r0694  (New England Biolabs)


Bioz Verified Symbol New England Biolabs is a verified supplier
Bioz Manufacturer Symbol New England Biolabs manufactures this product  
  • Logo
  • About
  • News
  • Press Release
  • Team
  • Advisors
  • Partners
  • Contact
  • Bioz Stars
  • Bioz vStars
  • 96

    Structured Review

    New England Biolabs r0694
    R0694, supplied by New England Biolabs, used in various techniques. Bioz Stars score: 96/100, based on 1 PubMed citations. ZERO BIAS - scores, article reviews, protocol conditions and more
    https://www.bioz.com/result/r0694/product/New England Biolabs
    Average 96 stars, based on 1 article reviews
    Price from $9.99 to $1999.99
    r0694 - by Bioz Stars, 2022-05
    96/100 stars

    Images

    Similar Products

  • Logo
  • About
  • News
  • Press Release
  • Team
  • Advisors
  • Partners
  • Contact
  • Bioz Stars
  • Bioz vStars
  • 96
    New England Biolabs i sce i
    Enhanced HDR of chromosomal DSBs in cell lines expressing RAD51 G151D. A. RAD51 WT and G151D were stably expressed in MCF7 cells harboring the I- <t>Sce</t> I reporter construct using the pRVY TET-OFF inducible expression vector. The addition of doxycycline to the media turns off exogenous RAD51 expression (repressed, abbreviated R; endogenous RAD51 protein levels only), with expression induced upon removal of DOX (induced, abbreviated I; endogenous levels + exogenous protein levels). Western blot with an antisera raised against RAD51 protein demonstrates equivalent expression of exogenous WT and G151D (I) in their respective MCF-7 DR-GFP pools (RAD51/tubulin), as well as the fold increase in expression over endogenous RAD51 (I/R). B. The percentage of GFP positive cells was measured by flow cytometry 72hrs after nucleofection with an I- Sce I expression vector. The percentage of GFP-positive cells from MCF-7 DR-GFP parental cells was normalized to 1 and the relative change of percent GFP-positive cells from MCF-7 DR-GFP RAD51 WT and G151D cells was calculated. Data are graphed as mean ± SD from 3 independent experiments ** p
    I Sce I, supplied by New England Biolabs, used in various techniques. Bioz Stars score: 96/100, based on 1 PubMed citations. ZERO BIAS - scores, article reviews, protocol conditions and more
    https://www.bioz.com/result/i sce i/product/New England Biolabs
    Average 96 stars, based on 1 article reviews
    Price from $9.99 to $1999.99
    i sce i - by Bioz Stars, 2022-05
    96/100 stars
      Buy from Supplier

    Image Search Results


    Enhanced HDR of chromosomal DSBs in cell lines expressing RAD51 G151D. A. RAD51 WT and G151D were stably expressed in MCF7 cells harboring the I- Sce I reporter construct using the pRVY TET-OFF inducible expression vector. The addition of doxycycline to the media turns off exogenous RAD51 expression (repressed, abbreviated R; endogenous RAD51 protein levels only), with expression induced upon removal of DOX (induced, abbreviated I; endogenous levels + exogenous protein levels). Western blot with an antisera raised against RAD51 protein demonstrates equivalent expression of exogenous WT and G151D (I) in their respective MCF-7 DR-GFP pools (RAD51/tubulin), as well as the fold increase in expression over endogenous RAD51 (I/R). B. The percentage of GFP positive cells was measured by flow cytometry 72hrs after nucleofection with an I- Sce I expression vector. The percentage of GFP-positive cells from MCF-7 DR-GFP parental cells was normalized to 1 and the relative change of percent GFP-positive cells from MCF-7 DR-GFP RAD51 WT and G151D cells was calculated. Data are graphed as mean ± SD from 3 independent experiments ** p

