t4 rna ligase Thermo Fisher Search Results


  • Logo
  • About
  • News
  • Press Release
  • Team
  • Advisors
  • Partners
  • Contact
  • Bioz Stars
  • Bioz vStars
  • 90
    Thermo Fisher am2141
    Am2141, supplied by Thermo Fisher, used in various techniques. Bioz Stars score: 90/100, based on 5 PubMed citations. ZERO BIAS - scores, article reviews, protocol conditions and more
    https://www.bioz.com/result/am2141/product/Thermo Fisher
    Average 90 stars, based on 5 article reviews
    Price from $9.99 to $1999.99
    am2141 - by Bioz Stars, 2020-02
    90/100 stars
      Buy from Supplier

    98
    Thermo Fisher t4 rna ligase
    Formation of natural and unnatural lariat RNA isomers in the <t>T4</t> RNA ligase loop-closure reaction, and the blocking and capping approaches to control which isomer is formed. On each structure is marked the cleavage site for debranching enzyme Dbr1p, which
    T4 Rna Ligase, supplied by Thermo Fisher, used in various techniques. Bioz Stars score: 98/100, based on 2403 PubMed citations. ZERO BIAS - scores, article reviews, protocol conditions and more
    https://www.bioz.com/result/t4 rna ligase/product/Thermo Fisher
    Average 98 stars, based on 2403 article reviews
    Price from $9.99 to $1999.99
    t4 rna ligase - by Bioz Stars, 2020-02
    98/100 stars
      Buy from Supplier

    89
    Thermo Fisher rna tags
    Formation of natural and unnatural lariat RNA isomers in the <t>T4</t> RNA ligase loop-closure reaction, and the blocking and capping approaches to control which isomer is formed. On each structure is marked the cleavage site for debranching enzyme Dbr1p, which
    Rna Tags, supplied by Thermo Fisher, used in various techniques. Bioz Stars score: 89/100, based on 28 PubMed citations. ZERO BIAS - scores, article reviews, protocol conditions and more
    https://www.bioz.com/result/rna tags/product/Thermo Fisher
    Average 89 stars, based on 28 article reviews
    Price from $9.99 to $1999.99
    rna tags - by Bioz Stars, 2020-02
    89/100 stars
      Buy from Supplier

    78
    Thermo Fisher 10x t4 rna ligase buffer
    Formation of natural and unnatural lariat RNA isomers in the <t>T4</t> RNA ligase loop-closure reaction, and the blocking and capping approaches to control which isomer is formed. On each structure is marked the cleavage site for debranching enzyme Dbr1p, which
    10x T4 Rna Ligase Buffer, supplied by Thermo Fisher, used in various techniques. Bioz Stars score: 78/100, based on 7 PubMed citations. ZERO BIAS - scores, article reviews, protocol conditions and more
    https://www.bioz.com/result/10x t4 rna ligase buffer/product/Thermo Fisher
    Average 78 stars, based on 7 article reviews
    Price from $9.99 to $1999.99
    10x t4 rna ligase buffer - by Bioz Stars, 2020-02
    78/100 stars
      Buy from Supplier

    90
    Thermo Fisher pierce rna 3 end biotinylation kit
    Formation of natural and unnatural lariat RNA isomers in the <t>T4</t> RNA ligase loop-closure reaction, and the blocking and capping approaches to control which isomer is formed. On each structure is marked the cleavage site for debranching enzyme Dbr1p, which
    Pierce Rna 3 End Biotinylation Kit, supplied by Thermo Fisher, used in various techniques. Bioz Stars score: 90/100, based on 125 PubMed citations. ZERO BIAS - scores, article reviews, protocol conditions and more
    https://www.bioz.com/result/pierce rna 3 end biotinylation kit/product/Thermo Fisher
    Average 90 stars, based on 125 article reviews
    Price from $9.99 to $1999.99
    pierce rna 3 end biotinylation kit - by Bioz Stars, 2020-02
    90/100 stars
      Buy from Supplier

    90
    Thermo Fisher t4 rna ligase buffer
    Preparation and analysis on circular RNA in vitro . (A) Schematic of in vitro circularization constructs. Transcripts to be circularized consist of a terminal 10 nt open loop structure (black) and a reverse-complementary repeat sequence of 11 nt, which forms an intramolecular stem (red). This structure is followed by a 63 nt constant region for detection by northern blot or PCR (blue), followed by the miRNA-122 sponge (bulge; perfect) or a scrambled control sequence (shuffle) in grey. (B) Schematic of the in vitro ligation reaction. 4-fold excess of GMP over GTP results in ∼80% of the transcripts containing a 5′-monophosphate, enabling efficient in vitro ligation by <t>T4</t> RNA ligase. Ligation products are circular RNAs (intramolecular ligation) or linear dimers (intermolecular ligation). (C) In vitro ligation reactions described in (B) were analyzed on 5%, 6% or 7% polyacrylamide-urea gels by ethidium bromide staining. While mobility of linear RNAs remains unchanged compared to RNA marker, the apparent mobility of circular RNA is lower in higher percentage gels (indicated by dash/double dash or circle). (D) Purified linear or circular RNAs from (C) were transfected in HuH-7.5 cells and total RNA was prepared after 4, 8, 14, 24 and 32 h. RNAs were detected by ³²P-northern blot analysis using identical probes in the constant region [labeled blue in (A)]. (E) HuH-7.5 cells transfected with circular RNA or linear RNA from (C) were subjected to sub-cellular fractionation and cytoplasmic or nuclear fractions were analyzed by ³²P-northern blot detecting transfected RNAs along with U1 snRNA and by western blot against hnRNP A1 or GAPDH proteins as a fractionation control. In the circRNA-transfected samples, a degradation product is detected at linear monomer size (“linearized”).
    T4 Rna Ligase Buffer, supplied by Thermo Fisher, used in various techniques. Bioz Stars score: 90/100, based on 112 PubMed citations. ZERO BIAS - scores, article reviews, protocol conditions and more
    https://www.bioz.com/result/t4 rna ligase buffer/product/Thermo Fisher
    Average 90 stars, based on 112 article reviews
    Price from $9.99 to $1999.99
    t4 rna ligase buffer - by Bioz Stars, 2020-02
    90/100 stars
      Buy from Supplier

    90
    Thermo Fisher t4 dna ligase rna ligase 2
    Preparation and analysis on circular RNA in vitro . (A) Schematic of in vitro circularization constructs. Transcripts to be circularized consist of a terminal 10 nt open loop structure (black) and a reverse-complementary repeat sequence of 11 nt, which forms an intramolecular stem (red). This structure is followed by a 63 nt constant region for detection by northern blot or PCR (blue), followed by the miRNA-122 sponge (bulge; perfect) or a scrambled control sequence (shuffle) in grey. (B) Schematic of the in vitro ligation reaction. 4-fold excess of GMP over GTP results in ∼80% of the transcripts containing a 5′-monophosphate, enabling efficient in vitro ligation by <t>T4</t> RNA ligase. Ligation products are circular RNAs (intramolecular ligation) or linear dimers (intermolecular ligation). (C) In vitro ligation reactions described in (B) were analyzed on 5%, 6% or 7% polyacrylamide-urea gels by ethidium bromide staining. While mobility of linear RNAs remains unchanged compared to RNA marker, the apparent mobility of circular RNA is lower in higher percentage gels (indicated by dash/double dash or circle). (D) Purified linear or circular RNAs from (C) were transfected in HuH-7.5 cells and total RNA was prepared after 4, 8, 14, 24 and 32 h. RNAs were detected by ³²P-northern blot analysis using identical probes in the constant region [labeled blue in (A)]. (E) HuH-7.5 cells transfected with circular RNA or linear RNA from (C) were subjected to sub-cellular fractionation and cytoplasmic or nuclear fractions were analyzed by ³²P-northern blot detecting transfected RNAs along with U1 snRNA and by western blot against hnRNP A1 or GAPDH proteins as a fractionation control. In the circRNA-transfected samples, a degradation product is detected at linear monomer size (“linearized”).
    T4 Dna Ligase Rna Ligase 2, supplied by Thermo Fisher, used in various techniques. Bioz Stars score: 90/100, based on 6 PubMed citations. ZERO BIAS - scores, article reviews, protocol conditions and more
    https://www.bioz.com/result/t4 dna ligase rna ligase 2/product/Thermo Fisher
    Average 90 stars, based on 6 article reviews
    Price from $9.99 to $1999.99
    t4 dna ligase rna ligase 2 - by Bioz Stars, 2020-02
    90/100 stars
      Buy from Supplier

