t4 dna ligase buffer Search Results


  • Logo
  • About
  • News
  • Press Release
  • Team
  • Advisors
  • Partners
  • Contact
  • Bioz Stars
  • Bioz vStars
  • 99
    New England Biolabs t4 dna ligase buffer
    Schematic diagram of Pyrite cloning and results. Diagram of Pyrite cloning. An intact plasmid vector and a DNA fragment (purified PCR product) with compatible restriction enzyme sites (RES1 and RES2) are incubated in a single tube together with the restriction enzymes (RE1 and RE2) and <t>T4</t> DNA ligase. After the Pyrite reaction (incubation condition shown in box), the reaction can be directly transformed into E. coli without purification. Colony PCR will then screen for those colonies containing vectors with inserts
    T4 Dna Ligase Buffer, supplied by New England Biolabs, used in various techniques. Bioz Stars score: 99/100, based on 2897 PubMed citations. ZERO BIAS - scores, article reviews, protocol conditions and more
    https://www.bioz.com/result/t4 dna ligase buffer/product/New England Biolabs
    Average 99 stars, based on 2897 article reviews
    Price from $9.99 to $1999.99
    t4 dna ligase buffer - by Bioz Stars, 2020-07
    99/100 stars
      Buy from Supplier

    99
    Thermo Fisher t4 dna ligase
    Schematic diagram of Pyrite cloning and results. Diagram of Pyrite cloning. An intact plasmid vector and a DNA fragment (purified PCR product) with compatible restriction enzyme sites (RES1 and RES2) are incubated in a single tube together with the restriction enzymes (RE1 and RE2) and <t>T4</t> DNA ligase. After the Pyrite reaction (incubation condition shown in box), the reaction can be directly transformed into E. coli without purification. Colony PCR will then screen for those colonies containing vectors with inserts
    T4 Dna Ligase, supplied by Thermo Fisher, used in various techniques. Bioz Stars score: 99/100, based on 25059 PubMed citations. ZERO BIAS - scores, article reviews, protocol conditions and more
    https://www.bioz.com/result/t4 dna ligase/product/Thermo Fisher
    Average 99 stars, based on 25059 article reviews
    Price from $9.99 to $1999.99
    t4 dna ligase - by Bioz Stars, 2020-07
    99/100 stars
      Buy from Supplier

    96
    Thermo Fisher t4 dna ligase buffer
    Principles of library preparation methods for whole genome bisulphite sequencing. In the conventional workflow (MethylC-seq) methylated adapters are ligated to double stranded sheared DNA fragments. The constructs are then bisulphite converted prior to amplification with a uracil reading PCR polymerase. The Accel-NGS Methyl-Seq uses the proprietary Adaptase™ technology to attach a low complexity sequence tail to the 3΄-termini of pre-sheared and bisulphite-converted DNA, and an adapter sequence. After an extension step a second adapter is ligated and the libraries are PCR amplified. The TruSeq DNA Methylation method (formerly EpiGnome) uses random hexamer tagged oligonucleotides to simultaneously copy the bisulphite-converted strand and add a 5΄-terminal adaptor sequence. In a subsequent step, a 3΄-terminal adapter is tagged, also by using a random sequence oligonucleotide. In the SPLAT protocol adapters with a protruding random hexamer are annealed to the 3΄-termini of the single stranded DNA. The random hexamer acts as a ‘splint’ and the adapter sequence is ligated to the 3΄-termini of single stranded DNA using standard <t>T4</t> DNA ligation. A modification of the last 3΄- residue of the random hexamer is required to prevent self-ligation of the adapter. In a second step, adapters with a 5΄-terminal random hexamer overhang is annealed to ligate the 5΄-termini of the single stranded DNA, also using T4 DNA ligase. Finally the SPLAT libraries are PCR amplified using a uracil reading polymerase.
    T4 Dna Ligase Buffer, supplied by Thermo Fisher, used in various techniques. Bioz Stars score: 96/100, based on 899 PubMed citations. ZERO BIAS - scores, article reviews, protocol conditions and more
    https://www.bioz.com/result/t4 dna ligase buffer/product/Thermo Fisher
    Average 96 stars, based on 899 article reviews
    Price from $9.99 to $1999.99
    t4 dna ligase buffer - by Bioz Stars, 2020-07
    96/100 stars
      Buy from Supplier