    Journal: PLoS Genetics

    Article Title: The Tumor-Associated Variant RAD51 G151D Induces a Hyper-Recombination Phenotype

    doi: 10.1371/journal.pgen.1006208

    Figure Lengend Snippet: Enhanced HDR of chromosomal DSBs in cell lines expressing RAD51 G151D. A. RAD51 WT and G151D were stably expressed in MCF7 cells harboring the I- Sce I reporter construct using the pRVY TET-OFF inducible expression vector. The addition of doxycycline to the media turns off exogenous RAD51 expression (repressed, abbreviated R; endogenous RAD51 protein levels only), with expression induced upon removal of DOX (induced, abbreviated I; endogenous levels + exogenous protein levels). Western blot with an antisera raised against RAD51 protein demonstrates equivalent expression of exogenous WT and G151D (I) in their respective MCF-7 DR-GFP pools (RAD51/tubulin), as well as the fold increase in expression over endogenous RAD51 (I/R). B. The percentage of GFP positive cells was measured by flow cytometry 72hrs after nucleofection with an I- Sce I expression vector. The percentage of GFP-positive cells from MCF-7 DR-GFP parental cells was normalized to 1 and the relative change of percent GFP-positive cells from MCF-7 DR-GFP RAD51 WT and G151D cells was calculated. Data are graphed as mean ± SD from 3 independent experiments ** p

    Article Snippet: Signals of the +I-Sce I and–I-Sce I bands were quantified using Quantity One software version 4.6.5.

    Techniques: Expressing, Stable Transfection, Construct, Plasmid Preparation, Western Blot, Flow Cytometry, Cytometry

    hMSH5 suppresses NHEJ-mediated DSB repair. ( A ) Analysis of the hMSH5 gene alteration in cancers. Data were retrieved from cBioPortal for Cancer Genomics ( www.cbioportal.org ). The stacked column graphs summarize 10 TCGA studies, of which each study has a sample size greater than 100, with at least 5% of the sample showing hMSH5 gene alterations. NEPC, neuroendocrine prostate cancer; CCLE, cancer cell line encyclopedia. ( B ) Schematic illustration of the NHEJ reporter locus in reporter cell line 293T/#8-1 [ 49 ]. NHEJ reporter analysis of the effect of hMSH5ΔN (hMSH5 aa116-834) (Tompkins et al., 2009). The cell lines used in this test were 293T/#8-1 derivatives stably expressing hMSH5 or hMSH5ΔN. ( C ) Analysis of the effect of hMSH5 on episomal NHEJ. 293T and 293T/hMSH5 cells were transiently transfected with either the NHEJ reporter construct alone or together with I- Sce I. ( D ) Levels of I- Sce I expression in 293T and 293T/hMSH5 cells determined by immunoblotting. The transfection efficiencies of 293T and 293T/hMSH5 cells (76% and 75%, respectively) were determined by transient transfection of pEGFP-C1, while untransfected cells were used as controls. ( E ) Sequence analysis of DSB repair junctions. The NHEJ reporter plasmid, together with I- Sce I construct, was transfected into 293T and 293T/hMSH5 cells. After inducing NHEJ-mediated end-joining at the reporter locus, repair joints were recovered by PCR amplification from total DNA. Cloned PCR products were sequenced. Sequencing data were analyzed by Tatsuki’s Dot Plot to reveal nucleotide deletions at the repair junctions. Solid circles signify repair joints without any I- Sce I 3′-protruding nucleotides ( B , top ), whereas open circles denote the inclusion of at least one of the 3′-protruding nucleotides at the repair junctions. Asterisks denote a similar statistical analysis in which the outlier (deletion of 69 nts) was omitted. Error bars represent standard deviations from the means of three replicates. Statistical significance was assessed by Student’s two-tailed t -test.

    Journal: Genes

    Article Title: hMSH5 Regulates NHEJ and Averts Excessive Nucleotide Alterations at Repair Joints

    doi: 10.3390/genes13040673

    Figure Lengend Snippet: hMSH5 suppresses NHEJ-mediated DSB repair. ( A ) Analysis of the hMSH5 gene alteration in cancers. Data were retrieved from cBioPortal for Cancer Genomics ( www.cbioportal.org ). The stacked column graphs summarize 10 TCGA studies, of which each study has a sample size greater than 100, with at least 5% of the sample showing hMSH5 gene alterations. NEPC, neuroendocrine prostate cancer; CCLE, cancer cell line encyclopedia. ( B ) Schematic illustration of the NHEJ reporter locus in reporter cell line 293T/#8-1 [ 49 ]. NHEJ reporter analysis of the effect of hMSH5ΔN (hMSH5 aa116-834) (Tompkins et al., 2009). The cell lines used in this test were 293T/#8-1 derivatives stably expressing hMSH5 or hMSH5ΔN. ( C ) Analysis of the effect of hMSH5 on episomal NHEJ. 293T and 293T/hMSH5 cells were transiently transfected with either the NHEJ reporter construct alone or together with I- Sce I. ( D ) Levels of I- Sce I expression in 293T and 293T/hMSH5 cells determined by immunoblotting. The transfection efficiencies of 293T and 293T/hMSH5 cells (76% and 75%, respectively) were determined by transient transfection of pEGFP-C1, while untransfected cells were used as controls. ( E ) Sequence analysis of DSB repair junctions. The NHEJ reporter plasmid, together with I- Sce I construct, was transfected into 293T and 293T/hMSH5 cells. After inducing NHEJ-mediated end-joining at the reporter locus, repair joints were recovered by PCR amplification from total DNA. Cloned PCR products were sequenced. Sequencing data were analyzed by Tatsuki’s Dot Plot to reveal nucleotide deletions at the repair junctions. Solid circles signify repair joints without any I- Sce I 3′-protruding nucleotides ( B , top ), whereas open circles denote the inclusion of at least one of the 3′-protruding nucleotides at the repair junctions. Asterisks denote a similar statistical analysis in which the outlier (deletion of 69 nts) was omitted. Error bars represent standard deviations from the means of three replicates. Statistical significance was assessed by Student’s two-tailed t -test.

    Article Snippet: Purified DNA was digested by I-Sce I (New England Biolabs, Ipswich, MA, USA) to eliminate uncut or rejoined I-SceI sites.

    Techniques: Non-Homologous End Joining, Stable Transfection, Expressing, Transfection, Construct, Sequencing, Plasmid Preparation, Polymerase Chain Reaction, Amplification, Clone Assay, Two Tailed Test

    Multigene cloning with Plant X-tender expression vectors. Two expression cassettes were cloned into pCAMBIA_ASX and introduced into N . benthamiana . (A-F) Scheme of cloning procedure. (A) Amplification of expression cassette from template plasmid using primers with appropriate 5’ and 3’ extension homologies in the case of p35S::H2BRFP_tNOS expression cassette. PCR amplification of subunits (pNOS, ECFP, t35S) u sing custom-designed primers with appropriate 5’ extensions to add overlaps between the individual subunits and chosen Level 0 plasmid in the case of pNOS::ECFP_t35S expression cassette. (B) Assembly of subunits into Hin dIII digested Level 0 vectors by NEBuilder HiFi assembly method. Only the restriction of Level 0 vector with A0/A1 homology regions is shown. (C) Assembled cassettes flanked by homology regions were released from the backbone using Pme I. (D) Assembly of expression cassettes into Pac I digested Level 1 vector by TAR or NEBuilder HiFi. (E) Release of the multigene construct from Level 1 vector using I- Sce I homing endonuclease, cutting outside the homology regions A0 and B0. (F) Assembly of two expression cassettes and yeast selection marker ( URA3 ) into Hin dIII digested Plant X-tender expression vectors with SLiCE of NEBuilder HiFi. (G–J) Images of agroinfiltrated N . benthamiana leaves obtained by laser scanning confocal microscopy. Leaves were agroinfiltrated with agrobacteria containing pCAMBIA_ASX_multigene (upper panel) or with empty A . tumefaciens (bottom panel). (G) Nuclear localisation of RFP. Fluorescence is represented as a maximum projection of z-stacks. (H) ECFP is localised in the cytoplasm. Fluorescence is represented as maximum projections of z-stacks. (I) Bright field. (J) Overlay of G, H and I. Scale bars are 100 μm. p35S: cauliflower mosaic virus CaMV 35S promoter, H2BRFP: histon sequence fused to red fluorescence protein (mRFP1), tNOS: nopaline synthase terminator, pNOS: nopaline synthase promoter, ECFP: cyan fluorescent protein, t35S: cauliflower mosaic virus CaMV 35S terminator, A0, A1 AR, B0: homology regions, Rp: selection marker conferring hygromycin resistance in plants, Re: selection marker conferring kanamycin resistance in E . coli and A . tumefaciens , Amp: selection marker conferring ampicillin resistance in E . coli and A . tumefaciens , Kan: selection marker conferring kanamycin resistance in E . coli and A . tumefaciens , LB: left border of T-DNA, RB: right border of T-DNA, Hin dIII, I- Sce I, Pac I, Asc I, Sbf I, Swa I, Fse I, Pme I: restriction enzyme recognition sites, URA3 : yeast selection marker, ccd B: bacterial suicide gene, SLiCE: Seamless ligation cloning extract cloning method, HiFi: NEBuilder HiFi DNA assembly method, Gibson: Gibson DNA assembly method. TAR: cloning based on transformation-associated recombination, PCR: Polymerase chain reaction, ASX: Plant X-tender expression vector.

