receptor Activation Regulates the Timing of the Maturation of Cortical Parvalbumin Interneuron Connectivity and Promotes Juvenile-like Plasticity in Adult Visual Cortex

    doi: 10.1523/JNEUROSCI.2881-18.2019

    Figure Lengend Snippet: Modulation of tPA activity affects the formation of PV cell innervations during early postnatal development. A , Control EP18 PV cell ( A1 , green represents Ctrl). B , PV cell treated with the tPA inhibitor PPACK from EP10–EP18 shows simpler axonal arborization, contacting less potential targets ( B2 , blue represents NeuN-positive somata). C , PV cell treated with tPA in the same time window shows a very complex axonal arbor ( C2 ) and an increase in both terminal branching and perisomatic boutons ( C3 , arrowheads) compared with control cells ( A2 , A3 ). D , PV cell treated simultaneously with tPA and mut-proBDNF shows axonal branching and perisomatic innervation more similar to those formed by PV cell treated with mut-proBDNF alone, suggesting that the effects of tPA application may be mediated by a decrease in endogenous proBDNF/mBDNF ratio. Stars indicate NeuN-positive somata that are not innervated. Scale bars: A1–D1 , 50 μm; A2–D2 , 10 μm; A3–D3 , 5 μm. E , Perisomatic boutons density (one-way ANOVA, F (3,20) = 121.2, p

    Article Snippet: Recombinant mouse proneurotrophin, proBDNF (wt-proBDNF, 10 ng/ml, Alomone Labs, catalog #B-240) and cleavage-resistant, recombinant mouse proBDNF (mut-proBDNF, 10 ng/ml, Alomone Labs, catalog #B-243) were, respectively, added with the culture medium during the specific time window indicated in Results.

    Techniques: Activity Assay

    proBNDF-mediated p75NTR activation in cortical PV cells restores ocular dominance plasticity in adult visual cortex in vivo . A , Typical VEP responses to the stimulation of either contralateral (blue) or ipsilateral (red) eye to the cortex in which the recording is performed in p75NTR Ctrl mice infused with either vehicle or mut-proBDNF, and PV_Cre;p75NTR flx/flx mice infused with mut-proBDNF. Calibration bars: 50 μV, 100 ms. B , C/I VEP ratio mean values. Three days of monocular deprivation do not affect the C/I VEP ratio in adult mice, although it leads to a significant decrease in the C/I VEP ratio in animals treated with mut-proBDNF. Mut-proBDNF effects are, however, abolished in PV_Cre;p75 flx/flx mice (one-way ANOVA, F (2,18) = 8.903, p = 0.0021). p75NTR Ctrl + vehicle: n = 9 mice; p75NTR Ctrl + mut-proBDNF: n = 5 mice; PV_Cre;p75 flx/flx +mut-proBDNF: n = 7 mice. C , ODI of p75NTR Ctrl mice infused with vehicle solution and PV_Cre;p75 flx/flx mice infused with mut-proBDNF are not significantly different from those of undeprived animals, whereas ODIs in p75 Ctrl mice treated with mut-proBDNF are significantly shifted toward the open eye (one-way ANOVA, F (2,443) = 5.203, p = 0.0058). D , Mean spontaneous discharge is significantly increased only in p75 Ctrl mice treated with mut-proBDNF (one-way ANOVA, F (2,443) = 4.580, p = 0.0107). p75NTR Ctrl + vehicle: n = 9 mice, 174 cells; p75NTR Ctrl + mut-proBDNF: n = 5 mice, 147 cells; PV_Cre;p75 flx/flx +mut-proBDNF: n = 6 mice, 125 cells. Gray area represents the C/I VEP ratio ( B ) or the ODI range ( C ) (mean ± SEM) in adult nondeprived animals ( n = 5 mice, 99 cells). * indicate p

    Journal: The Journal of Neuroscience

    Article Title: p75 Neurotrophin Receptor Activation Regulates the Timing of the Maturation of Cortical Parvalbumin Interneuron Connectivity and Promotes Juvenile-like Plasticity in Adult Visual Cortex