    90
    Thermo Fisher t4 dna ligase
    In vitro BER assay with purified wtP53, Δ40p53 and Δ133p53 fusion proteins showing that Δ40p53 and Δ133p53 cannot induce mtBER but can attenuate mtBER activity induced by wtp53 . (A) wtP53, Δ40p53 and Δ133p53 His fusion proteins were stained with Coomassie blue (upper panel) and identified by Western blotting with anti-P53 antibodies (lower panel). (B) Purified p53, Δ40p53 and Δ133p53 protein (100, 500 and 1000 ng, lanes 3-9) or d4T (10, 50 and 300 nM, lanes 11-14) were added to BER reaction mixtures containing both whole-mitochondrial extracts obtained from H1299 cells and <t>T4</t> DNA ligase. The templates were treated with T4 DNA ligase and Klenow fragment was used as a positive control (lane 15).
    T4 Dna Ligase, supplied by Thermo Fisher, used in various techniques. Bioz Stars score: 90/100, based on 19341 PubMed citations. ZERO BIAS - scores, article reviews, protocol conditions and more
    https://www.bioz.com/result/t4 dna ligase/product/Thermo Fisher
    Average 90 stars, based on 19341 article reviews
    Price from $9.99 to $1999.99
    t4 dna ligase - by Bioz Stars, 2020-02
    90/100 stars
      Buy from Supplier

    90
    Thermo Fisher t4 dna ligation buffer
    15% denaturing PAGE for the ligation products of linkers A–B, C–D and linkers G–H. PAGE (10×10×0.03 cm, A:B = 29∶1, 7 M urea, 0.5x TBE) was run in 0.5 x TBE, 25°C, 100 V for 3.5 hrs in ( A )–( F ), or 4.3 hrs in ( G ). The ligation products were indicated by the arrows. Lane M: DNA marker I (GeneRuler™ 50 bp DNA ladder, Fermentas). Lane M1: DNA marker I plus oligo 15. ( A ) The ligation products joined by using <t>T4</t> DNA ligase from Fermentas. Lane 1: the ligation products of linkers C–D preincubated with T4 DNA ligase; Lane 2: the ligation products of linkers C–D without the preincubation; Lane 4: the ligation products of linkers A–B; Lanes 3 and 5: the negative controls. ( B ) The ligation products joined by using T4 DNA ligase from Takara. Lanes 1–3∶0.5, 1, and 2 µl of 1 µM oligo 15, respectively; Lanes 4 and 6: the ligation products of linkers A–B; Lane 8: the ligation products of linkers C–D. Lanes 5, 7, and 9: the negative controls. ( C ) The ligation products joined by using T4 DNA ligase from Promega. Lane 1∶1 µl of 1 µM oligo 15; Lanes 2 and 4: ligation products of linkers A–B, and C–D, respectively; Lanes 3 and 5: the negative controls. ( D ) The ligation products joined by using E. coli DNA ligase from Takara. Lanes 1 and 3: the ligation products of linkers A–B, and C–D, respectively; Lanes 2 and 4: the negative controls. ( E ) The ligation products of linkers A–B joined in T4 DNA ligase reaction mixture containing (NH 4 ) 2 SO 4 . Lanes 1–3: the ligase reaction mixture with 7.5 mM (NH 4 ) 2 SO 4 , 3.75 mM (NH 4 ) 2 SO 4 , and without (NH 4 ) 2 SO 4 , respectively; Lane 4: the negative control. ( F ) The ligation products of the phosphorylated linkers A–B and C–D joined by using T4 and E. coli DNA ligase (Takara). Lane 1∶1 µl of 1 µM oligo 15; Lanes 2 and 4: the ligation products of the phosphorylated linkers A–B joined by using T4 and E. coli DNA ligase, respectively; Lanes 3 and 5: the ligation products of the phosphorylated linkers C–D joined by using T4 and E. coli DNA ligase, respectively; Lanes 6 and 7: the ligation products of linkers A–B and C–D, respectively; Lanes 8 and 9: the negative controls of lanes 6 and 7, respectively. ( G ) The ligation products of linkers A–B and the phosphorylated linkers G–H. Lanes 1 and 2: the ligation products of linkers A–B and the ligation products of the phosphorylated linkers G–H plus the negative control of linkers A–B, respectively; Lane 3: the negative control of linkers G–H plus the negative control of linkers A–B. The band from the ligation products of the phosphorylated linkers G–H run a little more slowly than that of linkers A–B. The sequences of linkers G and H are similar to those of linkers A and B, respectively. But there is a 1-base deletion at the 5′ end of each of linkers G and H.
    T4 Dna Ligation Buffer, supplied by Thermo Fisher, used in various techniques. Bioz Stars score: 90/100, based on 20 PubMed citations. ZERO BIAS - scores, article reviews, protocol conditions and more
    https://www.bioz.com/result/t4 dna ligation buffer/product/Thermo Fisher
    Average 90 stars, based on 20 article reviews
    Price from $9.99 to $1999.99
    t4 dna ligation buffer - by Bioz Stars, 2020-02
    90/100 stars
      Buy from Supplier