    Journal: PLoS ONE

    Article Title: Plant X-tender: An extension of the AssemblX system for the assembly and expression of multigene constructs in plants

    doi: 10.1371/journal.pone.0190526

    Figure Lengend Snippet: Multigene cloning with Plant X-tender expression vectors. Two expression cassettes were cloned into pCAMBIA_ASX and introduced into N . benthamiana . (A-F) Scheme of cloning procedure. (A) Amplification of expression cassette from template plasmid using primers with appropriate 5’ and 3’ extension homologies in the case of p35S::H2BRFP_tNOS expression cassette. PCR amplification of subunits (pNOS, ECFP, t35S) u sing custom-designed primers with appropriate 5’ extensions to add overlaps between the individual subunits and chosen Level 0 plasmid in the case of pNOS::ECFP_t35S expression cassette. (B) Assembly of subunits into Hin dIII digested Level 0 vectors by NEBuilder HiFi assembly method. Only the restriction of Level 0 vector with A0/A1 homology regions is shown. (C) Assembled cassettes flanked by homology regions were released from the backbone using Pme I. (D) Assembly of expression cassettes into Pac I digested Level 1 vector by TAR or NEBuilder HiFi. (E) Release of the multigene construct from Level 1 vector using I- Sce I homing endonuclease, cutting outside the homology regions A0 and B0. (F) Assembly of two expression cassettes and yeast selection marker ( URA3 ) into Hin dIII digested Plant X-tender expression vectors with SLiCE of NEBuilder HiFi. (G–J) Images of agroinfiltrated N . benthamiana leaves obtained by laser scanning confocal microscopy. Leaves were agroinfiltrated with agrobacteria containing pCAMBIA_ASX_multigene (upper panel) or with empty A . tumefaciens (bottom panel). (G) Nuclear localisation of RFP. Fluorescence is represented as a maximum projection of z-stacks. (H) ECFP is localised in the cytoplasm. Fluorescence is represented as maximum projections of z-stacks. (I) Bright field. (J) Overlay of G, H and I. Scale bars are 100 μm. p35S: cauliflower mosaic virus CaMV 35S promoter, H2BRFP: histon sequence fused to red fluorescence protein (mRFP1), tNOS: nopaline synthase terminator, pNOS: nopaline synthase promoter, ECFP: cyan fluorescent protein, t35S: cauliflower mosaic virus CaMV 35S terminator, A0, A1 AR, B0: homology regions, Rp: selection marker conferring hygromycin resistance in plants, Re: selection marker conferring kanamycin resistance in E . coli and A . tumefaciens , Amp: selection marker conferring ampicillin resistance in E . coli and A . tumefaciens , Kan: selection marker conferring kanamycin resistance in E . coli and A . tumefaciens , LB: left border of T-DNA, RB: right border of T-DNA, Hin dIII, I- Sce I, Pac I, Asc I, Sbf I, Swa I, Fse I, Pme I: restriction enzyme recognition sites, URA3 : yeast selection marker, ccd B: bacterial suicide gene, SLiCE: Seamless ligation cloning extract cloning method, HiFi: NEBuilder HiFi DNA assembly method, Gibson: Gibson DNA assembly method. TAR: cloning based on transformation-associated recombination, PCR: Polymerase chain reaction, ASX: Plant X-tender expression vector.

    Article Snippet: Multigene constructs were released from Level 1 vector with I-Sce I (NEB).

    Techniques: Clone Assay, Expressing, Amplification, Plasmid Preparation, Polymerase Chain Reaction, Construct, Selection, Marker, Confocal Microscopy, Fluorescence, Sequencing, Ligation, Transformation Assay

    Design of Plant X-tender expression vectors. Vector pCAMBIA 1300 (A) or Gateway vectors (pK7WG, pH7WG or pB7WG) (B) were used as a backbone. (A) I- Sce I–A0– Hin dIII– ccd B– Hin dIII–B0–I- Sce I cassette was introduced into the MCS region of pCAMBIA1300 by overlap-based cloning methods after backbone digestion with Bam HI and Hin dIII to obtain pCAMBIA_ASX. (B) T35S–AttR2– ccd B–AttR1 cassette was released from the Gateway plasmid backbone by digestion with Xba I and Sac I and replaced with a I- Sce I–A0– Hin dIII– ccd B– Hin dIII–B0–I- Sce I cassette by overlap-based cloning methods to obtain pK7WG_ASX, pH7WG_ASX or pB7WG_ASX. MCS: multiple cloning site, A0/B0: homology regions, Kan: selection marker conferring kanamycin resistance in E . coli and A . tumefaciens , Spec: selection marker conferring spectinomycin resistance in E . coli and A . tumefaciens , Hyg: selection marker conferring hygromycin resistance in plants, R: selection marker conferring resistance in plants (kanamycin resistance in pK7WG, hygromycin resistance in pH7WG, herbicide glufosinate-ammonium resistance in pB7WG), LB: left border of T-DNA, RB: right border of T-DNA, ccd B: bacterial suicide gene, Hin dIII, I- Sce I, Bam HI, Xba I, Sac I: restriction enzyme recognition sites, AttR1/AttR2: Gateway cloning recombination sites, T35S: cauliflower mosaic virus CaMV 35S terminator, SLiCE: Seamless ligation cloning extract cloning method, HiFi: NEBuilder HiFi DNA assembly method, Gibson: Gibson DNA assembly method.

    Journal: PLoS ONE

    Article Title: Plant X-tender: An extension of the AssemblX system for the assembly and expression of multigene constructs in plants

    doi: 10.1371/journal.pone.0190526

    Figure Lengend Snippet: Design of Plant X-tender expression vectors. Vector pCAMBIA 1300 (A) or Gateway vectors (pK7WG, pH7WG or pB7WG) (B) were used as a backbone. (A) I- Sce I–A0– Hin dIII– ccd B– Hin dIII–B0–I- Sce I cassette was introduced into the MCS region of pCAMBIA1300 by overlap-based cloning methods after backbone digestion with Bam HI and Hin dIII to obtain pCAMBIA_ASX. (B) T35S–AttR2– ccd B–AttR1 cassette was released from the Gateway plasmid backbone by digestion with Xba I and Sac I and replaced with a I- Sce I–A0– Hin dIII– ccd B– Hin dIII–B0–I- Sce I cassette by overlap-based cloning methods to obtain pK7WG_ASX, pH7WG_ASX or pB7WG_ASX. MCS: multiple cloning site, A0/B0: homology regions, Kan: selection marker conferring kanamycin resistance in E . coli and A . tumefaciens , Spec: selection marker conferring spectinomycin resistance in E . coli and A . tumefaciens , Hyg: selection marker conferring hygromycin resistance in plants, R: selection marker conferring resistance in plants (kanamycin resistance in pK7WG, hygromycin resistance in pH7WG, herbicide glufosinate-ammonium resistance in pB7WG), LB: left border of T-DNA, RB: right border of T-DNA, ccd B: bacterial suicide gene, Hin dIII, I- Sce I, Bam HI, Xba I, Sac I: restriction enzyme recognition sites, AttR1/AttR2: Gateway cloning recombination sites, T35S: cauliflower mosaic virus CaMV 35S terminator, SLiCE: Seamless ligation cloning extract cloning method, HiFi: NEBuilder HiFi DNA assembly method, Gibson: Gibson DNA assembly method.