    99
    TaKaRa t4 dna ligase buffer
    Dependence of the efficiency of DNA ligation using <t>T4</t> DNA ligase immobilized on ferromagnetic particles in the absence of a magnetic field on the ambient temperature. The ordinate axis represents the ligation efficiency, which is normalized by that at 16 °C. The standard deviations are obtained from 6 independent experiments.
    T4 Dna Ligase Buffer, supplied by TaKaRa, used in various techniques. Bioz Stars score: 99/100, based on 95 PubMed citations. ZERO BIAS - scores, article reviews, protocol conditions and more
    https://www.bioz.com/result/t4 dna ligase buffer/product/TaKaRa
    Average 99 stars, based on 95 article reviews
    Price from $9.99 to $1999.99
    t4 dna ligase buffer - by Bioz Stars, 2020-07
    99/100 stars
      Buy from Supplier

    91
    Thermo Fisher t4 dna ligase reaction buffer
    Dependence of the efficiency of DNA ligation using <t>T4</t> DNA ligase immobilized on ferromagnetic particles in the absence of a magnetic field on the ambient temperature. The ordinate axis represents the ligation efficiency, which is normalized by that at 16 °C. The standard deviations are obtained from 6 independent experiments.
    T4 Dna Ligase Reaction Buffer, supplied by Thermo Fisher, used in various techniques. Bioz Stars score: 91/100, based on 27 PubMed citations. ZERO BIAS - scores, article reviews, protocol conditions and more
    https://www.bioz.com/result/t4 dna ligase reaction buffer/product/Thermo Fisher
    Average 91 stars, based on 27 article reviews
    Price from $9.99 to $1999.99
    t4 dna ligase reaction buffer - by Bioz Stars, 2020-07
    91/100 stars
      Buy from Supplier

    99
    New England Biolabs t4 dna ligase reaction buffer
    Dependence of the efficiency of DNA ligation using <t>T4</t> DNA ligase immobilized on ferromagnetic particles in the absence of a magnetic field on the ambient temperature. The ordinate axis represents the ligation efficiency, which is normalized by that at 16 °C. The standard deviations are obtained from 6 independent experiments.
    T4 Dna Ligase Reaction Buffer, supplied by New England Biolabs, used in various techniques. Bioz Stars score: 99/100, based on 1240 PubMed citations. ZERO BIAS - scores, article reviews, protocol conditions and more
    https://www.bioz.com/result/t4 dna ligase reaction buffer/product/New England Biolabs
    Average 99 stars, based on 1240 article reviews
    Price from $9.99 to $1999.99
    t4 dna ligase reaction buffer - by Bioz Stars, 2020-07
    99/100 stars
      Buy from Supplier

    94
    Millipore t4 dna ligase buffer
    Dependence of the efficiency of DNA ligation using <t>T4</t> DNA ligase immobilized on ferromagnetic particles in the absence of a magnetic field on the ambient temperature. The ordinate axis represents the ligation efficiency, which is normalized by that at 16 °C. The standard deviations are obtained from 6 independent experiments.
    T4 Dna Ligase Buffer, supplied by Millipore, used in various techniques. Bioz Stars score: 94/100, based on 3 PubMed citations. ZERO BIAS - scores, article reviews, protocol conditions and more
    https://www.bioz.com/result/t4 dna ligase buffer/product/Millipore
    Average 94 stars, based on 3 article reviews
    Price from $9.99 to $1999.99
    t4 dna ligase buffer - by Bioz Stars, 2020-07
    94/100 stars
      Buy from Supplier

    90
    Thermo Fisher ligase buffer
    Dependence of the efficiency of DNA ligation using <t>T4</t> DNA ligase immobilized on ferromagnetic particles in the absence of a magnetic field on the ambient temperature. The ordinate axis represents the ligation efficiency, which is normalized by that at 16 °C. The standard deviations are obtained from 6 independent experiments.
    Ligase Buffer, supplied by Thermo Fisher, used in various techniques. Bioz Stars score: 90/100, based on 365 PubMed citations. ZERO BIAS - scores, article reviews, protocol conditions and more
    https://www.bioz.com/result/ligase buffer/product/Thermo Fisher
    Average 90 stars, based on 365 article reviews
    Price from $9.99 to $1999.99
    ligase buffer - by Bioz Stars, 2020-07
    90/100 stars
      Buy from Supplier

    Image Search Results


    Schematic diagram of Pyrite cloning and results. Diagram of Pyrite cloning. An intact plasmid vector and a DNA fragment (purified PCR product) with compatible restriction enzyme sites (RES1 and RES2) are incubated in a single tube together with the restriction enzymes (RE1 and RE2) and T4 DNA ligase. After the Pyrite reaction (incubation condition shown in box), the reaction can be directly transformed into E. coli without purification. Colony PCR will then screen for those colonies containing vectors with inserts

    Journal: Plant Methods

    Article Title: Pyrite cloning: a single tube and programmed reaction cloning with restriction enzymes

    doi: 10.1186/s13007-018-0359-7

    Figure Lengend Snippet: Schematic diagram of Pyrite cloning and results. Diagram of Pyrite cloning. An intact plasmid vector and a DNA fragment (purified PCR product) with compatible restriction enzyme sites (RES1 and RES2) are incubated in a single tube together with the restriction enzymes (RE1 and RE2) and T4 DNA ligase. After the Pyrite reaction (incubation condition shown in box), the reaction can be directly transformed into E. coli without purification. Colony PCR will then screen for those colonies containing vectors with inserts

    Article Snippet: Standard restriction enzymes are sufficient for Pyrite cloning, but they should be tested for functionality and fidelity in the T4 DNA ligase buffer.

    Techniques: Clone Assay, Plasmid Preparation, Purification, Polymerase Chain Reaction, Incubation, Transformation Assay

    Reaction of T4 DNA ligase with substrate 1 ( A ) and adenylylated substrate 1A ( B ) under single turnover conditions. Each reaction was run with 500 n m ligase and 100 n m substrate in the standard ATP-free assay buffer. Ligase that was > 95% adenylylated was used for A , and

    Journal: The Journal of Biological Chemistry

    Article Title:

    doi: 10.1074/jbc.M111.284992

    Figure Lengend Snippet: Reaction of T4 DNA ligase with substrate 1 ( A ) and adenylylated substrate 1A ( B ) under single turnover conditions. Each reaction was run with 500 n m ligase and 100 n m substrate in the standard ATP-free assay buffer. Ligase that was > 95% adenylylated was used for A , and

    Article Snippet: RQF Assay for Enzyme Self-adenylylation The RQF was utilized as above with T4 DNA ligase (5 μm , < 5% adenylyated in ATP-free buffer) in syringe A and ATP (2 mm ATP added to 1× ATP-free buffer containing 200 μCi of [α-32 P]ATP/ml solution) in syringe B.

    Techniques:

    Pre-steady state reactions of 30 n m (♦) and 50 n m (■) T4 DNA ligase with 100 n m substrate 1. Reactions were run in the standard assay buffer. Each time point represents the average of three experiments, and the error bars represent one S.D. The dashed lines represent fits by simulation using the chemical rates determined from single turnover reaction of substrate 1 , literature values for Step 1 rates, and diffusion-limited binding of DNA and allowing the rate of product release ( k off ) and the amplitude ( a ) to vary. The best fit was obtained with a = 0.51 and k off = 0.58 s −1 .