    doi: 10.1523/JNEUROSCI.2881-18.2019

    Figure Lengend Snippet: proBNDF-mediated p75NTR activation in cortical PV cells restores ocular dominance plasticity in adult visual cortex in vivo . A , Typical VEP responses to the stimulation of either contralateral (blue) or ipsilateral (red) eye to the cortex in which the recording is performed in p75NTR Ctrl mice infused with either vehicle or mut-proBDNF, and PV_Cre;p75NTR flx/flx mice infused with mut-proBDNF. Calibration bars: 50 μV, 100 ms. B , C/I VEP ratio mean values. Three days of monocular deprivation do not affect the C/I VEP ratio in adult mice, although it leads to a significant decrease in the C/I VEP ratio in animals treated with mut-proBDNF. Mut-proBDNF effects are, however, abolished in PV_Cre;p75 flx/flx mice (one-way ANOVA, F (2,18) = 8.903, p = 0.0021). p75NTR Ctrl + vehicle: n = 9 mice; p75NTR Ctrl + mut-proBDNF: n = 5 mice; PV_Cre;p75 flx/flx +mut-proBDNF: n = 7 mice. C , ODI of p75NTR Ctrl mice infused with vehicle solution and PV_Cre;p75 flx/flx mice infused with mut-proBDNF are not significantly different from those of undeprived animals, whereas ODIs in p75 Ctrl mice treated with mut-proBDNF are significantly shifted toward the open eye (one-way ANOVA, F (2,443) = 5.203, p = 0.0058). D , Mean spontaneous discharge is significantly increased only in p75 Ctrl mice treated with mut-proBDNF (one-way ANOVA, F (2,443) = 4.580, p = 0.0107). p75NTR Ctrl + vehicle: n = 9 mice, 174 cells; p75NTR Ctrl + mut-proBDNF: n = 5 mice, 147 cells; PV_Cre;p75 flx/flx +mut-proBDNF: n = 6 mice, 125 cells. Gray area represents the C/I VEP ratio ( B ) or the ODI range ( C ) (mean ± SEM) in adult nondeprived animals ( n = 5 mice, 99 cells). * indicate p

    Article Snippet: Recombinant mouse proneurotrophin, proBDNF (wt-proBDNF, 10 ng/ml, Alomone Labs, catalog #B-240) and cleavage-resistant, recombinant mouse proBDNF (mut-proBDNF, 10 ng/ml, Alomone Labs, catalog #B-243) were, respectively, added with the culture medium during the specific time window indicated in Results.

    Techniques: Activation Assay, In Vivo, Mouse Assay

    mut-proBDNF destabilizes PV cell innervation, even after it has reached maturity. A , Control PV cell ( A1 , Ctrl, green) at EP32 with exuberant innervation field characterized by extensive branching contacting the majority of potential targets, dense boutons along axons ( A2 ), and terminal branches with prominent and clustered boutons ( A3 ; arrowheads) around NeuN-positive somata (blue). B , PV cell treated with wt-proBDNF from EP26-EP32 shows overall similar axon size ( B1 ), percentage of potentially targeted neurons ( B2 ), and perisomatic innervations ( B3 ) as control, untreated PV cells. C , PV cell treated with mut-proBDNF from EP26-EP32 shows a drastic reduction both in percentage of innervated cells ( C2 ) and perisomatic innervation ( C3 ). Stars indicate NeuN-positive somata that are not innervated. Scale bars: A1–C1 , 50 μm; A2–C2 , 10 μm; A3–C3 , 5 μm. D , Perisomatic bouton density (one-way ANOVA, F (2,18) = 93.34, p

    Journal: The Journal of Neuroscience

    Article Title: p75 Neurotrophin Receptor Activation Regulates the Timing of the Maturation of Cortical Parvalbumin Interneuron Connectivity and Promotes Juvenile-like Plasticity in Adult Visual Cortex

    doi: 10.1523/JNEUROSCI.2881-18.2019

    Figure Lengend Snippet: mut-proBDNF destabilizes PV cell innervation, even after it has reached maturity. A , Control PV cell ( A1 , Ctrl, green) at EP32 with exuberant innervation field characterized by extensive branching contacting the majority of potential targets, dense boutons along axons ( A2 ), and terminal branches with prominent and clustered boutons ( A3 ; arrowheads) around NeuN-positive somata (blue). B , PV cell treated with wt-proBDNF from EP26-EP32 shows overall similar axon size ( B1 ), percentage of potentially targeted neurons ( B2 ), and perisomatic innervations ( B3 ) as control, untreated PV cells. C , PV cell treated with mut-proBDNF from EP26-EP32 shows a drastic reduction both in percentage of innervated cells ( C2 ) and perisomatic innervation ( C3 ). Stars indicate NeuN-positive somata that are not innervated. Scale bars: A1–C1 , 50 μm; A2–C2 , 10 μm; A3–C3 , 5 μm. D , Perisomatic bouton density (one-way ANOVA, F (2,18) = 93.34, p

    Article Snippet: Recombinant mouse proneurotrophin, proBDNF (wt-proBDNF, 10 ng/ml, Alomone Labs, catalog #B-240) and cleavage-resistant, recombinant mouse proBDNF (mut-proBDNF, 10 ng/ml, Alomone Labs, catalog #B-243) were, respectively, added with the culture medium during the specific time window indicated in Results.

    Techniques: