wild type strains atcc 9441  (ATCC)


Bioz Verified Symbol ATCC is a verified supplier
Bioz Manufacturer Symbol ATCC manufactures this product  
  • Logo
  • About
  • News
  • Press Release
  • Team
  • Advisors
  • Partners
  • Contact
  • Bioz Stars
  • Bioz vStars
  • 88

    Structured Review

    ATCC wild type strains atcc 9441
    Electron microscopy of bacteriophages isolated from  C .  tetani . Representative transmission electron microscopic (TEM) images of UV-induced bacteriophages isolated from  C .  tetani  strains C2, ATCC 19406, ATCC 453, and ATCC 9441. Distinct morphological features are evident in isolated bacteriophage, e.g. contractile tail for ATCC 453 and long, flexible tails for ATCC 19406. Note the presence of striations of phage tails observed for ATCC 453. Empty phage heads, lacking tails were observed in phage isolates from ATCC 9441. Scale bar = 50 nm. See   S1 Appendix  for detailed measurements.
    Wild Type Strains Atcc 9441, supplied by ATCC, used in various techniques. Bioz Stars score: 88/100, based on 1 PubMed citations. ZERO BIAS - scores, article reviews, protocol conditions and more
    https://www.bioz.com/result/wild type strains atcc 9441/product/ATCC
    Average 88 stars, based on 1 article reviews
    Price from $9.99 to $1999.99
    wild type strains atcc 9441 - by Bioz Stars, 2022-11
    88/100 stars

    Images

    1) Product Images from "Comparative pathogenomics of Clostridium tetani"

    Article Title: Comparative pathogenomics of Clostridium tetani

    Journal: PLoS ONE

    doi: 10.1371/journal.pone.0182909

    Electron microscopy of bacteriophages isolated from  C .  tetani . Representative transmission electron microscopic (TEM) images of UV-induced bacteriophages isolated from  C .  tetani  strains C2, ATCC 19406, ATCC 453, and ATCC 9441. Distinct morphological features are evident in isolated bacteriophage, e.g. contractile tail for ATCC 453 and long, flexible tails for ATCC 19406. Note the presence of striations of phage tails observed for ATCC 453. Empty phage heads, lacking tails were observed in phage isolates from ATCC 9441. Scale bar = 50 nm. See   S1 Appendix  for detailed measurements.
    Figure Legend Snippet: Electron microscopy of bacteriophages isolated from C . tetani . Representative transmission electron microscopic (TEM) images of UV-induced bacteriophages isolated from C . tetani strains C2, ATCC 19406, ATCC 453, and ATCC 9441. Distinct morphological features are evident in isolated bacteriophage, e.g. contractile tail for ATCC 453 and long, flexible tails for ATCC 19406. Note the presence of striations of phage tails observed for ATCC 453. Empty phage heads, lacking tails were observed in phage isolates from ATCC 9441. Scale bar = 50 nm. See S1 Appendix for detailed measurements.

    Techniques Used: Electron Microscopy, Isolation, Transmission Assay, Transmission Electron Microscopy

    FGI is a mobile element in  C .  tetani . Annotation and alignment of the FGI genomic region across sequenced  C .  tetani  strains. The FGI contains at least 80 predicted proteins that include the flagellar structural and polysaccharide processing enzymes in the sialic-acid like biosynthetic pathway (legionaminic acid and pseudaminic acid). Aligned regions that encompass  fla  flagellin genes (shown in blue, CTC01691—CTC01715) span 30 kb between 1,801,310–1,829,794 ( C .  tetani  E88 reference). Shaded regions define the boundaries of highly conserved sequences across strains, e.g.  fla  CTC01691 –predicted protein adjacent to CheY for strains ATCC 453/454, ATCC 9441, C2/E88, and GTC-14772. See shaded region that are conserved between GTC-14772 and 12124569/184.08 (predicted proteins 1–20). Clusters of orthologous genes and moderate conservation with known FGI from the genus  Clostridium  ( C .  botulinum ,  C .  carboxyvidorans ,  C .  lundense ,  C .  sporogenes , and  C .  tunisiense ) are labelled. Predicted Y1 transposases (green) not conserved in French strains 184.08 and 12124569, contain a predicted group IIc intron (element 22) and reverse transcriptase (element 23). Predicted glycosylation enzymes (red), transporters (magenta), CheY two-component system (yellow), and proteins of unknown function (black) are shown.
    Figure Legend Snippet: FGI is a mobile element in C . tetani . Annotation and alignment of the FGI genomic region across sequenced C . tetani strains. The FGI contains at least 80 predicted proteins that include the flagellar structural and polysaccharide processing enzymes in the sialic-acid like biosynthetic pathway (legionaminic acid and pseudaminic acid). Aligned regions that encompass fla flagellin genes (shown in blue, CTC01691—CTC01715) span 30 kb between 1,801,310–1,829,794 ( C . tetani E88 reference). Shaded regions define the boundaries of highly conserved sequences across strains, e.g. fla CTC01691 –predicted protein adjacent to CheY for strains ATCC 453/454, ATCC 9441, C2/E88, and GTC-14772. See shaded region that are conserved between GTC-14772 and 12124569/184.08 (predicted proteins 1–20). Clusters of orthologous genes and moderate conservation with known FGI from the genus Clostridium ( C . botulinum , C . carboxyvidorans , C . lundense , C . sporogenes , and C . tunisiense ) are labelled. Predicted Y1 transposases (green) not conserved in French strains 184.08 and 12124569, contain a predicted group IIc intron (element 22) and reverse transcriptase (element 23). Predicted glycosylation enzymes (red), transporters (magenta), CheY two-component system (yellow), and proteins of unknown function (black) are shown.

    Techniques Used:

    CRIPSR spacer diversity and conservation. CRISPR/Cas arrays are organized into two primary arrays, I-A (A) and I-B (B) (see Figs 1 and 2 ) with low homology across all 11 sequenced strains. CRISPR/Cas arrays were organized into a single large array (I-A, array 1) or shorter arrays (I-B, arrays 2–9) consisting of a conserved leader sequence (triangle) and repeating alternating units of linkers and spacers (rectangles), color-coded based on conservation across C . tetani strains. Self-targeting spacers present in strains C2 and ATCC 9441 are shown (diamond) as well as spacers targeting identified C . tetani phages. CRISPR/Cas arrays present in vaccine strain C2 and ATCC 9441 were most similar among the oldest spacers at the tailing ends of both arrays. CRISPR/Cas spacers in GTC-14772 were least similar to other C . tetani strains and included an additional array that mapped to a 141kb contig with an incomplete complement of CRISPR/Cas proteins and phage-like proteins. CRISPR/Cas proteins were immediately upstream of the leader sequence for I-A, and distributed throughout the array for I-B. A CRISPR/Cas type III-A array was identified upstream of a single array (asterisk) in ATCC 453/454. A functional set of CRISPR/Cas proteins was absent in strain 184.08 despite the presence of 5 spacers and a distinct leader sequence. See S3 Table for CRISPR/Cas proteins.
    Figure Legend Snippet: CRIPSR spacer diversity and conservation. CRISPR/Cas arrays are organized into two primary arrays, I-A (A) and I-B (B) (see Figs 1 and 2 ) with low homology across all 11 sequenced strains. CRISPR/Cas arrays were organized into a single large array (I-A, array 1) or shorter arrays (I-B, arrays 2–9) consisting of a conserved leader sequence (triangle) and repeating alternating units of linkers and spacers (rectangles), color-coded based on conservation across C . tetani strains. Self-targeting spacers present in strains C2 and ATCC 9441 are shown (diamond) as well as spacers targeting identified C . tetani phages. CRISPR/Cas arrays present in vaccine strain C2 and ATCC 9441 were most similar among the oldest spacers at the tailing ends of both arrays. CRISPR/Cas spacers in GTC-14772 were least similar to other C . tetani strains and included an additional array that mapped to a 141kb contig with an incomplete complement of CRISPR/Cas proteins and phage-like proteins. CRISPR/Cas proteins were immediately upstream of the leader sequence for I-A, and distributed throughout the array for I-B. A CRISPR/Cas type III-A array was identified upstream of a single array (asterisk) in ATCC 453/454. A functional set of CRISPR/Cas proteins was absent in strain 184.08 despite the presence of 5 spacers and a distinct leader sequence. See S3 Table for CRISPR/Cas proteins.

    Techniques Used: CRISPR, Sequencing, Functional Assay

    Genomic organization of sigK intervening element in C . tetani . Shown is a schematic representation of the genetic organization of prophage genomes identified in all C . tetani strains at insertion site A ( Fig 1 ). The identified prophage resembles a Bacillus subtilis phage DNA-like sigK intervening (skin) element. Predicted ORFs are represented as arrows in their respective orientation covering chromosomal location 1,135,168–1,192,484 nt in E88 reference strain. Conserved 5’- and 3’-flanking sequences (light grey), phage attachment sites attL and attR including the disrupted sporulation sigma factor, sigK (orange) are shown. Functional modules were assigned based on annotation and genomic organization for DNA packaging (magneta), capsid morphogenesis (blue), tail morphogenesis (light blue), lysis (red), lysogeny (pink), and DNA replication, transcription, and gene regulation (light green). Lysogenic phages were most highly conserved in genes associated with lysogeny and phage replication. Phage like-proteins (green) and hypothetical proteins (black) are shown as well. Predicted head-tail joining proteins (blue) and phage tail proteins (light blue) could only be identified in ATCC 453 (regions 39, 40 and 45–59) and ATCC 9441 (regions 48–50 and 55–72). Abbreviations: attachment sites attL and attR ; XkdT , baseplate protein; DNA-h , DNA helicase; DNA-pol , DNA polymerase; HMP , head morphogenesis protein; MCP , major capsid protein; PP , portal protein; RO , replisome organizer; SR , serine recombinase; TFP , tail fiber/collar protein; XkdK , tail sheath protein; TTMP , tail tape measure protein; TerS and TerL , terminase small and large subunit; virE , virulence factor E.
    Figure Legend Snippet: Genomic organization of sigK intervening element in C . tetani . Shown is a schematic representation of the genetic organization of prophage genomes identified in all C . tetani strains at insertion site A ( Fig 1 ). The identified prophage resembles a Bacillus subtilis phage DNA-like sigK intervening (skin) element. Predicted ORFs are represented as arrows in their respective orientation covering chromosomal location 1,135,168–1,192,484 nt in E88 reference strain. Conserved 5’- and 3’-flanking sequences (light grey), phage attachment sites attL and attR including the disrupted sporulation sigma factor, sigK (orange) are shown. Functional modules were assigned based on annotation and genomic organization for DNA packaging (magneta), capsid morphogenesis (blue), tail morphogenesis (light blue), lysis (red), lysogeny (pink), and DNA replication, transcription, and gene regulation (light green). Lysogenic phages were most highly conserved in genes associated with lysogeny and phage replication. Phage like-proteins (green) and hypothetical proteins (black) are shown as well. Predicted head-tail joining proteins (blue) and phage tail proteins (light blue) could only be identified in ATCC 453 (regions 39, 40 and 45–59) and ATCC 9441 (regions 48–50 and 55–72). Abbreviations: attachment sites attL and attR ; XkdT , baseplate protein; DNA-h , DNA helicase; DNA-pol , DNA polymerase; HMP , head morphogenesis protein; MCP , major capsid protein; PP , portal protein; RO , replisome organizer; SR , serine recombinase; TFP , tail fiber/collar protein; XkdK , tail sheath protein; TTMP , tail tape measure protein; TerS and TerL , terminase small and large subunit; virE , virulence factor E.

    Techniques Used: Functional Assay, Lysis

    Distribution and frequency of SNPs in  C .  tetani . (A-D) Venn diagram of SNPs present in wild and vaccine strains of  C .  tetani . Strain E88 was used as a reference for determining SNP calls. Venn diagrams for strain sub-groups: (A) Harvard-derived vaccine strains C2, CN655 and Strain A [  13 ], and ATCC 19406; very few SNPs were identified for all 4 strains, (B) Strains sequenced in the present study: C2, ATCC 19406, ATCC 9441, and ATCC 453, (C) and (D) Venn diagram of wild strains, ATCC 453, ATCC 9441, GTC-14772, 184.08 and 12124569. Strains 184.08 and 12124569. (E) Frequency distribution plot of SNP density (#SNPs/20 kb) and location along the E88 reference genome (chromosomal location). Regions displaying greater SNP frequency were associated with mobile genetic elements and indicated with arrows corresponding to regions identified in   Fig 1 : prophage insertions (A—E), CRISPR/Cas arrays (I-A and I-B), and FGI.
    Figure Legend Snippet: Distribution and frequency of SNPs in C . tetani . (A-D) Venn diagram of SNPs present in wild and vaccine strains of C . tetani . Strain E88 was used as a reference for determining SNP calls. Venn diagrams for strain sub-groups: (A) Harvard-derived vaccine strains C2, CN655 and Strain A [ 13 ], and ATCC 19406; very few SNPs were identified for all 4 strains, (B) Strains sequenced in the present study: C2, ATCC 19406, ATCC 9441, and ATCC 453, (C) and (D) Venn diagram of wild strains, ATCC 453, ATCC 9441, GTC-14772, 184.08 and 12124569. Strains 184.08 and 12124569. (E) Frequency distribution plot of SNP density (#SNPs/20 kb) and location along the E88 reference genome (chromosomal location). Regions displaying greater SNP frequency were associated with mobile genetic elements and indicated with arrows corresponding to regions identified in Fig 1 : prophage insertions (A—E), CRISPR/Cas arrays (I-A and I-B), and FGI.

    Techniques Used: Derivative Assay, CRISPR

    BLAST analysis of  C .  tetani  draft genome sequences. C .  tetani  strain genomes were compared by pairwise BLAST using BRIG against Strain E88 (2.8 Mb, GenBank accession number NC_004557). Genomes shown include (from innermost to outermost ring) C2, ATCC 19406, Strain A, CN655, GTC-14772, 184.08, ATCC 9441, ATCC 453, ATCC 454, and 12124569 (See   Methods  for BioSample and nucleotide accession numbers). Genomic regions with
    Figure Legend Snippet: BLAST analysis of C . tetani draft genome sequences. C . tetani strain genomes were compared by pairwise BLAST using BRIG against Strain E88 (2.8 Mb, GenBank accession number NC_004557). Genomes shown include (from innermost to outermost ring) C2, ATCC 19406, Strain A, CN655, GTC-14772, 184.08, ATCC 9441, ATCC 453, ATCC 454, and 12124569 (See Methods for BioSample and nucleotide accession numbers). Genomic regions with

    Techniques Used:

    C . tetani motility on blood agar. Shown are representative examples of strain-specific motility and swarming phenotype in C2 and ATCC 9441 strains of C . tetani . Strains were plated onto blood agar plates and incubated for 48 hrs. Swarming behavior, exemplified by large spreading colonies is observed only in wild strain ATCC 9441. Strain C2 forms small, compact filamentous colonies (white arrow in magnified view). Strain ATCC 9441 forms large swarming colonies with hemolysis in the center, and a migrating boundary (white arrow in magnified view). Compare illustrations depicting filamentous form (top) to an irregular filiform margin (bottom).
    Figure Legend Snippet: C . tetani motility on blood agar. Shown are representative examples of strain-specific motility and swarming phenotype in C2 and ATCC 9441 strains of C . tetani . Strains were plated onto blood agar plates and incubated for 48 hrs. Swarming behavior, exemplified by large spreading colonies is observed only in wild strain ATCC 9441. Strain C2 forms small, compact filamentous colonies (white arrow in magnified view). Strain ATCC 9441 forms large swarming colonies with hemolysis in the center, and a migrating boundary (white arrow in magnified view). Compare illustrations depicting filamentous form (top) to an irregular filiform margin (bottom).

    Techniques Used: Incubation

    Similar Products

  • Logo
  • About
  • News
  • Press Release
  • Team
  • Advisors
  • Partners
  • Contact
  • Bioz Stars
  • Bioz vStars
  • 88
    ATCC wild type strains atcc 9441
    Electron microscopy of bacteriophages isolated from  C .  tetani . Representative transmission electron microscopic (TEM) images of UV-induced bacteriophages isolated from  C .  tetani  strains C2, ATCC 19406, ATCC 453, and ATCC 9441. Distinct morphological features are evident in isolated bacteriophage, e.g. contractile tail for ATCC 453 and long, flexible tails for ATCC 19406. Note the presence of striations of phage tails observed for ATCC 453. Empty phage heads, lacking tails were observed in phage isolates from ATCC 9441. Scale bar = 50 nm. See   S1 Appendix  for detailed measurements.
    Wild Type Strains Atcc 9441, supplied by ATCC, used in various techniques. Bioz Stars score: 88/100, based on 1 PubMed citations. ZERO BIAS - scores, article reviews, protocol conditions and more
    https://www.bioz.com/result/wild type strains atcc 9441/product/ATCC
    Average 88 stars, based on 1 article reviews
    Price from $9.99 to $1999.99
    wild type strains atcc 9441 - by Bioz Stars, 2022-11
    88/100 stars
      Buy from Supplier

    80
    ATCC 9441 phage assembly km983329 1
    Electron microscopy of bacteriophages isolated from  C .  tetani . Representative transmission electron microscopic (TEM) images of UV-induced bacteriophages isolated from  C .  tetani  strains C2, ATCC 19406, ATCC 453, and ATCC 9441. Distinct morphological features are evident in isolated bacteriophage, e.g. contractile tail for ATCC 453 and long, flexible tails for ATCC 19406. Note the presence of striations of phage tails observed for ATCC 453. Empty phage heads, lacking tails were observed in phage isolates from ATCC 9441. Scale bar = 50 nm. See   S1 Appendix  for detailed measurements.
    9441 Phage Assembly Km983329 1, supplied by ATCC, used in various techniques. Bioz Stars score: 80/100, based on 1 PubMed citations. ZERO BIAS - scores, article reviews, protocol conditions and more
    https://www.bioz.com/result/9441 phage assembly km983329 1/product/ATCC
    Average 80 stars, based on 1 article reviews
    Price from $9.99 to $1999.99
    9441 phage assembly km983329 1 - by Bioz Stars, 2022-11
    80/100 stars
      Buy from Supplier

    88
    ATCC wild type atcc 9441
    Electron microscopy of bacteriophages isolated from  C .  tetani . Representative transmission electron microscopic (TEM) images of UV-induced bacteriophages isolated from  C .  tetani  strains C2, ATCC 19406, ATCC 453, and ATCC 9441. Distinct morphological features are evident in isolated bacteriophage, e.g. contractile tail for ATCC 453 and long, flexible tails for ATCC 19406. Note the presence of striations of phage tails observed for ATCC 453. Empty phage heads, lacking tails were observed in phage isolates from ATCC 9441. Scale bar = 50 nm. See   S1 Appendix  for detailed measurements.
    Wild Type Atcc 9441, supplied by ATCC, used in various techniques. Bioz Stars score: 88/100, based on 1 PubMed citations. ZERO BIAS - scores, article reviews, protocol conditions and more
    https://www.bioz.com/result/wild type atcc 9441/product/ATCC
    Average 88 stars, based on 1 article reviews
    Price from $9.99 to $1999.99
    wild type atcc 9441 - by Bioz Stars, 2022-11
    88/100 stars
      Buy from Supplier

    94
    ATCC plasmalogen rich strains atcc 9441
    Electron microscopy of bacteriophages isolated from  C .  tetani . Representative transmission electron microscopic (TEM) images of UV-induced bacteriophages isolated from  C .  tetani  strains C2, ATCC 19406, ATCC 453, and ATCC 9441. Distinct morphological features are evident in isolated bacteriophage, e.g. contractile tail for ATCC 453 and long, flexible tails for ATCC 19406. Note the presence of striations of phage tails observed for ATCC 453. Empty phage heads, lacking tails were observed in phage isolates from ATCC 9441. Scale bar = 50 nm. See   S1 Appendix  for detailed measurements.
    Plasmalogen Rich Strains Atcc 9441, supplied by ATCC, used in various techniques. Bioz Stars score: 94/100, based on 1 PubMed citations. ZERO BIAS - scores, article reviews, protocol conditions and more
    https://www.bioz.com/result/plasmalogen rich strains atcc 9441/product/ATCC
    Average 94 stars, based on 1 article reviews
    Price from $9.99 to $1999.99
    plasmalogen rich strains atcc 9441 - by Bioz Stars, 2022-11
    94/100 stars
      Buy from Supplier

    Image Search Results


    Electron microscopy of bacteriophages isolated from  C .  tetani . Representative transmission electron microscopic (TEM) images of UV-induced bacteriophages isolated from  C .  tetani  strains C2, ATCC 19406, ATCC 453, and ATCC 9441. Distinct morphological features are evident in isolated bacteriophage, e.g. contractile tail for ATCC 453 and long, flexible tails for ATCC 19406. Note the presence of striations of phage tails observed for ATCC 453. Empty phage heads, lacking tails were observed in phage isolates from ATCC 9441. Scale bar = 50 nm. See   S1 Appendix  for detailed measurements.

    Journal: PLoS ONE

    Article Title: Comparative pathogenomics of Clostridium tetani

    doi: 10.1371/journal.pone.0182909

    Figure Lengend Snippet: Electron microscopy of bacteriophages isolated from C . tetani . Representative transmission electron microscopic (TEM) images of UV-induced bacteriophages isolated from C . tetani strains C2, ATCC 19406, ATCC 453, and ATCC 9441. Distinct morphological features are evident in isolated bacteriophage, e.g. contractile tail for ATCC 453 and long, flexible tails for ATCC 19406. Note the presence of striations of phage tails observed for ATCC 453. Empty phage heads, lacking tails were observed in phage isolates from ATCC 9441. Scale bar = 50 nm. See S1 Appendix for detailed measurements.

    Article Snippet: To test motility, we examined colony swarming by Harvard-derived isolates (C2 and ATCC 19406) and wild-type strains ATCC 9441, ATCC 453 and ATCC 454 on blood agar plates.

    Techniques: Electron Microscopy, Isolation, Transmission Assay, Transmission Electron Microscopy

    FGI is a mobile element in  C .  tetani . Annotation and alignment of the FGI genomic region across sequenced  C .  tetani  strains. The FGI contains at least 80 predicted proteins that include the flagellar structural and polysaccharide processing enzymes in the sialic-acid like biosynthetic pathway (legionaminic acid and pseudaminic acid). Aligned regions that encompass  fla  flagellin genes (shown in blue, CTC01691—CTC01715) span 30 kb between 1,801,310–1,829,794 ( C .  tetani  E88 reference). Shaded regions define the boundaries of highly conserved sequences across strains, e.g.  fla  CTC01691 –predicted protein adjacent to CheY for strains ATCC 453/454, ATCC 9441, C2/E88, and GTC-14772. See shaded region that are conserved between GTC-14772 and 12124569/184.08 (predicted proteins 1–20). Clusters of orthologous genes and moderate conservation with known FGI from the genus  Clostridium  ( C .  botulinum ,  C .  carboxyvidorans ,  C .  lundense ,  C .  sporogenes , and  C .  tunisiense ) are labelled. Predicted Y1 transposases (green) not conserved in French strains 184.08 and 12124569, contain a predicted group IIc intron (element 22) and reverse transcriptase (element 23). Predicted glycosylation enzymes (red), transporters (magenta), CheY two-component system (yellow), and proteins of unknown function (black) are shown.

    Journal: PLoS ONE

    Article Title: Comparative pathogenomics of Clostridium tetani

    doi: 10.1371/journal.pone.0182909

    Figure Lengend Snippet: FGI is a mobile element in C . tetani . Annotation and alignment of the FGI genomic region across sequenced C . tetani strains. The FGI contains at least 80 predicted proteins that include the flagellar structural and polysaccharide processing enzymes in the sialic-acid like biosynthetic pathway (legionaminic acid and pseudaminic acid). Aligned regions that encompass fla flagellin genes (shown in blue, CTC01691—CTC01715) span 30 kb between 1,801,310–1,829,794 ( C . tetani E88 reference). Shaded regions define the boundaries of highly conserved sequences across strains, e.g. fla CTC01691 –predicted protein adjacent to CheY for strains ATCC 453/454, ATCC 9441, C2/E88, and GTC-14772. See shaded region that are conserved between GTC-14772 and 12124569/184.08 (predicted proteins 1–20). Clusters of orthologous genes and moderate conservation with known FGI from the genus Clostridium ( C . botulinum , C . carboxyvidorans , C . lundense , C . sporogenes , and C . tunisiense ) are labelled. Predicted Y1 transposases (green) not conserved in French strains 184.08 and 12124569, contain a predicted group IIc intron (element 22) and reverse transcriptase (element 23). Predicted glycosylation enzymes (red), transporters (magenta), CheY two-component system (yellow), and proteins of unknown function (black) are shown.

    Article Snippet: To test motility, we examined colony swarming by Harvard-derived isolates (C2 and ATCC 19406) and wild-type strains ATCC 9441, ATCC 453 and ATCC 454 on blood agar plates.

    Techniques:

    CRIPSR spacer diversity and conservation. CRISPR/Cas arrays are organized into two primary arrays, I-A (A) and I-B (B) (see Figs 1 and 2 ) with low homology across all 11 sequenced strains. CRISPR/Cas arrays were organized into a single large array (I-A, array 1) or shorter arrays (I-B, arrays 2–9) consisting of a conserved leader sequence (triangle) and repeating alternating units of linkers and spacers (rectangles), color-coded based on conservation across C . tetani strains. Self-targeting spacers present in strains C2 and ATCC 9441 are shown (diamond) as well as spacers targeting identified C . tetani phages. CRISPR/Cas arrays present in vaccine strain C2 and ATCC 9441 were most similar among the oldest spacers at the tailing ends of both arrays. CRISPR/Cas spacers in GTC-14772 were least similar to other C . tetani strains and included an additional array that mapped to a 141kb contig with an incomplete complement of CRISPR/Cas proteins and phage-like proteins. CRISPR/Cas proteins were immediately upstream of the leader sequence for I-A, and distributed throughout the array for I-B. A CRISPR/Cas type III-A array was identified upstream of a single array (asterisk) in ATCC 453/454. A functional set of CRISPR/Cas proteins was absent in strain 184.08 despite the presence of 5 spacers and a distinct leader sequence. See S3 Table for CRISPR/Cas proteins.