    Journal: The Journal of Biological Chemistry

    Article Title:

    doi: 10.1074/jbc.M111.284992

    Figure Lengend Snippet: Pre-steady state reactions of 30 n m (♦) and 50 n m (■) T4 DNA ligase with 100 n m substrate 1. Reactions were run in the standard assay buffer. Each time point represents the average of three experiments, and the error bars represent one S.D. The dashed lines represent fits by simulation using the chemical rates determined from single turnover reaction of substrate 1 , literature values for Step 1 rates, and diffusion-limited binding of DNA and allowing the rate of product release ( k off ) and the amplitude ( a ) to vary. The best fit was obtained with a = 0.51 and k off = 0.58 s −1 .

    Article Snippet: RQF Assay for Enzyme Self-adenylylation The RQF was utilized as above with T4 DNA ligase (5 μm , < 5% adenylyated in ATP-free buffer) in syringe A and ATP (2 mm ATP added to 1× ATP-free buffer containing 200 μCi of [α-32 P]ATP/ml solution) in syringe B.

    Techniques: Diffusion-based Assay, Binding Assay

    Determination of k cat and k cat / K m for T4 DNA ligase and nicked substrates. Shown is reaction of 1 n m T4 DNA ligase with 1 n m (○), 2 n m (*), 5 n m (×), 10 n m (△), 20 n m (♢), and 50 n m (□) substrate 1 in standard assay buffer at 16 °C ( A ) and 1 n m T4 DNA ligase (

    Journal: The Journal of Biological Chemistry

    Article Title:

    doi: 10.1074/jbc.M111.284992

    Figure Lengend Snippet: Determination of k cat and k cat / K m for T4 DNA ligase and nicked substrates. Shown is reaction of 1 n m T4 DNA ligase with 1 n m (○), 2 n m (*), 5 n m (×), 10 n m (△), 20 n m (♢), and 50 n m (□) substrate 1 in standard assay buffer at 16 °C ( A ) and 1 n m T4 DNA ligase (

    Article Snippet: RQF Assay for Enzyme Self-adenylylation The RQF was utilized as above with T4 DNA ligase (5 μm , < 5% adenylyated in ATP-free buffer) in syringe A and ATP (2 mm ATP added to 1× ATP-free buffer containing 200 μCi of [α-32 P]ATP/ml solution) in syringe B.

    Techniques:

    Principles of library preparation methods for whole genome bisulphite sequencing. In the conventional workflow (MethylC-seq) methylated adapters are ligated to double stranded sheared DNA fragments. The constructs are then bisulphite converted prior to amplification with a uracil reading PCR polymerase. The Accel-NGS Methyl-Seq uses the proprietary Adaptase™ technology to attach a low complexity sequence tail to the 3΄-termini of pre-sheared and bisulphite-converted DNA, and an adapter sequence. After an extension step a second adapter is ligated and the libraries are PCR amplified. The TruSeq DNA Methylation method (formerly EpiGnome) uses random hexamer tagged oligonucleotides to simultaneously copy the bisulphite-converted strand and add a 5΄-terminal adaptor sequence. In a subsequent step, a 3΄-terminal adapter is tagged, also by using a random sequence oligonucleotide. In the SPLAT protocol adapters with a protruding random hexamer are annealed to the 3΄-termini of the single stranded DNA. The random hexamer acts as a ‘splint’ and the adapter sequence is ligated to the 3΄-termini of single stranded DNA using standard T4 DNA ligation. A modification of the last 3΄- residue of the random hexamer is required to prevent self-ligation of the adapter. In a second step, adapters with a 5΄-terminal random hexamer overhang is annealed to ligate the 5΄-termini of the single stranded DNA, also using T4 DNA ligase. Finally the SPLAT libraries are PCR amplified using a uracil reading polymerase.