    90
    Thermo Fisher mirna 3 0 genechip arrays
    15% denaturing PAGE for the ligation products of linkers A–B, C–D and linkers G–H. PAGE (10×10×0.03 cm, A:B = 29∶1, 7 M urea, 0.5x TBE) was run in 0.5 x TBE, 25°C, 100 V for 3.5 hrs in ( A )–( F ), or 4.3 hrs in ( G ). The ligation products were indicated by the arrows. Lane M: DNA marker I (GeneRuler™ 50 bp DNA ladder, Fermentas). Lane M1: DNA marker I plus oligo 15. ( A ) The ligation products joined by using <t>T4</t> DNA ligase from Fermentas. Lane 1: the ligation products of linkers C–D preincubated with T4 DNA ligase; Lane 2: the ligation products of linkers C–D without the preincubation; Lane 4: the ligation products of linkers A–B; Lanes 3 and 5: the negative controls. ( B ) The ligation products joined by using T4 DNA ligase from Takara. Lanes 1–3∶0.5, 1, and 2 µl of 1 µM oligo 15, respectively; Lanes 4 and 6: the ligation products of linkers A–B; Lane 8: the ligation products of linkers C–D. Lanes 5, 7, and 9: the negative controls. ( C ) The ligation products joined by using T4 DNA ligase from Promega. Lane 1∶1 µl of 1 µM oligo 15; Lanes 2 and 4: ligation products of linkers A–B, and C–D, respectively; Lanes 3 and 5: the negative controls. ( D ) The ligation products joined by using E. coli DNA ligase from Takara. Lanes 1 and 3: the ligation products of linkers A–B, and C–D, respectively; Lanes 2 and 4: the negative controls. ( E ) The ligation products of linkers A–B joined in T4 DNA ligase reaction mixture containing (NH 4 ) 2 SO 4 . Lanes 1–3: the ligase reaction mixture with 7.5 mM (NH 4 ) 2 SO 4 , 3.75 mM (NH 4 ) 2 SO 4 , and without (NH 4 ) 2 SO 4 , respectively; Lane 4: the negative control. ( F ) The ligation products of the phosphorylated linkers A–B and C–D joined by using T4 and E. coli DNA ligase (Takara). Lane 1∶1 µl of 1 µM oligo 15; Lanes 2 and 4: the ligation products of the phosphorylated linkers A–B joined by using T4 and E. coli DNA ligase, respectively; Lanes 3 and 5: the ligation products of the phosphorylated linkers C–D joined by using T4 and E. coli DNA ligase, respectively; Lanes 6 and 7: the ligation products of linkers A–B and C–D, respectively; Lanes 8 and 9: the negative controls of lanes 6 and 7, respectively. ( G ) The ligation products of linkers A–B and the phosphorylated linkers G–H. Lanes 1 and 2: the ligation products of linkers A–B and the ligation products of the phosphorylated linkers G–H plus the negative control of linkers A–B, respectively; Lane 3: the negative control of linkers G–H plus the negative control of linkers A–B. The band from the ligation products of the phosphorylated linkers G–H run a little more slowly than that of linkers A–B. The sequences of linkers G and H are similar to those of linkers A and B, respectively. But there is a 1-base deletion at the 5′ end of each of linkers G and H.
    Mirna 3 0 Genechip Arrays, supplied by Thermo Fisher, used in various techniques. Bioz Stars score: 90/100, based on 6 PubMed citations. ZERO BIAS - scores, article reviews, protocol conditions and more
    https://www.bioz.com/result/mirna 3 0 genechip arrays/product/Thermo Fisher
    Average 90 stars, based on 6 article reviews
    Price from $9.99 to $1999.99
    mirna 3 0 genechip arrays - by Bioz Stars, 2020-02
    90/100 stars
      Buy from Supplier

    90
    Thermo Fisher dynabeads m 280 streptavidin
    15% denaturing PAGE for the ligation products of linkers A–B, C–D and linkers G–H. PAGE (10×10×0.03 cm, A:B = 29∶1, 7 M urea, 0.5x TBE) was run in 0.5 x TBE, 25°C, 100 V for 3.5 hrs in ( A )–( F ), or 4.3 hrs in ( G ). The ligation products were indicated by the arrows. Lane M: DNA marker I (GeneRuler™ 50 bp DNA ladder, Fermentas). Lane M1: DNA marker I plus oligo 15. ( A ) The ligation products joined by using <t>T4</t> DNA ligase from Fermentas. Lane 1: the ligation products of linkers C–D preincubated with T4 DNA ligase; Lane 2: the ligation products of linkers C–D without the preincubation; Lane 4: the ligation products of linkers A–B; Lanes 3 and 5: the negative controls. ( B ) The ligation products joined by using T4 DNA ligase from Takara. Lanes 1–3∶0.5, 1, and 2 µl of 1 µM oligo 15, respectively; Lanes 4 and 6: the ligation products of linkers A–B; Lane 8: the ligation products of linkers C–D. Lanes 5, 7, and 9: the negative controls. ( C ) The ligation products joined by using T4 DNA ligase from Promega. Lane 1∶1 µl of 1 µM oligo 15; Lanes 2 and 4: ligation products of linkers A–B, and C–D, respectively; Lanes 3 and 5: the negative controls. ( D ) The ligation products joined by using E. coli DNA ligase from Takara. Lanes 1 and 3: the ligation products of linkers A–B, and C–D, respectively; Lanes 2 and 4: the negative controls. ( E ) The ligation products of linkers A–B joined in T4 DNA ligase reaction mixture containing (NH 4 ) 2 SO 4 . Lanes 1–3: the ligase reaction mixture with 7.5 mM (NH 4 ) 2 SO 4 , 3.75 mM (NH 4 ) 2 SO 4 , and without (NH 4 ) 2 SO 4 , respectively; Lane 4: the negative control. ( F ) The ligation products of the phosphorylated linkers A–B and C–D joined by using T4 and E. coli DNA ligase (Takara). Lane 1∶1 µl of 1 µM oligo 15; Lanes 2 and 4: the ligation products of the phosphorylated linkers A–B joined by using T4 and E. coli DNA ligase, respectively; Lanes 3 and 5: the ligation products of the phosphorylated linkers C–D joined by using T4 and E. coli DNA ligase, respectively; Lanes 6 and 7: the ligation products of linkers A–B and C–D, respectively; Lanes 8 and 9: the negative controls of lanes 6 and 7, respectively. ( G ) The ligation products of linkers A–B and the phosphorylated linkers G–H. Lanes 1 and 2: the ligation products of linkers A–B and the ligation products of the phosphorylated linkers G–H plus the negative control of linkers A–B, respectively; Lane 3: the negative control of linkers G–H plus the negative control of linkers A–B. The band from the ligation products of the phosphorylated linkers G–H run a little more slowly than that of linkers A–B. The sequences of linkers G and H are similar to those of linkers A and B, respectively. But there is a 1-base deletion at the 5′ end of each of linkers G and H.
    Dynabeads M 280 Streptavidin, supplied by Thermo Fisher, used in various techniques. Bioz Stars score: 90/100, based on 3244 PubMed citations. ZERO BIAS - scores, article reviews, protocol conditions and more
    https://www.bioz.com/result/dynabeads m 280 streptavidin/product/Thermo Fisher
    Average 90 stars, based on 3244 article reviews
    Price from $9.99 to $1999.99
    dynabeads m 280 streptavidin - by Bioz Stars, 2020-02
    90/100 stars
      Buy from Supplier

    Image Search Results


    Formation of natural and unnatural lariat RNA isomers in the T4 RNA ligase loop-closure reaction, and the blocking and capping approaches to control which isomer is formed. On each structure is marked the cleavage site for debranching enzyme Dbr1p, which

    Journal: RNA

    Article Title: A general two-step strategy to synthesize lariat RNAs

    doi: 10.1261/rna.2259406

    Figure Lengend Snippet: Formation of natural and unnatural lariat RNA isomers in the T4 RNA ligase loop-closure reaction, and the blocking and capping approaches to control which isomer is formed. On each structure is marked the cleavage site for debranching enzyme Dbr1p, which

    Article Snippet: Then, loop closure catalyzed by T4 RNA ligase was performed as follows: Branched RNA (5 pmol) was annealed in 7.5 μL of 5 mM HEPES (pH 7.5), 15 mM NaCl, and 0.1 mM EDTA by heating at 95°C for 3 min and cooling on ice for 5 min. Portions of 5× ligation buffer and T4 RNA ligase (Fermentas) were added, bringing the final conditions to 50 mM HEPES (pH 7.5), 10 mM MgCl2 , 10 mM DTT, and 50μM ATP with 1 U/μL of T4 RNA ligase in 10 μL total volume.

