2 7 kb dsdna substrate  (New England Biolabs)


Bioz Verified Symbol New England Biolabs is a verified supplier
Bioz Manufacturer Symbol New England Biolabs manufactures this product  
  • Logo
  • About
  • News
  • Press Release
  • Team
  • Advisors
  • Partners
  • Contact
  • Bioz Stars
  • Bioz vStars
  • 78

    Structured Review

    New England Biolabs 2 7 kb dsdna substrate
    Sgs1 does not stimulate resection of <t>dsDNA</t> by Exo1. ( A ) Nuclease assays with Exo1 (0.35, 0.53, 0.8, 1.2, and 1.8 nM), RPA (0.4 μM), and either without (lanes 2–6) or with Sgs1 (0.1 nM, lanes 8–13) in low-salt buffer. Blunt-ended pUC19 dsDNA (1 nM), 32 P labeled at the 3′ end, was used. ( B ) Quantification of experiments as shown in A . Error bars show SE. ( C ) Nuclease assays with Exo1 (0.53, 0.8, 1.2, 1.8, and <t>2.7</t> nM), RPA (0.4 μM), and either without (lanes 2–6) or with Sgs1 (0.5 nM) and Top3-Rmi1 (5 nM, lanes 9–14, respectively), in standard buffer. Substrate is as in A . ( D ) Quantification of experiments as shown in C . Error bars show SE. ( E ) Nuclease assay carried out with Exo1 (0.5, 1, 2, 3, and 4 nM), RPA (0.4 μM), and either without (lanes 2–6) or with helicase-dead Sgs1 K706A (20 nM, lanes 8–12). Substrate is as in A . ( F ) Increasing amounts of nuclease-dead Exo1 D173A (0.53, 0.8, 1.2, 1.8, 2.7, 4, and 8 nM) were added to reactions containing Sgs1 (0.5 nM) and/or Top3-Rmi1 (5 nM), as indicated, in the presence of RPA (0.4 μM). Substrate is as in A .
    2 7 Kb Dsdna Substrate, supplied by New England Biolabs, used in various techniques. Bioz Stars score: 78/100, based on 1 PubMed citations. ZERO BIAS - scores, article reviews, protocol conditions and more
    https://www.bioz.com/result/2 7 kb dsdna substrate/product/New England Biolabs
    Average 78 stars, based on 1 article reviews
    Price from $9.99 to $1999.99
    2 7 kb dsdna substrate - by Bioz Stars, 2020-03
    78/100 stars

    Related Products / Commonly Used Together

    hindiii
    puc19 dsdna

    Images

    1) Product Images from "Relationship of DNA degradation by Saccharomyces cerevisiae Exonuclease 1 and its stimulation by RPA and Mre11-Rad50-Xrs2 to DNA end resection"

    Article Title: Relationship of DNA degradation by Saccharomyces cerevisiae Exonuclease 1 and its stimulation by RPA and Mre11-Rad50-Xrs2 to DNA end resection

    Journal: Proceedings of the National Academy of Sciences of the United States of America