    Journal: PLoS ONE

    Article Title: Comparative pathogenomics of Clostridium tetani

    doi: 10.1371/journal.pone.0182909

    Figure Lengend Snippet: CRIPSR spacer diversity and conservation. CRISPR/Cas arrays are organized into two primary arrays, I-A (A) and I-B (B) (see Figs 1 and 2 ) with low homology across all 11 sequenced strains. CRISPR/Cas arrays were organized into a single large array (I-A, array 1) or shorter arrays (I-B, arrays 2–9) consisting of a conserved leader sequence (triangle) and repeating alternating units of linkers and spacers (rectangles), color-coded based on conservation across C . tetani strains. Self-targeting spacers present in strains C2 and ATCC 9441 are shown (diamond) as well as spacers targeting identified C . tetani phages. CRISPR/Cas arrays present in vaccine strain C2 and ATCC 9441 were most similar among the oldest spacers at the tailing ends of both arrays. CRISPR/Cas spacers in GTC-14772 were least similar to other C . tetani strains and included an additional array that mapped to a 141kb contig with an incomplete complement of CRISPR/Cas proteins and phage-like proteins. CRISPR/Cas proteins were immediately upstream of the leader sequence for I-A, and distributed throughout the array for I-B. A CRISPR/Cas type III-A array was identified upstream of a single array (asterisk) in ATCC 453/454. A functional set of CRISPR/Cas proteins was absent in strain 184.08 despite the presence of 5 spacers and a distinct leader sequence. See S3 Table for CRISPR/Cas proteins.

    Article Snippet: To test motility, we examined colony swarming by Harvard-derived isolates (C2 and ATCC 19406) and wild-type strains ATCC 9441, ATCC 453 and ATCC 454 on blood agar plates.

    Techniques: CRISPR, Sequencing, Functional Assay

    Genomic organization of sigK intervening element in C . tetani . Shown is a schematic representation of the genetic organization of prophage genomes identified in all C . tetani strains at insertion site A ( Fig 1 ). The identified prophage resembles a Bacillus subtilis phage DNA-like sigK intervening (skin) element. Predicted ORFs are represented as arrows in their respective orientation covering chromosomal location 1,135,168–1,192,484 nt in E88 reference strain. Conserved 5’- and 3’-flanking sequences (light grey), phage attachment sites attL and attR including the disrupted sporulation sigma factor, sigK (orange) are shown. Functional modules were assigned based on annotation and genomic organization for DNA packaging (magneta), capsid morphogenesis (blue), tail morphogenesis (light blue), lysis (red), lysogeny (pink), and DNA replication, transcription, and gene regulation (light green). Lysogenic phages were most highly conserved in genes associated with lysogeny and phage replication. Phage like-proteins (green) and hypothetical proteins (black) are shown as well. Predicted head-tail joining proteins (blue) and phage tail proteins (light blue) could only be identified in ATCC 453 (regions 39, 40 and 45–59) and ATCC 9441 (regions 48–50 and 55–72). Abbreviations: attachment sites attL and attR ; XkdT , baseplate protein; DNA-h , DNA helicase; DNA-pol , DNA polymerase; HMP , head morphogenesis protein; MCP , major capsid protein; PP , portal protein; RO , replisome organizer; SR , serine recombinase; TFP , tail fiber/collar protein; XkdK , tail sheath protein; TTMP , tail tape measure protein; TerS and TerL , terminase small and large subunit; virE , virulence factor E.

    Journal: PLoS ONE

    Article Title: Comparative pathogenomics of Clostridium tetani

    doi: 10.1371/journal.pone.0182909

    Figure Lengend Snippet: Genomic organization of sigK intervening element in C . tetani . Shown is a schematic representation of the genetic organization of prophage genomes identified in all C . tetani strains at insertion site A ( Fig 1 ). The identified prophage resembles a Bacillus subtilis phage DNA-like sigK intervening (skin) element. Predicted ORFs are represented as arrows in their respective orientation covering chromosomal location 1,135,168–1,192,484 nt in E88 reference strain. Conserved 5’- and 3’-flanking sequences (light grey), phage attachment sites attL and attR including the disrupted sporulation sigma factor, sigK (orange) are shown. Functional modules were assigned based on annotation and genomic organization for DNA packaging (magneta), capsid morphogenesis (blue), tail morphogenesis (light blue), lysis (red), lysogeny (pink), and DNA replication, transcription, and gene regulation (light green). Lysogenic phages were most highly conserved in genes associated with lysogeny and phage replication. Phage like-proteins (green) and hypothetical proteins (black) are shown as well. Predicted head-tail joining proteins (blue) and phage tail proteins (light blue) could only be identified in ATCC 453 (regions 39, 40 and 45–59) and ATCC 9441 (regions 48–50 and 55–72). Abbreviations: attachment sites attL and attR ; XkdT , baseplate protein; DNA-h , DNA helicase; DNA-pol , DNA polymerase; HMP , head morphogenesis protein; MCP , major capsid protein; PP , portal protein; RO , replisome organizer; SR , serine recombinase; TFP , tail fiber/collar protein; XkdK , tail sheath protein; TTMP , tail tape measure protein; TerS and TerL , terminase small and large subunit; virE , virulence factor E.

    Article Snippet: To test motility, we examined colony swarming by Harvard-derived isolates (C2 and ATCC 19406) and wild-type strains ATCC 9441, ATCC 453 and ATCC 454 on blood agar plates.

    Techniques: Functional Assay, Lysis

    Distribution and frequency of SNPs in  C .  tetani . (A-D) Venn diagram of SNPs present in wild and vaccine strains of  C .  tetani . Strain E88 was used as a reference for determining SNP calls. Venn diagrams for strain sub-groups: (A) Harvard-derived vaccine strains C2, CN655 and Strain A [  13 ], and ATCC 19406; very few SNPs were identified for all 4 strains, (B) Strains sequenced in the present study: C2, ATCC 19406, ATCC 9441, and ATCC 453, (C) and (D) Venn diagram of wild strains, ATCC 453, ATCC 9441, GTC-14772, 184.08 and 12124569. Strains 184.08 and 12124569. (E) Frequency distribution plot of SNP density (#SNPs/20 kb) and location along the E88 reference genome (chromosomal location). Regions displaying greater SNP frequency were associated with mobile genetic elements and indicated with arrows corresponding to regions identified in   Fig 1 : prophage insertions (A—E), CRISPR/Cas arrays (I-A and I-B), and FGI.

    Journal: PLoS ONE

    Article Title: Comparative pathogenomics of Clostridium tetani

    doi: 10.1371/journal.pone.0182909

    Figure Lengend Snippet: Distribution and frequency of SNPs in C . tetani . (A-D) Venn diagram of SNPs present in wild and vaccine strains of C . tetani . Strain E88 was used as a reference for determining SNP calls. Venn diagrams for strain sub-groups: (A) Harvard-derived vaccine strains C2, CN655 and Strain A [ 13 ], and ATCC 19406; very few SNPs were identified for all 4 strains, (B) Strains sequenced in the present study: C2, ATCC 19406, ATCC 9441, and ATCC 453, (C) and (D) Venn diagram of wild strains, ATCC 453, ATCC 9441, GTC-14772, 184.08 and 12124569. Strains 184.08 and 12124569. (E) Frequency distribution plot of SNP density (#SNPs/20 kb) and location along the E88 reference genome (chromosomal location). Regions displaying greater SNP frequency were associated with mobile genetic elements and indicated with arrows corresponding to regions identified in Fig 1 : prophage insertions (A—E), CRISPR/Cas arrays (I-A and I-B), and FGI.