    Techniques: Blocking Assay

    Identifying EBER2-interacting RNAs by combining psoralen crosslinking, ASO-mediated selection, and RNase V1 treatment. (A) The psoralen derivative AMT is used to crosslink RNA duplexes in intact cells to preserve in vivo RNA-RNA interactions. An EBER2-targeting ASO is then used to select EBER2 together with crosslinked interacting RNAs. These duplexes are eluted from the ASO beads using TEACl-containing buffer and are subjected to RNase V1 digestion. Following cleavage of double-stranded regions, a linker is ligated to the newly-generated 5′ phosphate group at the cut site using T4 RNA ligase (inset). Only one possible cleavage event is depicted for simplicity. After deep sequencing, not only can the interacting RNAs be identified, but also the site of RNA-RNA interactions can be deduced, which are specified by the junction of the linker and interacting RNA. (B) Cobra venom fractions were examined for activity towards doubled-stranded and single-stranded substrates. The double-stranded substrate consists of a shRNA with a pyrimidine-rich loop, which can be digested by single-strand specific RNases, such as RNase A. The trimmed RNA duplex with no loop region migrates faster in a native polyacrylamide gel. Digestion within the stem region by a double-strand specific RNase results in the disappearance of radioactive signal, as observed after digestion with all input material as well as hydroxyapatite (HAP) fraction 15; note that the weak activity of the MonoS input sample is due to the great dilution of protein concentration following size exclusion chromatography. Indicated fractions were also used in a ligation assay (outlined in D) to verify the compatibility of RNase V1 digest with T4 RNA ligase reaction. A silver-stained gel of the purified fractions is shown in the bottom panel, revealing the partial purification only of RNase V1; many other proteins are present in our sample preparation, which, importantly, do not interfere with RNase V1 activity. (C) Purification scheme of RNase V1 from Naja oxiana venom. (D) Outline of ligation reaction after RNase V1 digest. An oligonucleotide blocked at the 3′ end with puromycin was 5′ end-labeled (arrow in B, third panel from top) and annealed to a partially complementary oligonucleotide with a 3′ amino modifier. A free 3′ OH group is created only after RNase V1 digest, to which a 5′ phosphorylated linker blocked at the 3′ end with puromycin can be ligated using T4 RNA ligase. This ligation product is the only one that can be visualized by autoradiography as shown in B (arrowhead, third panel from top).

    Journal: RNA Biology

    Article Title: Identification of host RNAs that interact with EBV noncoding RNA EBER2

    doi: 10.1080/15476286.2018.1518854

    Figure Lengend Snippet: Identifying EBER2-interacting RNAs by combining psoralen crosslinking, ASO-mediated selection, and RNase V1 treatment. (A) The psoralen derivative AMT is used to crosslink RNA duplexes in intact cells to preserve in vivo RNA-RNA interactions. An EBER2-targeting ASO is then used to select EBER2 together with crosslinked interacting RNAs. These duplexes are eluted from the ASO beads using TEACl-containing buffer and are subjected to RNase V1 digestion. Following cleavage of double-stranded regions, a linker is ligated to the newly-generated 5′ phosphate group at the cut site using T4 RNA ligase (inset). Only one possible cleavage event is depicted for simplicity. After deep sequencing, not only can the interacting RNAs be identified, but also the site of RNA-RNA interactions can be deduced, which are specified by the junction of the linker and interacting RNA. (B) Cobra venom fractions were examined for activity towards doubled-stranded and single-stranded substrates. The double-stranded substrate consists of a shRNA with a pyrimidine-rich loop, which can be digested by single-strand specific RNases, such as RNase A. The trimmed RNA duplex with no loop region migrates faster in a native polyacrylamide gel. Digestion within the stem region by a double-strand specific RNase results in the disappearance of radioactive signal, as observed after digestion with all input material as well as hydroxyapatite (HAP) fraction 15; note that the weak activity of the MonoS input sample is due to the great dilution of protein concentration following size exclusion chromatography. Indicated fractions were also used in a ligation assay (outlined in D) to verify the compatibility of RNase V1 digest with T4 RNA ligase reaction. A silver-stained gel of the purified fractions is shown in the bottom panel, revealing the partial purification only of RNase V1; many other proteins are present in our sample preparation, which, importantly, do not interfere with RNase V1 activity. (C) Purification scheme of RNase V1 from Naja oxiana venom. (D) Outline of ligation reaction after RNase V1 digest. An oligonucleotide blocked at the 3′ end with puromycin was 5′ end-labeled (arrow in B, third panel from top) and annealed to a partially complementary oligonucleotide with a 3′ amino modifier. A free 3′ OH group is created only after RNase V1 digest, to which a 5′ phosphorylated linker blocked at the 3′ end with puromycin can be ligated using T4 RNA ligase. This ligation product is the only one that can be visualized by autoradiography as shown in B (arrowhead, third panel from top).

    Article Snippet: RNA was resuspended in 14.5 µl H2 O and subjected to T4 RNA Ligase reaction by adding 1 µl of 20 µM 5′-phosporylated RL3 (5′-P -GUGUCAGUCACUUCCAGCGG-Puromycin-3′), 2 µl 10× T4 Ligase Buffer, 2 µl BSA, 0.5 µl T4 RNA Ligase (ThermoFisher), and incubated overnight at 16°C.

    Techniques: Allele-specific Oligonucleotide, Selection, In Vivo, Generated, Sequencing, Combined Bisulfite Restriction Analysis Assay, Activity Assay, shRNA, Protein Concentration, Size-exclusion Chromatography, Ligation, Staining, Purification, Sample Prep, Labeling, Autoradiography

    Preparation and analysis on circular RNA in vitro . (A) Schematic of in vitro circularization constructs. Transcripts to be circularized consist of a terminal 10 nt open loop structure (black) and a reverse-complementary repeat sequence of 11 nt, which forms an intramolecular stem (red). This structure is followed by a 63 nt constant region for detection by northern blot or PCR (blue), followed by the miRNA-122 sponge (bulge; perfect) or a scrambled control sequence (shuffle) in grey. (B) Schematic of the in vitro ligation reaction. 4-fold excess of GMP over GTP results in ∼80% of the transcripts containing a 5′-monophosphate, enabling efficient in vitro ligation by T4 RNA ligase. Ligation products are circular RNAs (intramolecular ligation) or linear dimers (intermolecular ligation). (C) In vitro ligation reactions described in (B) were analyzed on 5%, 6% or 7% polyacrylamide-urea gels by ethidium bromide staining. While mobility of linear RNAs remains unchanged compared to RNA marker, the apparent mobility of circular RNA is lower in higher percentage gels (indicated by dash/double dash or circle). (D) Purified linear or circular RNAs from (C) were transfected in HuH-7.5 cells and total RNA was prepared after 4, 8, 14, 24 and 32 h. RNAs were detected by ³²P-northern blot analysis using identical probes in the constant region [labeled blue in (A)]. (E) HuH-7.5 cells transfected with circular RNA or linear RNA from (C) were subjected to sub-cellular fractionation and cytoplasmic or nuclear fractions were analyzed by ³²P-northern blot detecting transfected RNAs along with U1 snRNA and by western blot against hnRNP A1 or GAPDH proteins as a fractionation control. In the circRNA-transfected samples, a degradation product is detected at linear monomer size (“linearized”).