    Article Snippet: Multigene constructs were released from Level 1 vector with I-Sce I (NEB).

    Techniques: Expressing, Plasmid Preparation, Clone Assay, Selection, Marker, Ligation

    Functional evaluation of constructed vectors by cloning expression cassette p35S::H2BRFP_tNOS into Plant X-tender expression vectors. (A-F) Scheme of the cloning procedure. (A) Amplification of expression cassette from template plasmid using primers with appropriate 5’ and 3’ extensions to add A0 and AR homology regions. (B) Expression cassette assembly in Hin dIII restricted pL0A_0-R Level 0 vector by NEBuilder HiFi assembly method. (C) Release of expression cassette with flanking homology regions A0 and AR from Level 0 vector by Pme I digestion. (D) Assembly of expression cassette with flanking homology regions A0 and AR into Pac I digested pL1A-hc / pL1A-lc (A0/AR) Level 1 vector by TAR or NEBuilder HiFi. (E) Release of expression cassette flanked by URA3 yeast selection marker and homology regions A0 and B0 from Level 1 vector by I- Sce I digestion. (F) Assembly of expression cassette flanked by URA3 yeast selection marker and homology regions A0 and B0 into Plant X-tender expression vectors by SLiCE or NEBuilder HiFi. (G-I) Images of agroinfiltrated N . benthamiana leaves obtained by laser scanning confocal microscopy. Leaves were agroinfiltrated with agrobacteria containing pCAMBIA_ASX_cassette, pK7WG_ASX_cassette, pH7WG_ASX_cassette, pB7WG_ASX_cassette or empty agrobacteria (top to bottom). (G) Nuclear localisation of RFP. Fluorescence is represented as maximum projections of z-stacks. (H) Bright field. (I) Overlay of G with H. Scale bars are 100 μm. p35S: cauliflower mosaic virus CaMV 35S promoter, H2BRFP: histon sequence fused to red fluorescence protein (mRFP1), tNOS: nopaline synthase terminator, A0, AR, B0: homology regions, Rp: selection marker conferring resistance in plants (hygromycin in the case of pCAMBIA_ASX and pH7WG_ASX, kanamycin in the case of pK7WG_ASX, glufosinate-ammonium in the case of pB7WG_ASX), Re: selection marker conferring resistance in E . coli and A . tumefaciens (kanamycin in the case of pCAMBIA_ASX, spectinomycinin in the case of pK7WG_ASX, pH7WG_ASX and pB7WG_ASX), Amp: selection marker conferring ampicillin resistance in E . coli and A . tumefaciens , Kan: selection marker conferring kanamycin resistance in E . coli and A . tumefaciens , LB: left border of T-DNA, RB: right border of T-DNA, Hin dIII, I- Sce I, Pac I, Pme I: restriction enzyme recognition sites, URA3 : yeast selection marker, ccd B: bacterial suicide gene, SLiCE: Seamless ligation cloning extract cloning method, HiFi: NEBuilder HiFi DNA assembly method, Gibson: Gibson DNA assembly method, TAR: cloning based on transformation-associated recombination, PCR: Polymerase chain reaction, ASX: Plant X-tender expression vector.

    Journal: PLoS ONE

    Article Title: Plant X-tender: An extension of the AssemblX system for the assembly and expression of multigene constructs in plants