    Article Snippet: To test motility, we examined colony swarming by Harvard-derived isolates (C2 and ATCC 19406) and wild-type strains ATCC 9441, ATCC 453 and ATCC 454 on blood agar plates.

    Techniques: Derivative Assay, CRISPR

    BLAST analysis of  C .  tetani  draft genome sequences. C .  tetani  strain genomes were compared by pairwise BLAST using BRIG against Strain E88 (2.8 Mb, GenBank accession number NC_004557). Genomes shown include (from innermost to outermost ring) C2, ATCC 19406, Strain A, CN655, GTC-14772, 184.08, ATCC 9441, ATCC 453, ATCC 454, and 12124569 (See   Methods  for BioSample and nucleotide accession numbers). Genomic regions with

    Journal: PLoS ONE

    Article Title: Comparative pathogenomics of Clostridium tetani

    doi: 10.1371/journal.pone.0182909

    Figure Lengend Snippet: BLAST analysis of C . tetani draft genome sequences. C . tetani strain genomes were compared by pairwise BLAST using BRIG against Strain E88 (2.8 Mb, GenBank accession number NC_004557). Genomes shown include (from innermost to outermost ring) C2, ATCC 19406, Strain A, CN655, GTC-14772, 184.08, ATCC 9441, ATCC 453, ATCC 454, and 12124569 (See Methods for BioSample and nucleotide accession numbers). Genomic regions with

    Article Snippet: To test motility, we examined colony swarming by Harvard-derived isolates (C2 and ATCC 19406) and wild-type strains ATCC 9441, ATCC 453 and ATCC 454 on blood agar plates.

    Techniques:

    C . tetani motility on blood agar. Shown are representative examples of strain-specific motility and swarming phenotype in C2 and ATCC 9441 strains of C . tetani . Strains were plated onto blood agar plates and incubated for 48 hrs. Swarming behavior, exemplified by large spreading colonies is observed only in wild strain ATCC 9441. Strain C2 forms small, compact filamentous colonies (white arrow in magnified view). Strain ATCC 9441 forms large swarming colonies with hemolysis in the center, and a migrating boundary (white arrow in magnified view). Compare illustrations depicting filamentous form (top) to an irregular filiform margin (bottom).

    Journal: PLoS ONE

    Article Title: Comparative pathogenomics of Clostridium tetani

    doi: 10.1371/journal.pone.0182909

    Figure Lengend Snippet: C . tetani motility on blood agar. Shown are representative examples of strain-specific motility and swarming phenotype in C2 and ATCC 9441 strains of C . tetani . Strains were plated onto blood agar plates and incubated for 48 hrs. Swarming behavior, exemplified by large spreading colonies is observed only in wild strain ATCC 9441. Strain C2 forms small, compact filamentous colonies (white arrow in magnified view). Strain ATCC 9441 forms large swarming colonies with hemolysis in the center, and a migrating boundary (white arrow in magnified view). Compare illustrations depicting filamentous form (top) to an irregular filiform margin (bottom).

    Article Snippet: To test motility, we examined colony swarming by Harvard-derived isolates (C2 and ATCC 19406) and wild-type strains ATCC 9441, ATCC 453 and ATCC 454 on blood agar plates.

    Techniques: Incubation

    Electron microscopy of bacteriophages isolated from  C .  tetani . Representative transmission electron microscopic (TEM) images of UV-induced bacteriophages isolated from  C .  tetani  strains C2, ATCC 19406, ATCC 453, and ATCC 9441. Distinct morphological features are evident in isolated bacteriophage, e.g. contractile tail for ATCC 453 and long, flexible tails for ATCC 19406. Note the presence of striations of phage tails observed for ATCC 453. Empty phage heads, lacking tails were observed in phage isolates from ATCC 9441. Scale bar = 50 nm. See   S1 Appendix  for detailed measurements.

    Journal: PLoS ONE

    Article Title: Comparative pathogenomics of Clostridium tetani

    doi: 10.1371/journal.pone.0182909

    Figure Lengend Snippet: Electron microscopy of bacteriophages isolated from C . tetani . Representative transmission electron microscopic (TEM) images of UV-induced bacteriophages isolated from C . tetani strains C2, ATCC 19406, ATCC 453, and ATCC 9441. Distinct morphological features are evident in isolated bacteriophage, e.g. contractile tail for ATCC 453 and long, flexible tails for ATCC 19406. Note the presence of striations of phage tails observed for ATCC 453. Empty phage heads, lacking tails were observed in phage isolates from ATCC 9441. Scale bar = 50 nm. See S1 Appendix for detailed measurements.

    Article Snippet: The I-B loci in wild-type ATCC 9441 and the Harvard strains, on the other hand, were nearly identical (72% by spacer homology) across all elements of 39 phage-related spacers ( ).

    Techniques: Electron Microscopy, Isolation, Transmission Assay, Transmission Electron Microscopy

    FGI is a mobile element in  C .  tetani . Annotation and alignment of the FGI genomic region across sequenced  C .  tetani  strains. The FGI contains at least 80 predicted proteins that include the flagellar structural and polysaccharide processing enzymes in the sialic-acid like biosynthetic pathway (legionaminic acid and pseudaminic acid). Aligned regions that encompass  fla  flagellin genes (shown in blue, CTC01691—CTC01715) span 30 kb between 1,801,310–1,829,794 ( C .  tetani  E88 reference). Shaded regions define the boundaries of highly conserved sequences across strains, e.g.  fla  CTC01691 –predicted protein adjacent to CheY for strains ATCC 453/454, ATCC 9441, C2/E88, and GTC-14772. See shaded region that are conserved between GTC-14772 and 12124569/184.08 (predicted proteins 1–20). Clusters of orthologous genes and moderate conservation with known FGI from the genus  Clostridium  ( C .  botulinum ,  C .  carboxyvidorans ,  C .  lundense ,  C .  sporogenes , and  C .  tunisiense ) are labelled. Predicted Y1 transposases (green) not conserved in French strains 184.08 and 12124569, contain a predicted group IIc intron (element 22) and reverse transcriptase (element 23). Predicted glycosylation enzymes (red), transporters (magenta), CheY two-component system (yellow), and proteins of unknown function (black) are shown.