    Journal: RNA Biology

    Article Title: Functional sequestration of microRNA-122 from Hepatitis C Virus by circular RNA sponges

    doi: 10.1080/15476286.2018.1435248

    Figure Lengend Snippet: Preparation and analysis on circular RNA in vitro . (A) Schematic of in vitro circularization constructs. Transcripts to be circularized consist of a terminal 10 nt open loop structure (black) and a reverse-complementary repeat sequence of 11 nt, which forms an intramolecular stem (red). This structure is followed by a 63 nt constant region for detection by northern blot or PCR (blue), followed by the miRNA-122 sponge (bulge; perfect) or a scrambled control sequence (shuffle) in grey. (B) Schematic of the in vitro ligation reaction. 4-fold excess of GMP over GTP results in ∼80% of the transcripts containing a 5′-monophosphate, enabling efficient in vitro ligation by T4 RNA ligase. Ligation products are circular RNAs (intramolecular ligation) or linear dimers (intermolecular ligation). (C) In vitro ligation reactions described in (B) were analyzed on 5%, 6% or 7% polyacrylamide-urea gels by ethidium bromide staining. While mobility of linear RNAs remains unchanged compared to RNA marker, the apparent mobility of circular RNA is lower in higher percentage gels (indicated by dash/double dash or circle). (D) Purified linear or circular RNAs from (C) were transfected in HuH-7.5 cells and total RNA was prepared after 4, 8, 14, 24 and 32 h. RNAs were detected by ³²P-northern blot analysis using identical probes in the constant region [labeled blue in (A)]. (E) HuH-7.5 cells transfected with circular RNA or linear RNA from (C) were subjected to sub-cellular fractionation and cytoplasmic or nuclear fractions were analyzed by ³²P-northern blot detecting transfected RNAs along with U1 snRNA and by western blot against hnRNP A1 or GAPDH proteins as a fractionation control. In the circRNA-transfected samples, a degradation product is detected at linear monomer size (“linearized”).

    Article Snippet: Next, T4 RNA ligase buffer and RNaseOUT (Thermo Fisher Scientific) were added and incubated for 10 min at 37°C.

    Techniques: In Vitro, Construct, Sequencing, Northern Blot, Polymerase Chain Reaction, Ligation, Staining, Marker, Purification, Transfection, Labeling, Cell Fractionation, Western Blot, Fractionation

    In vitro BER assay with purified wtP53, Δ40p53 and Δ133p53 fusion proteins showing that Δ40p53 and Δ133p53 cannot induce mtBER but can attenuate mtBER activity induced by wtp53 . (A) wtP53, Δ40p53 and Δ133p53 His fusion proteins were stained with Coomassie blue (upper panel) and identified by Western blotting with anti-P53 antibodies (lower panel). (B) Purified p53, Δ40p53 and Δ133p53 protein (100, 500 and 1000 ng, lanes 3-9) or d4T (10, 50 and 300 nM, lanes 11-14) were added to BER reaction mixtures containing both whole-mitochondrial extracts obtained from H1299 cells and T4 DNA ligase. The templates were treated with T4 DNA ligase and Klenow fragment was used as a positive control (lane 15).

    Journal: Aging and Disease

    Article Title: The Δ133p53 Isoform Reduces Wtp53-induced Stimulation of DNA Pol γ Activity in the Presence and Absence of D4T

    doi: 10.14336/AD.2016.0910

    Figure Lengend Snippet: In vitro BER assay with purified wtP53, Δ40p53 and Δ133p53 fusion proteins showing that Δ40p53 and Δ133p53 cannot induce mtBER but can attenuate mtBER activity induced by wtp53 . (A) wtP53, Δ40p53 and Δ133p53 His fusion proteins were stained with Coomassie blue (upper panel) and identified by Western blotting with anti-P53 antibodies (lower panel). (B) Purified p53, Δ40p53 and Δ133p53 protein (100, 500 and 1000 ng, lanes 3-9) or d4T (10, 50 and 300 nM, lanes 11-14) were added to BER reaction mixtures containing both whole-mitochondrial extracts obtained from H1299 cells and T4 DNA ligase. The templates were treated with T4 DNA ligase and Klenow fragment was used as a positive control (lane 15).

    Article Snippet: Klenow fragment and T4 DNA ligase were obtained from Invitrogen.

    Techniques: In Vitro, Purification, Activity Assay, Staining, Western Blot, Positive Control

    15% denaturing PAGE for the ligation products of linkers A–B, C–D and linkers G–H. PAGE (10×10×0.03 cm, A:B = 29∶1, 7 M urea, 0.5x TBE) was run in 0.5 x TBE, 25°C, 100 V for 3.5 hrs in ( A )–( F ), or 4.3 hrs in ( G ). The ligation products were indicated by the arrows. Lane M: DNA marker I (GeneRuler™ 50 bp DNA ladder, Fermentas). Lane M1: DNA marker I plus oligo 15. ( A ) The ligation products joined by using T4 DNA ligase from Fermentas. Lane 1: the ligation products of linkers C–D preincubated with T4 DNA ligase; Lane 2: the ligation products of linkers C–D without the preincubation; Lane 4: the ligation products of linkers A–B; Lanes 3 and 5: the negative controls. ( B ) The ligation products joined by using T4 DNA ligase from Takara. Lanes 1–3∶0.5, 1, and 2 µl of 1 µM oligo 15, respectively; Lanes 4 and 6: the ligation products of linkers A–B; Lane 8: the ligation products of linkers C–D. Lanes 5, 7, and 9: the negative controls. ( C ) The ligation products joined by using T4 DNA ligase from Promega. Lane 1∶1 µl of 1 µM oligo 15; Lanes 2 and 4: ligation products of linkers A–B, and C–D, respectively; Lanes 3 and 5: the negative controls. ( D ) The ligation products joined by using E. coli DNA ligase from Takara. Lanes 1 and 3: the ligation products of linkers A–B, and C–D, respectively; Lanes 2 and 4: the negative controls. ( E ) The ligation products of linkers A–B joined in T4 DNA ligase reaction mixture containing (NH 4 ) 2 SO 4 . Lanes 1–3: the ligase reaction mixture with 7.5 mM (NH 4 ) 2 SO 4 , 3.75 mM (NH 4 ) 2 SO 4 , and without (NH 4 ) 2 SO 4 , respectively; Lane 4: the negative control. ( F ) The ligation products of the phosphorylated linkers A–B and C–D joined by using T4 and E. coli DNA ligase (Takara). Lane 1∶1 µl of 1 µM oligo 15; Lanes 2 and 4: the ligation products of the phosphorylated linkers A–B joined by using T4 and E. coli DNA ligase, respectively; Lanes 3 and 5: the ligation products of the phosphorylated linkers C–D joined by using T4 and E. coli DNA ligase, respectively; Lanes 6 and 7: the ligation products of linkers A–B and C–D, respectively; Lanes 8 and 9: the negative controls of lanes 6 and 7, respectively. ( G ) The ligation products of linkers A–B and the phosphorylated linkers G–H. Lanes 1 and 2: the ligation products of linkers A–B and the ligation products of the phosphorylated linkers G–H plus the negative control of linkers A–B, respectively; Lane 3: the negative control of linkers G–H plus the negative control of linkers A–B. The band from the ligation products of the phosphorylated linkers G–H run a little more slowly than that of linkers A–B. The sequences of linkers G and H are similar to those of linkers A and B, respectively. But there is a 1-base deletion at the 5′ end of each of linkers G and H.