    Journal: Nucleic Acids Research

    Article Title: SPlinted Ligation Adapter Tagging (SPLAT), a novel library preparation method for whole genome bisulphite sequencing

    doi: 10.1093/nar/gkw1110

    Figure Lengend Snippet: Principles of library preparation methods for whole genome bisulphite sequencing. In the conventional workflow (MethylC-seq) methylated adapters are ligated to double stranded sheared DNA fragments. The constructs are then bisulphite converted prior to amplification with a uracil reading PCR polymerase. The Accel-NGS Methyl-Seq uses the proprietary Adaptase™ technology to attach a low complexity sequence tail to the 3΄-termini of pre-sheared and bisulphite-converted DNA, and an adapter sequence. After an extension step a second adapter is ligated and the libraries are PCR amplified. The TruSeq DNA Methylation method (formerly EpiGnome) uses random hexamer tagged oligonucleotides to simultaneously copy the bisulphite-converted strand and add a 5΄-terminal adaptor sequence. In a subsequent step, a 3΄-terminal adapter is tagged, also by using a random sequence oligonucleotide. In the SPLAT protocol adapters with a protruding random hexamer are annealed to the 3΄-termini of the single stranded DNA. The random hexamer acts as a ‘splint’ and the adapter sequence is ligated to the 3΄-termini of single stranded DNA using standard T4 DNA ligation. A modification of the last 3΄- residue of the random hexamer is required to prevent self-ligation of the adapter. In a second step, adapters with a 5΄-terminal random hexamer overhang is annealed to ligate the 5΄-termini of the single stranded DNA, also using T4 DNA ligase. Finally the SPLAT libraries are PCR amplified using a uracil reading polymerase.

    Article Snippet: For the 3΄-end ligation; adapter ss1 (final conc 10 μM), T4 DNA ligase buffer (40 mM Tris–HCl pH 7.8,10 mM MgCl2 , 10 mM DTT, 0.5 mM ATP), PEG4000 (5% w/v) and 30 units T4 DNA ligase (Thermo Fisher Scientific) and nuclease free water was added to the sample on ice, in a total volume of 30 μl.

    Techniques: Bisulfite Sequencing, Methylation, Construct, Amplification, Polymerase Chain Reaction, Next-Generation Sequencing, Sequencing, DNA Methylation Assay, Random Hexamer Labeling, DNA Ligation, Modification, Ligation

    Efficient synthon assembly with split-and-pool reactions. (A) Equimolar amounts of BsaI or BsmBI deprotected 13 FNIII synthons were incubated with 1 unit of T4 ligase and product formation was assessed at different time points (left panel) or after 15 min in buffer conditions with and without 15% (w/v) PEG6000 (right panel). (B) No significant differences in assembly efficiency are observed after 15′ incubation at ligase concentrations ranging from 1 to 10 units. (C) Performance of split-and-pool assembly in comparison to sequential approaches. Within one day the comprehensive series of ( 13 FNIII) 1 to ( 13 FNIII) 8 repeats can be assembled with the split-and-pool approach (spectrum circles) and ligated into the pShuttle vector. After a single cloning step expression plasmid is obtained on day 3. In comparison, sequential assembly with e.g. the BamHI/BglII system requires 12 days to obtain the ( 13 FNIII) 8 construct.

    Journal: PLoS ONE

    Article Title: A Rapid Cloning Method Employing Orthogonal End Protection

    doi: 10.1371/journal.pone.0037617

    Figure Lengend Snippet: Efficient synthon assembly with split-and-pool reactions. (A) Equimolar amounts of BsaI or BsmBI deprotected 13 FNIII synthons were incubated with 1 unit of T4 ligase and product formation was assessed at different time points (left panel) or after 15 min in buffer conditions with and without 15% (w/v) PEG6000 (right panel). (B) No significant differences in assembly efficiency are observed after 15′ incubation at ligase concentrations ranging from 1 to 10 units. (C) Performance of split-and-pool assembly in comparison to sequential approaches. Within one day the comprehensive series of ( 13 FNIII) 1 to ( 13 FNIII) 8 repeats can be assembled with the split-and-pool approach (spectrum circles) and ligated into the pShuttle vector. After a single cloning step expression plasmid is obtained on day 3. In comparison, sequential assembly with e.g. the BamHI/BglII system requires 12 days to obtain the ( 13 FNIII) 8 construct.