    doi: 10.1073/pnas.1305166110

    Sgs1 does not stimulate resection of dsDNA by Exo1. ( A ) Nuclease assays with Exo1 (0.35, 0.53, 0.8, 1.2, and 1.8 nM), RPA (0.4 μM), and either without (lanes 2–6) or with Sgs1 (0.1 nM, lanes 8–13) in low-salt buffer. Blunt-ended pUC19 dsDNA (1 nM), 32 P labeled at the 3′ end, was used. ( B ) Quantification of experiments as shown in A . Error bars show SE. ( C ) Nuclease assays with Exo1 (0.53, 0.8, 1.2, 1.8, and 2.7 nM), RPA (0.4 μM), and either without (lanes 2–6) or with Sgs1 (0.5 nM) and Top3-Rmi1 (5 nM, lanes 9–14, respectively), in standard buffer. Substrate is as in A . ( D ) Quantification of experiments as shown in C . Error bars show SE. ( E ) Nuclease assay carried out with Exo1 (0.5, 1, 2, 3, and 4 nM), RPA (0.4 μM), and either without (lanes 2–6) or with helicase-dead Sgs1 K706A (20 nM, lanes 8–12). Substrate is as in A . ( F ) Increasing amounts of nuclease-dead Exo1 D173A (0.53, 0.8, 1.2, 1.8, 2.7, 4, and 8 nM) were added to reactions containing Sgs1 (0.5 nM) and/or Top3-Rmi1 (5 nM), as indicated, in the presence of RPA (0.4 μM). Substrate is as in A .
    Figure Legend Snippet: Sgs1 does not stimulate resection of dsDNA by Exo1. ( A ) Nuclease assays with Exo1 (0.35, 0.53, 0.8, 1.2, and 1.8 nM), RPA (0.4 μM), and either without (lanes 2–6) or with Sgs1 (0.1 nM, lanes 8–13) in low-salt buffer. Blunt-ended pUC19 dsDNA (1 nM), 32 P labeled at the 3′ end, was used. ( B ) Quantification of experiments as shown in A . Error bars show SE. ( C ) Nuclease assays with Exo1 (0.53, 0.8, 1.2, 1.8, and 2.7 nM), RPA (0.4 μM), and either without (lanes 2–6) or with Sgs1 (0.5 nM) and Top3-Rmi1 (5 nM, lanes 9–14, respectively), in standard buffer. Substrate is as in A . ( D ) Quantification of experiments as shown in C . Error bars show SE. ( E ) Nuclease assay carried out with Exo1 (0.5, 1, 2, 3, and 4 nM), RPA (0.4 μM), and either without (lanes 2–6) or with helicase-dead Sgs1 K706A (20 nM, lanes 8–12). Substrate is as in A . ( F ) Increasing amounts of nuclease-dead Exo1 D173A (0.53, 0.8, 1.2, 1.8, 2.7, 4, and 8 nM) were added to reactions containing Sgs1 (0.5 nM) and/or Top3-Rmi1 (5 nM), as indicated, in the presence of RPA (0.4 μM). Substrate is as in A .

    Techniques Used: Recombinase Polymerase Amplification, Labeling, Nuclease Assay

    Related Articles

    Produced:

    Article Title: Relationship of DNA degradation by Saccharomyces cerevisiae Exonuclease 1 and its stimulation by RPA and Mre11-Rad50-Xrs2 to DNA end resection
    Article Snippet: The 2.7-kb dsDNA substrate with 4-nt overhangs at the 5′ end was pUC19 dsDNA linearized with HindIII (New England Biolabs). .. Radiolabeling of this substrate with 32 P at the 3′ end with Klenow (exo−) enzyme (New England Biolabs) produced dsDNA with 3-nt overhangs.

    Radioactivity:

    Article Title: Relationship of DNA degradation by Saccharomyces cerevisiae Exonuclease 1 and its stimulation by RPA and Mre11-Rad50-Xrs2 to DNA end resection
    Article Snippet: The 2.7-kb dsDNA substrate with 4-nt overhangs at the 5′ end was pUC19 dsDNA linearized with HindIII (New England Biolabs). .. Radiolabeling of this substrate with 32 P at the 3′ end with Klenow (exo−) enzyme (New England Biolabs) produced dsDNA with 3-nt overhangs.

    Similar Products

  • Logo
  • About
  • News
  • Press Release
  • Team
  • Advisors
  • Partners
  • Contact
  • Bioz Stars
  • Bioz vStars
  • 78
    New England Biolabs 2 7 kb dsdna substrate
    Sgs1 does not stimulate resection of <t>dsDNA</t> by Exo1. ( A ) Nuclease assays with Exo1 (0.35, 0.53, 0.8, 1.2, and 1.8 nM), RPA (0.4 μM), and either without (lanes 2–6) or with Sgs1 (0.1 nM, lanes 8–13) in low-salt buffer. Blunt-ended pUC19 dsDNA (1 nM), 32 P labeled at the 3′ end, was used. ( B ) Quantification of experiments as shown in A . Error bars show SE. ( C ) Nuclease assays with Exo1 (0.53, 0.8, 1.2, 1.8, and <t>2.7</t> nM), RPA (0.4 μM), and either without (lanes 2–6) or with Sgs1 (0.5 nM) and Top3-Rmi1 (5 nM, lanes 9–14, respectively), in standard buffer. Substrate is as in A . ( D ) Quantification of experiments as shown in C . Error bars show SE. ( E ) Nuclease assay carried out with Exo1 (0.5, 1, 2, 3, and 4 nM), RPA (0.4 μM), and either without (lanes 2–6) or with helicase-dead Sgs1 K706A (20 nM, lanes 8–12). Substrate is as in A . ( F ) Increasing amounts of nuclease-dead Exo1 D173A (0.53, 0.8, 1.2, 1.8, 2.7, 4, and 8 nM) were added to reactions containing Sgs1 (0.5 nM) and/or Top3-Rmi1 (5 nM), as indicated, in the presence of RPA (0.4 μM). Substrate is as in A .
    2 7 Kb Dsdna Substrate, supplied by New England Biolabs, used in various techniques. Bioz Stars score: 78/100, based on 1 PubMed citations. ZERO BIAS - scores, article reviews, protocol conditions and more
    https://www.bioz.com/result/2 7 kb dsdna substrate/product/New England Biolabs
    Average 78 stars, based on 1 article reviews
    Price from $9.99 to $1999.99
    2 7 kb dsdna substrate - by Bioz Stars, 2020-03
    78/100 stars
      Buy from Supplier