    Journal: PLoS ONE

    Article Title: Detection of Ligation Products of DNA Linkers with 5?-OH Ends by Denaturing PAGE Silver Stain

    doi: 10.1371/journal.pone.0039251

    Figure Lengend Snippet: 15% denaturing PAGE for the ligation products of linkers A–B, C–D and linkers G–H. PAGE (10×10×0.03 cm, A:B = 29∶1, 7 M urea, 0.5x TBE) was run in 0.5 x TBE, 25°C, 100 V for 3.5 hrs in ( A )–( F ), or 4.3 hrs in ( G ). The ligation products were indicated by the arrows. Lane M: DNA marker I (GeneRuler™ 50 bp DNA ladder, Fermentas). Lane M1: DNA marker I plus oligo 15. ( A ) The ligation products joined by using T4 DNA ligase from Fermentas. Lane 1: the ligation products of linkers C–D preincubated with T4 DNA ligase; Lane 2: the ligation products of linkers C–D without the preincubation; Lane 4: the ligation products of linkers A–B; Lanes 3 and 5: the negative controls. ( B ) The ligation products joined by using T4 DNA ligase from Takara. Lanes 1–3∶0.5, 1, and 2 µl of 1 µM oligo 15, respectively; Lanes 4 and 6: the ligation products of linkers A–B; Lane 8: the ligation products of linkers C–D. Lanes 5, 7, and 9: the negative controls. ( C ) The ligation products joined by using T4 DNA ligase from Promega. Lane 1∶1 µl of 1 µM oligo 15; Lanes 2 and 4: ligation products of linkers A–B, and C–D, respectively; Lanes 3 and 5: the negative controls. ( D ) The ligation products joined by using E. coli DNA ligase from Takara. Lanes 1 and 3: the ligation products of linkers A–B, and C–D, respectively; Lanes 2 and 4: the negative controls. ( E ) The ligation products of linkers A–B joined in T4 DNA ligase reaction mixture containing (NH 4 ) 2 SO 4 . Lanes 1–3: the ligase reaction mixture with 7.5 mM (NH 4 ) 2 SO 4 , 3.75 mM (NH 4 ) 2 SO 4 , and without (NH 4 ) 2 SO 4 , respectively; Lane 4: the negative control. ( F ) The ligation products of the phosphorylated linkers A–B and C–D joined by using T4 and E. coli DNA ligase (Takara). Lane 1∶1 µl of 1 µM oligo 15; Lanes 2 and 4: the ligation products of the phosphorylated linkers A–B joined by using T4 and E. coli DNA ligase, respectively; Lanes 3 and 5: the ligation products of the phosphorylated linkers C–D joined by using T4 and E. coli DNA ligase, respectively; Lanes 6 and 7: the ligation products of linkers A–B and C–D, respectively; Lanes 8 and 9: the negative controls of lanes 6 and 7, respectively. ( G ) The ligation products of linkers A–B and the phosphorylated linkers G–H. Lanes 1 and 2: the ligation products of linkers A–B and the ligation products of the phosphorylated linkers G–H plus the negative control of linkers A–B, respectively; Lane 3: the negative control of linkers G–H plus the negative control of linkers A–B. The band from the ligation products of the phosphorylated linkers G–H run a little more slowly than that of linkers A–B. The sequences of linkers G and H are similar to those of linkers A and B, respectively. But there is a 1-base deletion at the 5′ end of each of linkers G and H.

    Article Snippet: Ligations of the linkers with 5′-OH ends The ligations of linkers A–B, C–D, and E–F by using T4 DNA ligase were performed in 100 µl of T4 DNA ligase reaction mixture containing 1 x T4 DNA ligation buffer (40 mM Tris-HCl, 10 mM MgCl2 , 10 mM DTT, and 0.5 mM ATP; pH 7.8 at 25°C), 1 µM of each oligo, and 0.25 Weiss units/µl of T4 DNA ligase (Fermentas, Lithuania; Promega, USA; and Takara, Japan).

    Techniques: Polyacrylamide Gel Electrophoresis, Ligation, Marker, Negative Control

    12% denaturing PAGE for the ligation products of linkers A–B treated with CIAP. PAGE (10×10×0.03 cm, A:B = 19∶1, 7 M urea and 0.5 x TBE) was run in 0.5 x TBE, 25°C, 200 V for 1.7 hrs. The arrows indicate the ligation products. Lane M: DNA marker I (GeneRuler™ 50 bp DNA ladder, Fermentas); Lane M1: DNA marker I +1 µl of 1 µM oligo 15. The ligases used in ( A )–( C ) were T4 DNA ligases. The ligases used in ( D )–( E ) were E. coli DNA ligases. ( A ) CIAP was inactivated at 75°C for 15 min. Lanes 1 and 5∶1 µl of 1 µM oligo 15; Lanes 2: CIAP was inactivated at 75°C for 15 min; Lane 3: the positive control without CIAP treatment; Lane 4: the negative control without ligase. ( B ) CIAP was inactivated at 85°C for 25 min and 45 min. Lanes 1 and 3: the positive controls without CIAP treatment; Lanes 2 and 4: CIAP was inactivated at 85°C for 25 min and 45 min, respectively; Lane 5: the negative control without ligase. ( C ) CIAP was inactivated at 85°C for 65 min and 90 min. Lanes 1 and 3: the positive controls without CIAP treatment; Lanes 2 and 4: CIAP was inactivated at 85°C for 65 min and 90 min, respectively; Lane 5: the negative control without ligase. ( D ) CIAP was inactivated at 85°C for 45 min. Lanes 1 and 3: the positive control without CIAP treatment and the negative control without ligase, respectively; Lane 2: CIAP was inactivated at 85°C for 45 min. ( E ) CIAP was inactivated at 85°C for 65 and 90 min. Lanes 1 and 3: the positive controls without CIAP treatment; Lanes 2 and 4: CIAP was inactivated at 85°C for 65 and 90 min, respectively; Lane 5: the negative control without ligase.

    Journal: PLoS ONE

    Article Title: Detection of Ligation Products of DNA Linkers with 5?-OH Ends by Denaturing PAGE Silver Stain

    doi: 10.1371/journal.pone.0039251

    Figure Lengend Snippet: 12% denaturing PAGE for the ligation products of linkers A–B treated with CIAP. PAGE (10×10×0.03 cm, A:B = 19∶1, 7 M urea and 0.5 x TBE) was run in 0.5 x TBE, 25°C, 200 V for 1.7 hrs. The arrows indicate the ligation products. Lane M: DNA marker I (GeneRuler™ 50 bp DNA ladder, Fermentas); Lane M1: DNA marker I +1 µl of 1 µM oligo 15. The ligases used in ( A )–( C ) were T4 DNA ligases. The ligases used in ( D )–( E ) were E. coli DNA ligases. ( A ) CIAP was inactivated at 75°C for 15 min. Lanes 1 and 5∶1 µl of 1 µM oligo 15; Lanes 2: CIAP was inactivated at 75°C for 15 min; Lane 3: the positive control without CIAP treatment; Lane 4: the negative control without ligase. ( B ) CIAP was inactivated at 85°C for 25 min and 45 min. Lanes 1 and 3: the positive controls without CIAP treatment; Lanes 2 and 4: CIAP was inactivated at 85°C for 25 min and 45 min, respectively; Lane 5: the negative control without ligase. ( C ) CIAP was inactivated at 85°C for 65 min and 90 min. Lanes 1 and 3: the positive controls without CIAP treatment; Lanes 2 and 4: CIAP was inactivated at 85°C for 65 min and 90 min, respectively; Lane 5: the negative control without ligase. ( D ) CIAP was inactivated at 85°C for 45 min. Lanes 1 and 3: the positive control without CIAP treatment and the negative control without ligase, respectively; Lane 2: CIAP was inactivated at 85°C for 45 min. ( E ) CIAP was inactivated at 85°C for 65 and 90 min. Lanes 1 and 3: the positive controls without CIAP treatment; Lanes 2 and 4: CIAP was inactivated at 85°C for 65 and 90 min, respectively; Lane 5: the negative control without ligase.

    Article Snippet: Ligations of the linkers with 5′-OH ends The ligations of linkers A–B, C–D, and E–F by using T4 DNA ligase were performed in 100 µl of T4 DNA ligase reaction mixture containing 1 x T4 DNA ligation buffer (40 mM Tris-HCl, 10 mM MgCl2 , 10 mM DTT, and 0.5 mM ATP; pH 7.8 at 25°C), 1 µM of each oligo, and 0.25 Weiss units/µl of T4 DNA ligase (Fermentas, Lithuania; Promega, USA; and Takara, Japan).