    doi: 10.1371/journal.pone.0190526

    Figure Lengend Snippet: Functional evaluation of constructed vectors by cloning expression cassette p35S::H2BRFP_tNOS into Plant X-tender expression vectors. (A-F) Scheme of the cloning procedure. (A) Amplification of expression cassette from template plasmid using primers with appropriate 5’ and 3’ extensions to add A0 and AR homology regions. (B) Expression cassette assembly in Hin dIII restricted pL0A_0-R Level 0 vector by NEBuilder HiFi assembly method. (C) Release of expression cassette with flanking homology regions A0 and AR from Level 0 vector by Pme I digestion. (D) Assembly of expression cassette with flanking homology regions A0 and AR into Pac I digested pL1A-hc / pL1A-lc (A0/AR) Level 1 vector by TAR or NEBuilder HiFi. (E) Release of expression cassette flanked by URA3 yeast selection marker and homology regions A0 and B0 from Level 1 vector by I- Sce I digestion. (F) Assembly of expression cassette flanked by URA3 yeast selection marker and homology regions A0 and B0 into Plant X-tender expression vectors by SLiCE or NEBuilder HiFi. (G-I) Images of agroinfiltrated N . benthamiana leaves obtained by laser scanning confocal microscopy. Leaves were agroinfiltrated with agrobacteria containing pCAMBIA_ASX_cassette, pK7WG_ASX_cassette, pH7WG_ASX_cassette, pB7WG_ASX_cassette or empty agrobacteria (top to bottom). (G) Nuclear localisation of RFP. Fluorescence is represented as maximum projections of z-stacks. (H) Bright field. (I) Overlay of G with H. Scale bars are 100 μm. p35S: cauliflower mosaic virus CaMV 35S promoter, H2BRFP: histon sequence fused to red fluorescence protein (mRFP1), tNOS: nopaline synthase terminator, A0, AR, B0: homology regions, Rp: selection marker conferring resistance in plants (hygromycin in the case of pCAMBIA_ASX and pH7WG_ASX, kanamycin in the case of pK7WG_ASX, glufosinate-ammonium in the case of pB7WG_ASX), Re: selection marker conferring resistance in E . coli and A . tumefaciens (kanamycin in the case of pCAMBIA_ASX, spectinomycinin in the case of pK7WG_ASX, pH7WG_ASX and pB7WG_ASX), Amp: selection marker conferring ampicillin resistance in E . coli and A . tumefaciens , Kan: selection marker conferring kanamycin resistance in E . coli and A . tumefaciens , LB: left border of T-DNA, RB: right border of T-DNA, Hin dIII, I- Sce I, Pac I, Pme I: restriction enzyme recognition sites, URA3 : yeast selection marker, ccd B: bacterial suicide gene, SLiCE: Seamless ligation cloning extract cloning method, HiFi: NEBuilder HiFi DNA assembly method, Gibson: Gibson DNA assembly method, TAR: cloning based on transformation-associated recombination, PCR: Polymerase chain reaction, ASX: Plant X-tender expression vector.

    Article Snippet: Multigene constructs were released from Level 1 vector with I-Sce I (NEB).

    Techniques: Functional Assay, Construct, Clone Assay, Expressing, Amplification, Plasmid Preparation, Selection, Marker, Confocal Microscopy, Fluorescence, Sequencing, Ligation, Transformation Assay, Polymerase Chain Reaction

    Plant X-tender cloning strategy. Diagram showing example of assembly of two expression cassettes into a plant expression vector using Plant X-tender. Definition of parts and design of Level 0 units is done using GenoCAD. Design of multigene cassettes and computation of primers is performed using the AssemblX webtool. (A-D) Assembly of two expression cassettes into a Level 1 vector. (A) PCR amplification of subunits (e.g. promoter, CDS, terminator) using custom-designed primers with appropriate 5’ extensions to add overlaps between the individual subunits and chosen Level 0 plasmid. (B) Assembly of subunits into Hin dIII digested Level 0 vectors via overlap-based assembly methods. Only the restriction of Level 0 vector with A0/A1 homology regions is shown. (C) Assembled cassettes flanked by homology regions are released from the backbone using one of five rare 8-base cutter recognition sites ( Asc I, Sbf I, Swa I, Fsa I, Pme I) flanking the homology regions. (D) Assembly of expression cassettes into Pac I digested Level 1 vector by of the preferred overlap-based assembly method. (E-G) Multigene assembly into Plant X-tender expression vector. (E) Digestion with I- Sce I allows the release of a multigene construct flanked by homology regions A0 and B0 from the Level 1 AssemblX vector. (F) Hin dIII digestion enables the linearization of Plant X-tender expression vector and the release of ccd B cassette prior the assembly. (G) Assembly of a multigene construct and a yeast selection marker ( URA3 ) flanked by homology regions into Plant X-tender expression vector by overlap-based methods exploiting homologous recombination between the homology regions A0 and B0 of the Plant X-tender expression vector and the homology regions A0 and B0 of the insert. A0, A1, AR, B0: homology regions, Hin dIII, I- Sce I, Pac I, Asc I, Sbf I, Swa I, Fse I, Pme I: restriction enzyme recognition sites, Rp: selection marker conferring resistance in plants, Re: selection marker conferring resistance in E . coli and A . tumefaciens , Amp: selection marker conferring ampicillin resistance in E . coli and A . tumefaciens , Kan: selection marker conferring kanamycin resistance in E . coli and A . tumefaciens , URA3 : yeast selection marker, LB: left border of T-DNA, RB: right border of T-DNA, ccd B: bacterial suicide gene, SLiCE: Seamless ligation cloning extract cloning method, HiFi: HiFi DNA assembly method, Gibson: Gibson DNA assembly method, TAR: cloning based on transformation-associated recombination, PCR: Polymerase chain reaction, CDS: coding sequence, ASX: Plant X-tender expression vector.