    Article Snippet: Equal molar amounts (typically 250–500 ng at ∼ 100 – 250 ng/µl ) of orthogonally protected synthons were mixed, 0.5–1 unit T4 ligase (Fermentas) and T4 ligase buffer (Fermentas) were added and the ligation mixture was incubated for 10–20 min at 16°C.

    Techniques: Incubation, Plasmid Preparation, Clone Assay, Expressing, Construct

    Dependence of the efficiency of DNA ligation using T4 DNA ligase immobilized on ferromagnetic particles in the absence of a magnetic field on the ambient temperature. The ordinate axis represents the ligation efficiency, which is normalized by that at 16 °C. The standard deviations are obtained from 6 independent experiments.

    Journal: Biochemistry and Biophysics Reports

    Article Title: Efficient DNA ligation by selective heating of DNA ligase with a radio frequency alternating magnetic field

    doi: 10.1016/j.bbrep.2016.10.006

    Figure Lengend Snippet: Dependence of the efficiency of DNA ligation using T4 DNA ligase immobilized on ferromagnetic particles in the absence of a magnetic field on the ambient temperature. The ordinate axis represents the ligation efficiency, which is normalized by that at 16 °C. The standard deviations are obtained from 6 independent experiments.

    Article Snippet: Five μL of T4 DNA ligase/ferromagnetic particle hybrid-dispersed solution, 2 μL of T4 DNA ligase buffer (Takara Bio Inc.), which consisted of 660 mM Tris-HCl (pH 7.6), 66 mM MgCl2 , 100 mM DTT and 1 mM ATP, 5 μL of aqueous solution containing 0.4 mM each of the DNA fragments, and 8 μL of sterilized water were mixed in a test tube, which was placed in a cylindrical container filled with circulating water, the temperature of which was regulated at 16 °C, from a constant-temperature bath (LTB-400, AS ONE CO.).

    Techniques: DNA Ligation, Ligation

    Dependence of the efficiency of DNA ligation using T4 DNA ligase immobilized on ferromagnetic particles under an ac magnetic field of 0.34 MHz on the amplitude of the magnetic field. The ambient temperature is 16 °C. The ordinate axis represents the ligation efficiency under an ac magnetic field, which is normalized by that in the absence of a magnetic field. The inset shows the ligation efficiency under the ac magnetic field as a function of the average surface temperature of ferromagnetic particles, noting that the surface temperature increases with an increase in the field amplitude. The standard deviations are obtained from 6 independent experiments.

    Journal: Biochemistry and Biophysics Reports

    Article Title: Efficient DNA ligation by selective heating of DNA ligase with a radio frequency alternating magnetic field

    doi: 10.1016/j.bbrep.2016.10.006

    Figure Lengend Snippet: Dependence of the efficiency of DNA ligation using T4 DNA ligase immobilized on ferromagnetic particles under an ac magnetic field of 0.34 MHz on the amplitude of the magnetic field. The ambient temperature is 16 °C. The ordinate axis represents the ligation efficiency under an ac magnetic field, which is normalized by that in the absence of a magnetic field. The inset shows the ligation efficiency under the ac magnetic field as a function of the average surface temperature of ferromagnetic particles, noting that the surface temperature increases with an increase in the field amplitude. The standard deviations are obtained from 6 independent experiments.

    Article Snippet: Five μL of T4 DNA ligase/ferromagnetic particle hybrid-dispersed solution, 2 μL of T4 DNA ligase buffer (Takara Bio Inc.), which consisted of 660 mM Tris-HCl (pH 7.6), 66 mM MgCl2 , 100 mM DTT and 1 mM ATP, 5 μL of aqueous solution containing 0.4 mM each of the DNA fragments, and 8 μL of sterilized water were mixed in a test tube, which was placed in a cylindrical container filled with circulating water, the temperature of which was regulated at 16 °C, from a constant-temperature bath (LTB-400, AS ONE CO.).

    Techniques: DNA Ligation, Ligation