    Techniques: Polyacrylamide Gel Electrophoresis, Ligation, Marker, Positive Control, Negative Control

    12% denaturing PAGE for the ligation products of linkers A–B, C–D, and E–F. PAGE (10×10×0.03 cm, A:B = 19∶1, 7 M urea and 0.5 x TBE) was run in 0.5 x TBE, 25°C, 200 V for 1.7 hrs for the ligation products of linkers A–B and C–D, or 100 V for 3.5 hrs for those of linkers E–F. The arrows indicate the ligation products. Lane M: DNA marker I (GeneRuler™ 50 bp DNA ladder, Fermentas); Lane M1: DNA marker I +1 µl of 1 µM oligo 15; Lane M2: pUC19 DNA/MspI Marker (Fermentas). ( A ) The ligation products joined by using T4 DNA ligase from Takara and Fermentas. Lane 1∶1 µl of 1 µM oligo 15; Lanes 2 and 6: the ligation products of linkers A–B joined by using T4 DNA ligase from Takara and Fermentas, respectively. We could see 5 bands. Of them, bands 1 and 2 were from oligos 4 and 1, respectively. Band 3 was from both oligos 2 and 3. Band 4 was unknown. Perhaps it might be the intermixtures of oligos 1–4. Band 5 was the denatured ligation products of linkers A–B; Lanes 4 and 8: the ligation products of linkers C–D joined by using T4 DNA ligase from Takara and Fermentas, respectively. We could see 4 bands. Of them, bands 6 and 7 were from both oligos 6 and 7, and both oligos 5 and 8, respectively. Band 8 was the denatured ligation products of linkers C–D. Band 9 was unknown. Perhaps it might be the intermixtures of oligos 5–8 and the double-strand ligation products of linkers C–D; Lanes 3, 5, 7, and 9: the negative controls. ( B ) The ligation products of linkers A–B and C–D joined by using T4 DNA ligase from Promega and the ligation products of linkers A–B joined in the ligase reaction mixture containing (NH 4 ) 2 SO 4 . Lane 1∶1 µl of 1 µM oligo 15; Lanes 2 and 4: the denatured ligation products of linkers A–B, and C–D, respectively. T4 DNA ligase was from Promega; Lanes 6 and 7: the ligation products of linkers A–B joined in the ligase reaction mixture without (NH 4 ) 2 SO 4 and with (NH 4 ) 2 SO 4 , respectively. T4 DNA ligase used was from Takara; Lanes 3, 5, and 8: the negative controls. ( C ) The ligation products of linkers A–B and C–D joined by using E. coli DNA ligase. Lane 1∶1 µl of 1 µM oligo 15; Lanes 2 and 4: the ligation products of linkers A–B, and C–D, respectively; Lanes 3 and 5: the negative controls. ( D ) The ligation products of linkers E–F joined in the ligase reaction mixture with (NH 4 ) 2 SO 4 . The ligase was T4 DNA ligase (Fermentas). Lane 1: pUC19 DNA/MspI Marker plus 2 µl of ligation products of linkers E–F; Lanes 2 and 3: the ligation products of linkers E–F joined in the ligase reaction mixtures with (NH 4 ) 2 SO 4 , and without (NH 4 ) 2 SO 4 , respectively. We could see 3 bands. Bands 10 and 11 are from both oligos 9 and 12, and both oligos 10 and 11, respectively; Band 12 is the ligation products of linkers E–F; Lane 4: the negative control. ( E ) The ligation products of linkers E–F joined by using E. coli DNA ligase. Lane 1: the ligation products of linkers E–F. Lane 2: the negative control. ( F ) The ligation products of linkers A–B preincubated with T4 PNK in the E. coli DNA ligase reaction mixture without ATP. The ligase was E. coli DNA ligase (Takara). Lane 1∶1 µl of 1 µM oligo 15; Lane 2: linkers A–B were not preincubated with T4 PNK; Lane 3: linkers A–B were preincubated with T4 PNK; Lane 4: the negative control.

    Journal: PLoS ONE

    Article Title: Detection of Ligation Products of DNA Linkers with 5?-OH Ends by Denaturing PAGE Silver Stain

    doi: 10.1371/journal.pone.0039251

    Figure Lengend Snippet: 12% denaturing PAGE for the ligation products of linkers A–B, C–D, and E–F. PAGE (10×10×0.03 cm, A:B = 19∶1, 7 M urea and 0.5 x TBE) was run in 0.5 x TBE, 25°C, 200 V for 1.7 hrs for the ligation products of linkers A–B and C–D, or 100 V for 3.5 hrs for those of linkers E–F. The arrows indicate the ligation products. Lane M: DNA marker I (GeneRuler™ 50 bp DNA ladder, Fermentas); Lane M1: DNA marker I +1 µl of 1 µM oligo 15; Lane M2: pUC19 DNA/MspI Marker (Fermentas). ( A ) The ligation products joined by using T4 DNA ligase from Takara and Fermentas. Lane 1∶1 µl of 1 µM oligo 15; Lanes 2 and 6: the ligation products of linkers A–B joined by using T4 DNA ligase from Takara and Fermentas, respectively. We could see 5 bands. Of them, bands 1 and 2 were from oligos 4 and 1, respectively. Band 3 was from both oligos 2 and 3. Band 4 was unknown. Perhaps it might be the intermixtures of oligos 1–4. Band 5 was the denatured ligation products of linkers A–B; Lanes 4 and 8: the ligation products of linkers C–D joined by using T4 DNA ligase from Takara and Fermentas, respectively. We could see 4 bands. Of them, bands 6 and 7 were from both oligos 6 and 7, and both oligos 5 and 8, respectively. Band 8 was the denatured ligation products of linkers C–D. Band 9 was unknown. Perhaps it might be the intermixtures of oligos 5–8 and the double-strand ligation products of linkers C–D; Lanes 3, 5, 7, and 9: the negative controls. ( B ) The ligation products of linkers A–B and C–D joined by using T4 DNA ligase from Promega and the ligation products of linkers A–B joined in the ligase reaction mixture containing (NH 4 ) 2 SO 4 . Lane 1∶1 µl of 1 µM oligo 15; Lanes 2 and 4: the denatured ligation products of linkers A–B, and C–D, respectively. T4 DNA ligase was from Promega; Lanes 6 and 7: the ligation products of linkers A–B joined in the ligase reaction mixture without (NH 4 ) 2 SO 4 and with (NH 4 ) 2 SO 4 , respectively. T4 DNA ligase used was from Takara; Lanes 3, 5, and 8: the negative controls. ( C ) The ligation products of linkers A–B and C–D joined by using E. coli DNA ligase. Lane 1∶1 µl of 1 µM oligo 15; Lanes 2 and 4: the ligation products of linkers A–B, and C–D, respectively; Lanes 3 and 5: the negative controls. ( D ) The ligation products of linkers E–F joined in the ligase reaction mixture with (NH 4 ) 2 SO 4 . The ligase was T4 DNA ligase (Fermentas). Lane 1: pUC19 DNA/MspI Marker plus 2 µl of ligation products of linkers E–F; Lanes 2 and 3: the ligation products of linkers E–F joined in the ligase reaction mixtures with (NH 4 ) 2 SO 4 , and without (NH 4 ) 2 SO 4 , respectively. We could see 3 bands. Bands 10 and 11 are from both oligos 9 and 12, and both oligos 10 and 11, respectively; Band 12 is the ligation products of linkers E–F; Lane 4: the negative control. ( E ) The ligation products of linkers E–F joined by using E. coli DNA ligase. Lane 1: the ligation products of linkers E–F. Lane 2: the negative control. ( F ) The ligation products of linkers A–B preincubated with T4 PNK in the E. coli DNA ligase reaction mixture without ATP. The ligase was E. coli DNA ligase (Takara). Lane 1∶1 µl of 1 µM oligo 15; Lane 2: linkers A–B were not preincubated with T4 PNK; Lane 3: linkers A–B were preincubated with T4 PNK; Lane 4: the negative control.