    Journal: PLoS ONE

    Article Title: Plant X-tender: An extension of the AssemblX system for the assembly and expression of multigene constructs in plants

    doi: 10.1371/journal.pone.0190526

    Figure Lengend Snippet: Plant X-tender cloning strategy. Diagram showing example of assembly of two expression cassettes into a plant expression vector using Plant X-tender. Definition of parts and design of Level 0 units is done using GenoCAD. Design of multigene cassettes and computation of primers is performed using the AssemblX webtool. (A-D) Assembly of two expression cassettes into a Level 1 vector. (A) PCR amplification of subunits (e.g. promoter, CDS, terminator) using custom-designed primers with appropriate 5’ extensions to add overlaps between the individual subunits and chosen Level 0 plasmid. (B) Assembly of subunits into Hin dIII digested Level 0 vectors via overlap-based assembly methods. Only the restriction of Level 0 vector with A0/A1 homology regions is shown. (C) Assembled cassettes flanked by homology regions are released from the backbone using one of five rare 8-base cutter recognition sites ( Asc I, Sbf I, Swa I, Fsa I, Pme I) flanking the homology regions. (D) Assembly of expression cassettes into Pac I digested Level 1 vector by of the preferred overlap-based assembly method. (E-G) Multigene assembly into Plant X-tender expression vector. (E) Digestion with I- Sce I allows the release of a multigene construct flanked by homology regions A0 and B0 from the Level 1 AssemblX vector. (F) Hin dIII digestion enables the linearization of Plant X-tender expression vector and the release of ccd B cassette prior the assembly. (G) Assembly of a multigene construct and a yeast selection marker ( URA3 ) flanked by homology regions into Plant X-tender expression vector by overlap-based methods exploiting homologous recombination between the homology regions A0 and B0 of the Plant X-tender expression vector and the homology regions A0 and B0 of the insert. A0, A1, AR, B0: homology regions, Hin dIII, I- Sce I, Pac I, Asc I, Sbf I, Swa I, Fse I, Pme I: restriction enzyme recognition sites, Rp: selection marker conferring resistance in plants, Re: selection marker conferring resistance in E . coli and A . tumefaciens , Amp: selection marker conferring ampicillin resistance in E . coli and A . tumefaciens , Kan: selection marker conferring kanamycin resistance in E . coli and A . tumefaciens , URA3 : yeast selection marker, LB: left border of T-DNA, RB: right border of T-DNA, ccd B: bacterial suicide gene, SLiCE: Seamless ligation cloning extract cloning method, HiFi: HiFi DNA assembly method, Gibson: Gibson DNA assembly method, TAR: cloning based on transformation-associated recombination, PCR: Polymerase chain reaction, CDS: coding sequence, ASX: Plant X-tender expression vector.

    Article Snippet: Multigene constructs were released from Level 1 vector with I-Sce I (NEB).

    Techniques: Clone Assay, Expressing, Plasmid Preparation, Polymerase Chain Reaction, Amplification, Construct, Selection, Marker, Homologous Recombination, Ligation, Transformation Assay, Sequencing