    Journal: PLoS ONE

    Article Title: Comparative pathogenomics of Clostridium tetani

    doi: 10.1371/journal.pone.0182909

    Figure Lengend Snippet: FGI is a mobile element in C . tetani . Annotation and alignment of the FGI genomic region across sequenced C . tetani strains. The FGI contains at least 80 predicted proteins that include the flagellar structural and polysaccharide processing enzymes in the sialic-acid like biosynthetic pathway (legionaminic acid and pseudaminic acid). Aligned regions that encompass fla flagellin genes (shown in blue, CTC01691—CTC01715) span 30 kb between 1,801,310–1,829,794 ( C . tetani E88 reference). Shaded regions define the boundaries of highly conserved sequences across strains, e.g. fla CTC01691 –predicted protein adjacent to CheY for strains ATCC 453/454, ATCC 9441, C2/E88, and GTC-14772. See shaded region that are conserved between GTC-14772 and 12124569/184.08 (predicted proteins 1–20). Clusters of orthologous genes and moderate conservation with known FGI from the genus Clostridium ( C . botulinum , C . carboxyvidorans , C . lundense , C . sporogenes , and C . tunisiense ) are labelled. Predicted Y1 transposases (green) not conserved in French strains 184.08 and 12124569, contain a predicted group IIc intron (element 22) and reverse transcriptase (element 23). Predicted glycosylation enzymes (red), transporters (magenta), CheY two-component system (yellow), and proteins of unknown function (black) are shown.

    Article Snippet: The I-B loci in wild-type ATCC 9441 and the Harvard strains, on the other hand, were nearly identical (72% by spacer homology) across all elements of 39 phage-related spacers ( ).

    Techniques:

    CRIPSR spacer diversity and conservation. CRISPR/Cas arrays are organized into two primary arrays, I-A (A) and I-B (B) (see Figs 1 and 2 ) with low homology across all 11 sequenced strains. CRISPR/Cas arrays were organized into a single large array (I-A, array 1) or shorter arrays (I-B, arrays 2–9) consisting of a conserved leader sequence (triangle) and repeating alternating units of linkers and spacers (rectangles), color-coded based on conservation across C . tetani strains. Self-targeting spacers present in strains C2 and ATCC 9441 are shown (diamond) as well as spacers targeting identified C . tetani phages. CRISPR/Cas arrays present in vaccine strain C2 and ATCC 9441 were most similar among the oldest spacers at the tailing ends of both arrays. CRISPR/Cas spacers in GTC-14772 were least similar to other C . tetani strains and included an additional array that mapped to a 141kb contig with an incomplete complement of CRISPR/Cas proteins and phage-like proteins. CRISPR/Cas proteins were immediately upstream of the leader sequence for I-A, and distributed throughout the array for I-B. A CRISPR/Cas type III-A array was identified upstream of a single array (asterisk) in ATCC 453/454. A functional set of CRISPR/Cas proteins was absent in strain 184.08 despite the presence of 5 spacers and a distinct leader sequence. See S3 Table for CRISPR/Cas proteins.

    Journal: PLoS ONE

    Article Title: Comparative pathogenomics of Clostridium tetani

    doi: 10.1371/journal.pone.0182909

    Figure Lengend Snippet: CRIPSR spacer diversity and conservation. CRISPR/Cas arrays are organized into two primary arrays, I-A (A) and I-B (B) (see Figs 1 and 2 ) with low homology across all 11 sequenced strains. CRISPR/Cas arrays were organized into a single large array (I-A, array 1) or shorter arrays (I-B, arrays 2–9) consisting of a conserved leader sequence (triangle) and repeating alternating units of linkers and spacers (rectangles), color-coded based on conservation across C . tetani strains. Self-targeting spacers present in strains C2 and ATCC 9441 are shown (diamond) as well as spacers targeting identified C . tetani phages. CRISPR/Cas arrays present in vaccine strain C2 and ATCC 9441 were most similar among the oldest spacers at the tailing ends of both arrays. CRISPR/Cas spacers in GTC-14772 were least similar to other C . tetani strains and included an additional array that mapped to a 141kb contig with an incomplete complement of CRISPR/Cas proteins and phage-like proteins. CRISPR/Cas proteins were immediately upstream of the leader sequence for I-A, and distributed throughout the array for I-B. A CRISPR/Cas type III-A array was identified upstream of a single array (asterisk) in ATCC 453/454. A functional set of CRISPR/Cas proteins was absent in strain 184.08 despite the presence of 5 spacers and a distinct leader sequence. See S3 Table for CRISPR/Cas proteins.

    Article Snippet: The I-B loci in wild-type ATCC 9441 and the Harvard strains, on the other hand, were nearly identical (72% by spacer homology) across all elements of 39 phage-related spacers ( ).

    Techniques: CRISPR, Sequencing, Functional Assay

    Genomic organization of sigK intervening element in C . tetani . Shown is a schematic representation of the genetic organization of prophage genomes identified in all C . tetani strains at insertion site A ( Fig 1 ). The identified prophage resembles a Bacillus subtilis phage DNA-like sigK intervening (skin) element. Predicted ORFs are represented as arrows in their respective orientation covering chromosomal location 1,135,168–1,192,484 nt in E88 reference strain. Conserved 5’- and 3’-flanking sequences (light grey), phage attachment sites attL and attR including the disrupted sporulation sigma factor, sigK (orange) are shown. Functional modules were assigned based on annotation and genomic organization for DNA packaging (magneta), capsid morphogenesis (blue), tail morphogenesis (light blue), lysis (red), lysogeny (pink), and DNA replication, transcription, and gene regulation (light green). Lysogenic phages were most highly conserved in genes associated with lysogeny and phage replication. Phage like-proteins (green) and hypothetical proteins (black) are shown as well. Predicted head-tail joining proteins (blue) and phage tail proteins (light blue) could only be identified in ATCC 453 (regions 39, 40 and 45–59) and ATCC 9441 (regions 48–50 and 55–72). Abbreviations: attachment sites attL and attR ; XkdT , baseplate protein; DNA-h , DNA helicase; DNA-pol , DNA polymerase; HMP , head morphogenesis protein; MCP , major capsid protein; PP , portal protein; RO , replisome organizer; SR , serine recombinase; TFP , tail fiber/collar protein; XkdK , tail sheath protein; TTMP , tail tape measure protein; TerS and TerL , terminase small and large subunit; virE , virulence factor E.