    Article Snippet: Ligations of the linkers with 5′-OH ends The ligations of linkers A–B, C–D, and E–F by using T4 DNA ligase were performed in 100 µl of T4 DNA ligase reaction mixture containing 1 x T4 DNA ligation buffer (40 mM Tris-HCl, 10 mM MgCl2 , 10 mM DTT, and 0.5 mM ATP; pH 7.8 at 25°C), 1 µM of each oligo, and 0.25 Weiss units/µl of T4 DNA ligase (Fermentas, Lithuania; Promega, USA; and Takara, Japan).

    Techniques: Polyacrylamide Gel Electrophoresis, Ligation, Marker, Negative Control

    The radioautograph of oligo 11 phosphorylated by T4 DNA ligase. The oligo 11 was phosphorylated by using commercial T4 DNA ligase. The phosphorylation products were loaded on a 15% denaturing PAGE gel (10×10×0.03 cm, A:B = 29∶1, 7 M urea, 0.5 x TBE). Electrophoresis was run in 0.5 x TBE at 100 V and 25°C for 3 hrs. The gel was dried between two semipermeable cellulose acetate membranes and radioautographed at −20°C for 1–3 days. The arrows indicate the phosphorylation products. The positive controls were oligo 11 phosphorylated by T4 PNK. ( A ) Oligo 11 was phosphorylated by T4 DNA ligase at 37°C for 2 hrs. Lanes 1 and 5: the positive controls; Lanes 2 and 4: the negative controls without ligase, and without oligo 11, respectively; Lane 3: the phosphorylation products of oligo 11 by T4 DNA ligase. ( B ) Oligo 11 treated with CIAP was phosphorylated by T4 DNA ligase at 37°C for 2 hrs. Lanes 1 and 5: the positive controls; Lane 2: the phosphorylation products of oligo 11 by T4 DNA ligase; Lanes 3 and 4: the negative controls without ligase, and without oligo 11, respectively; Lanes 6, 7, and 8: oligo 11 treated with CIAP was phosphorylated by T4 DNA ligase. CIAP was inactivated at 85°C for 15 min, 30 min, and 60 min, respectively. Lanes 9 and 10: the negative controls without ligase, and without oligo 11, respectively. ( C ) Oligo 11 treated with CIAP was phosphorylated by T4 DNA ligase at 37°C for 2 hrs. Lanes 1 and 5: the positive controls; Lane 2: the phosphorylation products of oligo 11 by T4 DNA ligase; Lanes 3 and 4: the negative controls without ligase, and without oligo 11, respectively; Lanes 6, 7, and 8: oligo 11 treated with CIAP was phosphorylated by T4 DNA ligase. CIAP was inactivated at 85°C for 60 min, 15 min, and 30 min, respectively. ( D ) Oligos 11 and 12 were phosphorylated by T4 DNA ligase at 37°C for 1 hr. Lane 1: oligos 11 and 12 were phosphorylated by T4 PNK; Lane 2: oligos 11 and 12 were phosphorylated by T4 DNA ligase; Lane 3: oligo 11 were phosphorylated by T4 DNA ligase; Lane 4: the negative control without ligase. ( E ) Oligo 11 was phosphorylated by T4 DNA ligase at 37°C for 2 hrs. 1 x TE and 10% SDS were not added to the phosphorylation products before phenol/chloroform extraction. Lane 1: the positive control; Lanes 2 and 3: the phosphorylation products of oligo 11 by T4 DNA ligase and the negative controls without ligase, respectively.

    Journal: PLoS ONE

    Article Title: Detection of Ligation Products of DNA Linkers with 5?-OH Ends by Denaturing PAGE Silver Stain

    doi: 10.1371/journal.pone.0039251

    Figure Lengend Snippet: The radioautograph of oligo 11 phosphorylated by T4 DNA ligase. The oligo 11 was phosphorylated by using commercial T4 DNA ligase. The phosphorylation products were loaded on a 15% denaturing PAGE gel (10×10×0.03 cm, A:B = 29∶1, 7 M urea, 0.5 x TBE). Electrophoresis was run in 0.5 x TBE at 100 V and 25°C for 3 hrs. The gel was dried between two semipermeable cellulose acetate membranes and radioautographed at −20°C for 1–3 days. The arrows indicate the phosphorylation products. The positive controls were oligo 11 phosphorylated by T4 PNK. ( A ) Oligo 11 was phosphorylated by T4 DNA ligase at 37°C for 2 hrs. Lanes 1 and 5: the positive controls; Lanes 2 and 4: the negative controls without ligase, and without oligo 11, respectively; Lane 3: the phosphorylation products of oligo 11 by T4 DNA ligase. ( B ) Oligo 11 treated with CIAP was phosphorylated by T4 DNA ligase at 37°C for 2 hrs. Lanes 1 and 5: the positive controls; Lane 2: the phosphorylation products of oligo 11 by T4 DNA ligase; Lanes 3 and 4: the negative controls without ligase, and without oligo 11, respectively; Lanes 6, 7, and 8: oligo 11 treated with CIAP was phosphorylated by T4 DNA ligase. CIAP was inactivated at 85°C for 15 min, 30 min, and 60 min, respectively. Lanes 9 and 10: the negative controls without ligase, and without oligo 11, respectively. ( C ) Oligo 11 treated with CIAP was phosphorylated by T4 DNA ligase at 37°C for 2 hrs. Lanes 1 and 5: the positive controls; Lane 2: the phosphorylation products of oligo 11 by T4 DNA ligase; Lanes 3 and 4: the negative controls without ligase, and without oligo 11, respectively; Lanes 6, 7, and 8: oligo 11 treated with CIAP was phosphorylated by T4 DNA ligase. CIAP was inactivated at 85°C for 60 min, 15 min, and 30 min, respectively. ( D ) Oligos 11 and 12 were phosphorylated by T4 DNA ligase at 37°C for 1 hr. Lane 1: oligos 11 and 12 were phosphorylated by T4 PNK; Lane 2: oligos 11 and 12 were phosphorylated by T4 DNA ligase; Lane 3: oligo 11 were phosphorylated by T4 DNA ligase; Lane 4: the negative control without ligase. ( E ) Oligo 11 was phosphorylated by T4 DNA ligase at 37°C for 2 hrs. 1 x TE and 10% SDS were not added to the phosphorylation products before phenol/chloroform extraction. Lane 1: the positive control; Lanes 2 and 3: the phosphorylation products of oligo 11 by T4 DNA ligase and the negative controls without ligase, respectively.

    Article Snippet: Ligations of the linkers with 5′-OH ends The ligations of linkers A–B, C–D, and E–F by using T4 DNA ligase were performed in 100 µl of T4 DNA ligase reaction mixture containing 1 x T4 DNA ligation buffer (40 mM Tris-HCl, 10 mM MgCl2 , 10 mM DTT, and 0.5 mM ATP; pH 7.8 at 25°C), 1 µM of each oligo, and 0.25 Weiss units/µl of T4 DNA ligase (Fermentas, Lithuania; Promega, USA; and Takara, Japan).

    Techniques: Polyacrylamide Gel Electrophoresis, Electrophoresis, Negative Control, Positive Control