    Image Search Results


    Sgs1 does not stimulate resection of dsDNA by Exo1. ( A ) Nuclease assays with Exo1 (0.35, 0.53, 0.8, 1.2, and 1.8 nM), RPA (0.4 μM), and either without (lanes 2–6) or with Sgs1 (0.1 nM, lanes 8–13) in low-salt buffer. Blunt-ended pUC19 dsDNA (1 nM), 32 P labeled at the 3′ end, was used. ( B ) Quantification of experiments as shown in A . Error bars show SE. ( C ) Nuclease assays with Exo1 (0.53, 0.8, 1.2, 1.8, and 2.7 nM), RPA (0.4 μM), and either without (lanes 2–6) or with Sgs1 (0.5 nM) and Top3-Rmi1 (5 nM, lanes 9–14, respectively), in standard buffer. Substrate is as in A . ( D ) Quantification of experiments as shown in C . Error bars show SE. ( E ) Nuclease assay carried out with Exo1 (0.5, 1, 2, 3, and 4 nM), RPA (0.4 μM), and either without (lanes 2–6) or with helicase-dead Sgs1 K706A (20 nM, lanes 8–12). Substrate is as in A . ( F ) Increasing amounts of nuclease-dead Exo1 D173A (0.53, 0.8, 1.2, 1.8, 2.7, 4, and 8 nM) were added to reactions containing Sgs1 (0.5 nM) and/or Top3-Rmi1 (5 nM), as indicated, in the presence of RPA (0.4 μM). Substrate is as in A .

    Journal: Proceedings of the National Academy of Sciences of the United States of America

    Article Title: Relationship of DNA degradation by Saccharomyces cerevisiae Exonuclease 1 and its stimulation by RPA and Mre11-Rad50-Xrs2 to DNA end resection

    doi: 10.1073/pnas.1305166110

    Figure Lengend Snippet: Sgs1 does not stimulate resection of dsDNA by Exo1. ( A ) Nuclease assays with Exo1 (0.35, 0.53, 0.8, 1.2, and 1.8 nM), RPA (0.4 μM), and either without (lanes 2–6) or with Sgs1 (0.1 nM, lanes 8–13) in low-salt buffer. Blunt-ended pUC19 dsDNA (1 nM), 32 P labeled at the 3′ end, was used. ( B ) Quantification of experiments as shown in A . Error bars show SE. ( C ) Nuclease assays with Exo1 (0.53, 0.8, 1.2, 1.8, and 2.7 nM), RPA (0.4 μM), and either without (lanes 2–6) or with Sgs1 (0.5 nM) and Top3-Rmi1 (5 nM, lanes 9–14, respectively), in standard buffer. Substrate is as in A . ( D ) Quantification of experiments as shown in C . Error bars show SE. ( E ) Nuclease assay carried out with Exo1 (0.5, 1, 2, 3, and 4 nM), RPA (0.4 μM), and either without (lanes 2–6) or with helicase-dead Sgs1 K706A (20 nM, lanes 8–12). Substrate is as in A . ( F ) Increasing amounts of nuclease-dead Exo1 D173A (0.53, 0.8, 1.2, 1.8, 2.7, 4, and 8 nM) were added to reactions containing Sgs1 (0.5 nM) and/or Top3-Rmi1 (5 nM), as indicated, in the presence of RPA (0.4 μM). Substrate is as in A .

    Article Snippet: The 2.7-kb dsDNA substrate with 4-nt overhangs at the 5′ end was pUC19 dsDNA linearized with HindIII (New England Biolabs).

    Techniques: Recombinase Polymerase Amplification, Labeling, Nuclease Assay