    Journal: PLoS ONE

    Article Title: Comparative pathogenomics of Clostridium tetani

    doi: 10.1371/journal.pone.0182909

    Figure Lengend Snippet: Genomic organization of sigK intervening element in C . tetani . Shown is a schematic representation of the genetic organization of prophage genomes identified in all C . tetani strains at insertion site A ( Fig 1 ). The identified prophage resembles a Bacillus subtilis phage DNA-like sigK intervening (skin) element. Predicted ORFs are represented as arrows in their respective orientation covering chromosomal location 1,135,168–1,192,484 nt in E88 reference strain. Conserved 5’- and 3’-flanking sequences (light grey), phage attachment sites attL and attR including the disrupted sporulation sigma factor, sigK (orange) are shown. Functional modules were assigned based on annotation and genomic organization for DNA packaging (magneta), capsid morphogenesis (blue), tail morphogenesis (light blue), lysis (red), lysogeny (pink), and DNA replication, transcription, and gene regulation (light green). Lysogenic phages were most highly conserved in genes associated with lysogeny and phage replication. Phage like-proteins (green) and hypothetical proteins (black) are shown as well. Predicted head-tail joining proteins (blue) and phage tail proteins (light blue) could only be identified in ATCC 453 (regions 39, 40 and 45–59) and ATCC 9441 (regions 48–50 and 55–72). Abbreviations: attachment sites attL and attR ; XkdT , baseplate protein; DNA-h , DNA helicase; DNA-pol , DNA polymerase; HMP , head morphogenesis protein; MCP , major capsid protein; PP , portal protein; RO , replisome organizer; SR , serine recombinase; TFP , tail fiber/collar protein; XkdK , tail sheath protein; TTMP , tail tape measure protein; TerS and TerL , terminase small and large subunit; virE , virulence factor E.

    Article Snippet: The I-B loci in wild-type ATCC 9441 and the Harvard strains, on the other hand, were nearly identical (72% by spacer homology) across all elements of 39 phage-related spacers ( ).

    Techniques: Functional Assay, Lysis

    Distribution and frequency of SNPs in  C .  tetani . (A-D) Venn diagram of SNPs present in wild and vaccine strains of  C .  tetani . Strain E88 was used as a reference for determining SNP calls. Venn diagrams for strain sub-groups: (A) Harvard-derived vaccine strains C2, CN655 and Strain A [  13 ], and ATCC 19406; very few SNPs were identified for all 4 strains, (B) Strains sequenced in the present study: C2, ATCC 19406, ATCC 9441, and ATCC 453, (C) and (D) Venn diagram of wild strains, ATCC 453, ATCC 9441, GTC-14772, 184.08 and 12124569. Strains 184.08 and 12124569. (E) Frequency distribution plot of SNP density (#SNPs/20 kb) and location along the E88 reference genome (chromosomal location). Regions displaying greater SNP frequency were associated with mobile genetic elements and indicated with arrows corresponding to regions identified in   Fig 1 : prophage insertions (A—E), CRISPR/Cas arrays (I-A and I-B), and FGI.

    Journal: PLoS ONE

    Article Title: Comparative pathogenomics of Clostridium tetani

    doi: 10.1371/journal.pone.0182909

    Figure Lengend Snippet: Distribution and frequency of SNPs in C . tetani . (A-D) Venn diagram of SNPs present in wild and vaccine strains of C . tetani . Strain E88 was used as a reference for determining SNP calls. Venn diagrams for strain sub-groups: (A) Harvard-derived vaccine strains C2, CN655 and Strain A [ 13 ], and ATCC 19406; very few SNPs were identified for all 4 strains, (B) Strains sequenced in the present study: C2, ATCC 19406, ATCC 9441, and ATCC 453, (C) and (D) Venn diagram of wild strains, ATCC 453, ATCC 9441, GTC-14772, 184.08 and 12124569. Strains 184.08 and 12124569. (E) Frequency distribution plot of SNP density (#SNPs/20 kb) and location along the E88 reference genome (chromosomal location). Regions displaying greater SNP frequency were associated with mobile genetic elements and indicated with arrows corresponding to regions identified in Fig 1 : prophage insertions (A—E), CRISPR/Cas arrays (I-A and I-B), and FGI.

    Article Snippet: The I-B loci in wild-type ATCC 9441 and the Harvard strains, on the other hand, were nearly identical (72% by spacer homology) across all elements of 39 phage-related spacers ( ).

    Techniques: Derivative Assay, CRISPR

    BLAST analysis of  C .  tetani  draft genome sequences. C .  tetani  strain genomes were compared by pairwise BLAST using BRIG against Strain E88 (2.8 Mb, GenBank accession number NC_004557). Genomes shown include (from innermost to outermost ring) C2, ATCC 19406, Strain A, CN655, GTC-14772, 184.08, ATCC 9441, ATCC 453, ATCC 454, and 12124569 (See   Methods  for BioSample and nucleotide accession numbers). Genomic regions with

    Journal: PLoS ONE

    Article Title: Comparative pathogenomics of Clostridium tetani

    doi: 10.1371/journal.pone.0182909

    Figure Lengend Snippet: BLAST analysis of C . tetani draft genome sequences. C . tetani strain genomes were compared by pairwise BLAST using BRIG against Strain E88 (2.8 Mb, GenBank accession number NC_004557). Genomes shown include (from innermost to outermost ring) C2, ATCC 19406, Strain A, CN655, GTC-14772, 184.08, ATCC 9441, ATCC 453, ATCC 454, and 12124569 (See Methods for BioSample and nucleotide accession numbers). Genomic regions with

    Article Snippet: The I-B loci in wild-type ATCC 9441 and the Harvard strains, on the other hand, were nearly identical (72% by spacer homology) across all elements of 39 phage-related spacers ( ).

    Techniques:

    C . tetani motility on blood agar. Shown are representative examples of strain-specific motility and swarming phenotype in C2 and ATCC 9441 strains of C . tetani . Strains were plated onto blood agar plates and incubated for 48 hrs. Swarming behavior, exemplified by large spreading colonies is observed only in wild strain ATCC 9441. Strain C2 forms small, compact filamentous colonies (white arrow in magnified view). Strain ATCC 9441 forms large swarming colonies with hemolysis in the center, and a migrating boundary (white arrow in magnified view). Compare illustrations depicting filamentous form (top) to an irregular filiform margin (bottom).

    Journal: PLoS ONE

    Article Title: Comparative pathogenomics of Clostridium tetani

    doi: 10.1371/journal.pone.0182909

    Figure Lengend Snippet: C . tetani motility on blood agar. Shown are representative examples of strain-specific motility and swarming phenotype in C2 and ATCC 9441 strains of C . tetani . Strains were plated onto blood agar plates and incubated for 48 hrs. Swarming behavior, exemplified by large spreading colonies is observed only in wild strain ATCC 9441. Strain C2 forms small, compact filamentous colonies (white arrow in magnified view). Strain ATCC 9441 forms large swarming colonies with hemolysis in the center, and a migrating boundary (white arrow in magnified view). Compare illustrations depicting filamentous form (top) to an irregular filiform margin (bottom).

    Article Snippet: The I-B loci in wild-type ATCC 9441 and the Harvard strains, on the other hand, were nearly identical (72% by spacer homology) across all elements of 39 phage-related spacers ( ).

    Techniques: Incubation